Home
This Title All WIREs
WIREs RSS Feed
How to cite this WIREs title:
WIREs Nanomed Nanobiotechnol
Impact Factor: 5.681
Available only through online subscription:

WIREs Nanomedicine and Nanobiotechnology

  • The first title in the innovative WIREs publication series
  • An authoritative, encyclopedic resource addressing key topics from the perspectives of medicine, biology, physics, chemistry, and engineering
  • High-quality content commissioned from expert contributors and peer-reviewed to a rigorous standard
  • Free or low cost access in developing countries through Research4Life
  • Indexed by MEDLINE/PubMed, TRSI (formerly ISI), CAS, and Scopus
  • Offers FREE downloadable PowerPoint presentations of figures for non-profit, educational use

Access to this WIREs title is by subscription only.

Recommend to Your
Librarian Now!

The latest WIREs articles in your inbox

Sign Up for Article Alerts

In the Spotlight

James F. Leary

James F. Leary
has been contributing to nanomedical research and technologies throughout his career. Such contributions include the invention of high-speed flow cytometry, cell sorting techniques, and rare-event methods. Dr. Leary’s current research spans across three general areas in nanomedicine. The first is the development of high-throughput single-cell flow cytometry and cell sorting technologies. The second explores BioMEMS technologies. These include miniaturized cell sorters, portable devices for detection of microbial pathogens in food and water, and artificial human “organ-on-a-chip” technologies which consists of developing cell culture chips capable of simulating the activities and mechanics of entire organs and organ systems. His third area of research aims at developing smart nano-engineered systems for single-cell drug or gene delivery for nanomedicine. Dr. Leary currently holds nine issued U.S. Patents with four currently pending, and he has received NIH funding for over 25 years.

Learn More

Twitter: smalljournal Follow us on Twitter

    Highly Conductive, Capacitive, Flexible and Soft Electrodes Based on a 3D Graphene–Nanotube–Palladium Hybrid and... http://t.co/DcLdIpc97j
    Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics http://t.co/cQCY37A0fI
    Layered Double Hydroxide-based Nanomaterials as Highly Efficient Catalysts and Adsorbents http://t.co/jmykgCs2pI