Oki, T, Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313:1068–1072. doi:10.1126/science.1128845.
Katul, GG, Oren, R, Manzoni, S, Higgins, C, Parlange, MB. Evapotranspiration: a process driving mass transport and energy exchange in the soil‐plant‐atmosphere‐climate system. Rev Geophys 2012, 50:RG3002.
Schlesinger, WH, Jasechko, S. Transpiration in the global water cycle. Agr Forest Meteorol 2014, 189‐190:115–117. doi:10.1016/j.agrformet.2014.01.011.
Wild, M, Folini, D, Hakuba, MZ, Schär, C, Seneviratne, SI, Kato, S, Rutan, D, Ammann, C, Wood, EF, König‐Langlo, G. The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynam 2015, 44:3393–3429.
Eagleson, PS. Climate, soil, and vegetation 1. Introduction to water balance dynamics. Water Resour Res 1978, 14:705–712.
Bonan, GB. Ecological Climatology. Cambridge, UK: Cambridge University Press; 2008.
Berry, JA, Beerling, DJ, Franks, PJ. Stomata: key players in the Earth system past and present. Curr Opin Plant Biol 2010, 13:232–239.
Nobel, PS. Physicochemical and Environmental Plant Physiology. Oxford, UK: Elsevier Academic Press; 2009.
Brown, AD. Microbial Water Stress Physiology, Principles and Perspectives. Chichester: John Wiley and Sons; 1990.
Anderson, SP, von Blanckenburg, F, White, AF. Physical and chemical controls on the critical zone. Elements 2007, 3:315–319.
McMahon, TA, Peel, MC, Lowe, L, Srikanthan, R, McVicar, TR. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 2013, 17:1331–1363. doi:10.5194/hess-17-1331-2013.
Gerten, D, Schaphoff, S, Haberlandt, U, Lucht, W, Sitch, S. Terrestrial vegetation and water balance‐hydrological evaluation of a dynamic global vegetation model. J Hydrol 2004, 286:249–270.
Fisher, JB, Huntzinger, DN, Schwalm, CR, Sitch, S. Modeling the Terrestrial Biosphere. Annu Rev Environ Resour 2014, 39:91–123. doi:10.1146/annurev-environ-012913-093456.
Sellers, PJ, Mintz, Y, Sud, YC, Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 1986, 43:505–531.
Sellers, PJ, Randall, DA, Collatz, GJ, Berry, JA, Field, CB, Dazlich, CA, Zhang, C, Collelo, D, Bounoua, L. A revised land surface parameterization (SiB2) for atmospheric GCMs. 1. Model formulation. J Climate 1996, 9:674–705.
Sellers, PJ, Dickinson, RE, Randall, DA, Betts, AK, Hall, FG, Berry, JA, Collatz, GJ, Denning, AS, Mooney, HA, Nobre, CA, et al. Modeling the exchanges of energy, water and carbon between continents and the atmosphere. Science 1997, 275:502–509.
Fatichi, S, Zeeman, MJ, Fuhrer, J, Burlando, P. Ecohydrological effects of management on subalpine grasslands: from local to catchment scale. Water Resour Res 2014, 50:148–164. doi:10.1002/2013WR014535.
Mu, Q, Zhao, M, Running, SW. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 2011, 115:1781–1800.
Bornmann, L, Mutz, R. Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J Assoc Inform Sci Technol 2015, 66:2215–2222. doi:10.1002/asi.23329.
Sack, L, Scoffoni, C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 2013, 198:983–1000. doi:10.1111/nph.12253.
Rodriguez‐Iturbe, I. Ecohydrology: a hydrological perspective of climate‐soil‐vegetation dynamics. Water Resour Res 2000, 36:3–9.
Porporato, A, Laio, F, Ridolfi, L, Rodriguez‐Iturbe, I. Plants in water‐controlled ecosystems: active role in hydrologic processes and response to water stress III. Vegetation water stress. Adv Water Resour 2001, 24:725–744.
Eagleson, PS. Ecohydrology: Darwinian Expression of Vegetation Form and Function. Cambridge: Cambridge University Press; 2002.
Rodriguez‐Iturbe, I, Porporato, A. Ecohydrology of Water‐Controlled Ecosystems. Cambridge, UK: Cambridge University Press; 2004.
Bond, B. Hydrology and ecology meet‐and the meeting is good. Hydrol Process 2003, 2087:2089. doi:10.1002/hyp.5133.
Friedlingstein, P, Cox, PM, Betts, RA, Bopp, L, VonBloh, W, Brovkin, V, Cadule, P, Doney, S, Eby, M, Fung, I, et al. Climate‐carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 2006, 19:3337–3353.
Arora, VK, Boer, GJ, Friedlingstein, P, Eby, M, Jones, CD, Christian, JR, Bonan, LBG, Brovkin, V, Cadule, P, Hajima, T, et al. Carbon‐concentration and carbon‐climate feedbacks in CMIP5 Earth System models. J Climate 2013, 26:5289–5314. doi:10.1175/JCLI-D-12-00494.1.
Friedlingstein, P, Meinshausen, M, Arora, VK, Jones, CD, Anav, A, Liddicoat, SK, Knutti, R. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Climate 2014, 27:511–526.
Mooney, H, Larigauderie, A, Cesario, M, Elmquist, T, Hoegh‐Guldberg, O, Lavorel, S, Mace, GM, Palmer, M, Scholes, R, Yahara, T. Biodiversity, climate change, and ecosystem services. Curr Opin Environ Sustain 2009, 1:46–54. doi:10.1016/j.cosust.2009.07.006.
Istanbulluoglu, E, Bras, RL. Vegetation‐modulated landscape evolution: effects of vegetation on landscape processes, drainage density, and topography. J Geophys Res 2005, 110:F02012. doi:10.1029/2004JF000249.
Lobell, DB, Schlenker, W, Costa‐Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333:616–620. doi:10.1126/science.1204531.
Dai, A, Trenberth, KE, Qian, T. A global dataset of Palmer drought severity index for 1870‐2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 2004, 5:1117–1130.
Sheffield, J, Wood, EF, Roderick, ML. Little change in global drought over the past 60 years. Nature 2012, 491:435–438. doi:10.1038/nature11575.
Fu, Q, Feng, S. Responses of terrestrial aridity to global warming. J Geophys Res Atmos 2014, 119:7863–7875. doi:10.1002/2014JD021608.
Roderick, ML, Greve, P, Farquhar, GD. On the assessment of aridity with changes in atmospheric CO2. Water Resour Res 2015, 2:5450–5463. doi:10.1002/2015WR017031.
Pappas, C, Fatichi, S, Burlando, P. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant diversity matter? New Phytol 2015. doi:10.1111/nph.13590.
Inauen, N, Körner, C, Hiltbrunner, E. Hydrological consequences of declining land use and elevated CO2 in alpine grassland. J Ecol 2013, 101:86–96. doi:10.1111/1365-2745.12029.
Gough, CM, Hardiman, BS, Nave, LE, Bohrer, G, Maurer, KD, Vogel, CS, Nadelhoffer, KJ, Curtis, PS. Sustained carbon uptake and storage following moderate disturbance in a great lakes forest. Ecol Appl 2013, 23:1202–1215.
Biederman, JA, Harpold, AA, Gochis, DJ, Ewers, BE, Reed, DE, Papuga, SA, Brooks, PD. Increased evaporation following widespread tree mortality limits streamflow response. Water Resour Res 2014, 50:5395–5409. doi:10.1002/2013WR014994.
Abdelnour, A, Stieglitz, M, Pan, F, McKane, R. Catchment hydrological responses to forest harvest amount and spatial pattern. Water Resour Res 2011, 47:W09521. doi:10.1029/2010WR010165.
Brown, AE, Zhang, L, McMahon, TA, Western, AW, Vertessy, RA. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 2005, 310:28–61. doi:10.1016/j.jhydrol.2004.12.010.
Guardiola‐Claramonte, M, Troch, PA, Breshears, DD, Huxman, TE, Switanek, MB, Durcik, M, Cobb, NS. Decreased streamflow in semi‐arid basins following drought‐induced tree die‐off: a counter‐intuitive and indirect climate impact on hydrology. J Hydrol 2011, 406:225–233.
Pearson, RG, Phillips, SJ, Loranty, MM, Beck, PSA, Damoulas, T, Knight, SJ, Goetz, SJ. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 2013, 3:673–677.
Matheny, A, Bohrer, G, Vogel, CS, Morin, TH, He, L, Frasson, RPM, Mirfenderesgi, G, Schäfer, KVR, Gough, CM, Ivanov, VY, et al. Species‐specific transpiration responses to intermediate disturbance in a northern hardwood forest. J Geophys Res 2014, 119:2292–2311.
Pomeroy, JW, Marks, DM, Link, T, Ellis, C, Hardy, J, Rowlands, A, Granger, R. The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrol Process 2009, 23:2513–2525.
Ellis, CR, Pomeroy, JW, Brown, T, MacDonald, J. Simulation of snow accumulation and melt in needleleaf forest environments. Hydrol Earth Syst Sci 2010, 14:925–940. doi:10.5194/hess-14-925-2010.
Broxton, PD, Harpold, AA, Biederman, JA, Troch, PA, Molotch, NP, Brooks, PD. Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed‐conifer forests. Ecohydrology 2015, 8:1073–1094. doi:10.1002/eco.1565.
Bohrer, G, Katul, GG, Walko, RL, Avissar, R. Exploring the effects of microscale structural heterogeneity of forest canopies using large‐eddy simulations. Bound‐Lay Meteorol 2009, 132:351–382. doi:10.1007/s10546-009-9404-4.
Mahat, V, Tarboton, DG, Molotch, NP. Testing above‐ and below‐canopy representations of turbulent fluxes in an energy balance snowmelt model. Water Resour Res 2013, 49:1107–1122. doi:10.1002/wrcr.20073.
Lundquist, JD, Dickerson‐Lange, SE, Lutz, JA, Cristea, NC. Lower forest density enhances snow retention in regions with warmer winters: a global framework developed from plot‐scale observations and modelling. Water Resour Res 2013, 49:6356–6370. doi:10.1002/wrcr.20504.
Duarte, CM, Middelburg, JJ, Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2005, 2:1–8.
Katul, GG, Poggi, D, Ridolfi, L. A low resistance model for assessing the impact of vegetation on flood routing mechanics. Water Resour Res 2011, 47:W08533. doi:10.1029/2010WR010278.
Kim, J, Ivanov, VY, Katopodes, ND. Hydraulic resistance to overland flow on surfaces with partially submerged vegetation. Water Resour Res 2012, 48:W10540. doi:10.1029/2012WR012047.
Marjoribanks, TI, Hardy, RJ, Lane, SN. The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives. WIREs Water 2014, 1:549–560. doi:10.1002/wat2.1044.
Rodriquez‐Iturbe, I, D`Odorico, P, Porporato, A, Ridolfi, L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 1999, 35:3709–3722.
Ridolfi, L, D`Odorico, P, Porporato, A, Rodriguez‐Iturbe, I. Duration and frequency of water stress in vegetation: an analytical model. Water Resour Res 2000, 36:2297–2307.
Guswa, AJ. The influence of climate on root depth: a carbon cost‐benefit analysis. Water Resour Res 2008, 44:W02427. doi:10.1029/2007WR006384.
Thompson, SE, Harman, CJ, Troch, PA, Brooks, PD, Sivapalan, M. Spatial scale dependence of ecohydrologically mediated water balance partitioning: a synthesis framework for catchment ecohydrology. Water Resour Res 2011, 47:W00J03. doi:10.1029/2010WR009998.
Manzoni, S, Vico, G, Katul, GG, Palmroth, S, Jackson, RB, Porporato, A. Hydraulic limits on maximum plant transpiration and the emergence of the safety‐efficiency trade‐off. New Phytol 2013, 198:169–178. doi:10.1111/nph.12126.
Manzoni, S, Vico, G, Katul, GG, Palmroth, S, Porporato, A. Optimal plant water use strategies under stochastic rainfall. Water Resour Res 2014, 2014:5379–5394. doi:10.1002/2014WR015375.
Bugmann, H. A review of forest gap models. Clim Change 2001, 51:259–305.
Weiskittel, AR, Hann, DW, Kershaw, JA, Vanclay, JK. Forest Growth and Yield Modeling. Oxford: Wiley‐Blackwell; 2011.
Tyree, MT. The ascent of water. Nature 2003, 423:923.
Campbell, GS, Norman, JM. An Introduction to Environmental Biophysics. New York: Springer‐Verlag New York, Inc.; 1998.
Zimmermann, MH. Transport in the phloem. Annu Rev Plant Physiol 1960, 11:167–190.
Pickard, WF. The ascent of sap in plants. Prog Biophys Mol Biol 1981, 37:181–229.
Holbrook, NM, Zwieniecki, MA. Vascular Transport in Plants. Amsterdam: Elsevier; 2005.
Jensen, KH, Berg‐Sørensen, K, Friis, SMM, Bohr, T. Analytic solutions and universal properties of sugar loading models in Münch phloem flow. J Theor Biol 2012, 304:286–296.
Stroock, AD, Pagay, VV, Zwieniecki, MA, Holbrook, NM. The physicochemical hydrodynamics of vascular plants. Annu Rev Fluid Mech 2014, 46:615–642.
Taiz, L, Zeiger, E. Plant Physiology. Sunderland, MA: Sinauer Associates Inc; 2006.
von Caemmerer, S, Farquhar, GD. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153:376–387.
Evans, JR, Kaldenho, R, Genty, B, Terashima, I. Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 2009, 60:2235–2248. doi:10.1093/jxb/erp117.
Bernacchi, CJ, Bagley, JE, Serbin, SP, Ruiz‐Vera, UM, Rosenthal, DM, Van‐Loocke, A. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ 2013, 36:1641–1657. doi:10.1111/pce.12118.
Franks, PJ, Beerling, DJ. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 2009, 106:10343–10347.
Assouline, S, Or, D. Plant water use efficiency over geological time –evolution of leaf stomata configurations affecting plant gas exchange. PLoS One 2013, 8:e67757. doi:10.1371/journal.pone.0067757.
Cochard, H, Nardini, A, Coll, L. Hydraulic architecture of leaf blades: where is the main resistance? Plant. Cell Environ 2004, 27:1257–1267. doi:10.1111/j.1365-3040.2004.01233.x.
Sack, L, Holbrook, NM. Leaf hydraulics. Annu Rev Plant Biol 2006, 57:361–381.
Brodribb, TJ, Field, TS, Jordan, GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 2007, 144:1890–1898.
Hetherington, AM, Woodward, FI. The role of stomata in sensing and driving environmental change. Nature 2003, 424:901–908.
Jarvis, PG. The interpretation of the variances in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond Ser B 1976, 273:593–610.
Monteith, JL. A reinterpretation of stomatal responses to humidity. Plant Cell Environ 1995, 18:357–364.
Assmann, SM. The cellular basis of guard cell sensing to rising CO2. Plant Cell Environ 1999, 22:629–637.
Merilo, E, Joesaar, I, Brosché, M, Kollist, H. To open or to close: species‐specific stomatal responses to simultaneously applied opposing environmental factors. New Phytol 2014, 202:499–508. doi:10.1111/nph.12667.
Buckley, TN, Schymanski, SJ. Stomatal optimisation in relation to atmospheric CO2. New Phytol 2014, 201:372–377. doi:10.1111/nph.12552.
Fischer, RA. The relationship of stomatal aperture and guard‐cell turgor pressure in Vicia faba. J Exp Bot 1973, 24:387–399.
Buckley, TN, Mott, KA, Farquhar, GD. A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 2003, 26:1767–1785.
Buckley, TN. The control of stomata by water balance. New Phytol 2005, 169:275–292. doi:10.1111/j.1469-8137.2005.01543.x.
Comstock, JP. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J Exp Bot 2002, 53:195–200.
Brodribb, TJ, Holbrook, NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 2003, 132:2166–2173.
Brodribb, TJ, Holbrook, NM. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol 2004, 162:663–670. doi:10.1111/j.1469-8137.2004.01060.x.
Guyot, G, Scoffoni, C, Sack, L. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant Cell Environ 2012, 35:857–871. doi:10.1111/j.1365-3040.2011.02458.x.
Pantin, F, Monnet, F, Jannaud, D, Costa, JM, Renaud, J, Muller, B, Simonneau, T, Genty, B. The dual effect of abscisic acid on stomata. New Phytol 2013, 197:65–72. doi:10.1111/nph.12013.
Zeiger, E. The biology of stomatal guard cells. Annu Rev Plant Physiol 1983, 34:441–475.
Talbott, LD, Zeiger, E. The role of sucrose in guard cell osmoregulation. J Exp Bot 1998, 49:329–337.
Roelfsema, MRG, Hedrich, R. In the light of stomatal opening: new insights into the watergate. New Phytol 2005, 167:665–691. doi:10.1111/j.1469-8137.2005.01460.x.
Wilkinson, S, Davies, WJ. ABA‐based chemical signalling: the co‐ordination of responses to stress in plants. Plant Cell Environ 2002, 25:195–210.
Brodribb, TJ, McAdam, SAM. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiol 2013, 162:1370–1377.
Dodd, IC. Abscisic acid and stomatal closure: a hydraulic conductance conundrum? New Phytol 2013, 197:6–8. doi:10.1111/nph.12052.
Franks, PJ, Farquhar, GD. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia Virginiana. Plant Physiol 2001, 125:935–942.
Brodribb, TJ, McAdam, SAM. Passive origins of stomatal control in vascular plants. Science 2011, 331:582–585. doi:10.1126/science.1197985.
Dewar, RC. Interpretation of an empirical model for stomatal conductance in terms of guard cell function. Plant Cell Environ 1995, 18:365–372.
Dewar, RC. The Ball‐Berry‐Leuning and Tardieu‐Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ 2002, 25:1383–1398.
Gao, Q, Xhao, P, Zeng, X, Cai, X, Shen, W. A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate, and soil water stress. Plant Cell Environ 2002, 25:1373–1381.
Franks, PJ. Stomatal control and hydraulic conductance, with special reference to tall trees. Tree Physiol 2004, 24:865–878.
Franks, PJ, Drake, PL, Froend, RH. Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 2007, 30:19–30. doi:10.1111/j.1365-3040.2006.01600.x.
Peak, D, Mott, KA. A new, vapour‐phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ 2011, 34:162–178. doi:10.1111/j.1365-3040.2010.02234.x.
de Boer, HJ, Eppinga, MB, Wassen, MJ, Dekker, SC. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nat Commun 2012, 3. doi:10.1038/ncomms2217.
Mott, KA, Peak, D. Testing a vapour‐phase model of stomatal responses to humidity. Plant Cell Environ 2013, 36:936–944.
Tuzet, A, Perrier, A, Leuning, R. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 2003, 26:1097–1116.
Damour, G, Simonneau, T, Cochard, H, Urban, L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 2010, 33:1419–1438. doi:10.1111/j.1365-3040.2010.02181.x.
Tardieu, F, Davies, WJ. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 1993, 16:341–349.
Tardieu, F, Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 1998, 49:419–432.
Buckley, TN, Mott, KA. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 2013, 36:1691–1699. doi:10.1111/pce.12140.
Ball, JT, Woodrow, IE, Berry, JA. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, J, ed. Progress in Photosynthesis Research. Netherlands: Martinus Nijho; 1987, 221–224.
Leuning, R. Modelling stomatal behaviour and photosynthesis of Eucalyptus Grandis. Aust J Plant Physiol 1990, 17:159–175.
Leuning, R. A critical appraisal of a combined stomatal‐ photosynthesis model for C3 plants. Plant Cell Environ 1995, 18:357–364.
Farquhar, GD, von Caemmerer, S, Berry, JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149:78–90.
Collatz, GJ, Ball, JT, Grivet, C, Berry, JA. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary‐layer. Agr Forest Meteorol 1991, 54:107–136.
Collatz, GJ, Ribas‐Carbo, M, Berry, JA. Coupled photosynthesis‐stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 1992, 19:519–538.
Wang, YP, Leuning, R. A two‐leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi‐layered model. Agr Forest Meteorol 1998, 91:89–111.
Bonan, GB, Lawrence, PJ, Oleson, KW, Levis, S, Jung, M, Reichstein, M, Lawrence, DM, Swenson, SC. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of Geophysical Research 2011, 116:G02014. doi:10.1029/2010JG001593.
Medlyn, BE, Duursma, RA, De Kauwe, MG, Prentice, IC. The optimal stomatal response to atmospheric CO2 concentration: alternative solutions, alternative interpretations. Agr Forest Meteorol 2013, 182‐183:200–203.
Lin, ZS, Medlyn, BE, Duursma, RA, Prentice, IC, Wang, H, Baig, S, Eamus, D, de Dios, VR, Mitchell, P, Ellsworth, DS, et al. Optimal stomatal behaviour around the world. Nat Clim Change 2015, 5:459–464.
Katul, G, Manzoni, S, Palmroth, S, Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann Bot 2010, 105:431–442.
Medlyn, BE, Duursma, RA, Eamus, D, Ellsworth, DS, Prentice, IC, Barto, CVM, Crous, KY, De Angelis, P, Freeman, MC, Wingate, L. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol 2011, 17:2134–2144.
Manzoni, S, Vico, G, Palmroth, S, Porporato, A, Katul, G. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Adv Water Resour 2013, 62:90–105.
Bonan, GB, Williams, M, Fisher, RA, Oleson, KW. Modeling stomatal conductance in the earth system: linking leaf water‐use efficiency and water transport along the soil‐plant–atmosphere continuum. Geosci Model Dev 2014, 7:2193–2222. doi:10.5194/gmd-7-2193-2014.
Egea, G, Verhoef, A, Vidale, PL. Towards an improved and more flexible representation of water stress in coupled photosynthesis–stomatal conductance models. Agr Forest Meteorol 2011, 151:1370–1384.
Zhou, S, Duursma, RA, Medlyn, BE, Kelly, JWG, Prentice, IC. How should we model plant responses to drought? An analysis of stomatal and non‐stomatal responses to water stress. Agr Forest Meteorol 2013, 182‐183:204–214.
Manzoni, S, Vico, G, Katul, G, Fay, PA, Polley, W, Palmroth, S, Porporato, A. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta‐analysis across plant functional types and climates. Funct Ecol 2011, 25:456–467. doi:10.1111/j.1365-2435.2010.01822.x.
Clode, PL, Kilburn, MR, Jones, DL, Stockdale, EA, Cliff, JB III, Herrmann, AM, Murphy, DV. In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 2009, 151:1751–1757.
Jones, DL, Nguyen, C, Finlay, RD. Carbon flow in the rhizosphere: carbon trading at the soil‐root interface. Plant and Soil 2009, 321:5–33. doi:10.1007/s11104-009-9925-0.
Hinsinger, P, Bengough, AG, Vetterlein, D, Young, IM. Rhizosphere: biophysics, bio‐geochemistry and ecological relevance. Plant and Soil 2009, 321:117–152. doi:10.1007/s11104-008-9885-9.
Carminati, A, Moradi, AB, Vetterlein, D, Vontobel, P, Lehmann, E, Weller, U, Vogel, HJ, Oswald, SE. Dynamics of soil water content in the rhizosphere. Plant and Soil 2010, 332:163–176. doi:10.1007/s11104-010-0283-8.
Jackson, RB, Mooney, HA, Schulze, ED. A global budget for net root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 1997, 94:7362–7366.
McCormack, ML, Dickie, IA, Eissenstat, DM, Fahey, TJ, Fernandez, CW, Guo, D, Helmisaari, HS, Hobbie, EA, Iversen, CM, Jackson, RB, et al. Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes. New Phytol 2015, 207:505–518. doi:10.1111/nph.13363.
Boyer, JS. Water transport. Annu Rev Plant Physiol 1985, 36:473–516.
Nadezhdina, N, David, TS, David, JS, Ferreira, MI, Dohnal, M, Tesar, M, Gartner, K, Leitgeb, E, Nadezhdin, V, Cermak, J, et al. Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 2010, 3:431–444. doi:10.1002/eco.148.
Goldsmith, GR. Changing directions: the atmosphere‐plant‐soil continuum. New Phytol 2013, 2013:4–6. doi:10.1111/nph.12332.
Neumann, RB, Cardon, ZG. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 2012, 194:337–352. doi:10.1111/j.1469-8137.2012.04088.x.
Gardner, WR. Relation of root distribution to water uptake and availability. Agron J 1964, 56:41–45.
Sperry, JS, Adler, FR, Campbell, GS, Comstock, JB. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 1998, 21:347–359.
Steudle, E. Water uptake by plant roots: an integration of views. Plant and Soil 2000, 226:45–56.
Doussan, C, Vercambre, G, Pages, L. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption ‐ distribution of axial and radial conductances in maize. Ann Bot 1998, 81:225–232.
Couvreur, V, Vanderborght, J, Javaux, M. A simple three‐dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrol Earth Syst Sci 2012, 16:2957–2971. doi:10.5194/hess-16-2957-2012.
Javaux, M, Vanderborght, J, Couvreur, V, Vereecken, H. Root water uptake: from 3D biophysical processes to macroscopic modeling approaches. Vadose Zone J 2013, 12:1–16. doi:10.2136/vzj2013.02.0042.
Johnson, DM, Sherrard, ME, Domec, JC, Jackson, RB. Role of aquaporin activity in regulating deep and shallow root hydraulic conductance during extreme drought. Trees 2014, 28:1323–1331. doi:10.1007/s00468-014-1036-8.
Moshelion, M, Halperin, O, Wallach, R, Oren, R, Way, DA. Role of aquaporins in determining transpiration and photosynthesis in water‐stressed plants: crop water‐use efficiency, growth and yield. Plant Cell Environ 2014, 38:1785–1793. doi:10.1111/pce.12410.
Jungk, AO. Dynamics of nutrient movement at the soil‐root interface. In: Plant Roots: The Hidden Half. New York: Marcel Dekker Inc.; 2002, 587–616.
Chapman, N, Miller, AJ, Lindsey, K, Richard Whalley, W. Roots, water, and nutrient acquisition: let`s get physical. Trends Plant Sci 2012, 17:701–710.
Zelazny, E, Vert, G. Plant nutrition: root transporters on the move. Plant Physiol 2014, 166:500–508. doi:10.1104/pp.114.244475.
He, L, Ivanov, VY, Bohrer, G, Thomsen, JE, Vogel, CS, Moghaddam, M. Temporal dynamics of soil moisture in a northern temperate mixed successional forest after a prescribed intermediate disturbance. Agr Forest Meteorol 2013, 180:22–33.
Leitner, D, Klepsch, S, Bodner, G, Schnepf, A. A dynamic root system growth model based on L‐systems. Plant and Soil 2010, 332:177–192.
Vrugt, JA, vanWijk, MT, Hopmans, JW, Simunek, J. One‐, two‐, and three‐dimensional root water uptake functions for transient modeling. Water Resour Res 2001, 37:2457–2470. doi:10.1029/2000WR000027.
Doussan, C, Pierret, A, Garrigues, E, Pages, L. Water uptake by plant roots: II—modelling of water transfer in the soil root system with explicit account of flow within the root system—comparison with experiments. Plant and Soil 2006, 283:99–117.
Javaux, M, Schroder, T, Vanderborght, J, Vereecken, H. Use of a three‐dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 2008, 7:1079–1088.
Schneider, CL, Attinger, S, Delfs, JO, Hildebrandt, A. Implementing small scale processes at the soil‐plant interface ‐ the role of root architectures for calculating root water uptake profiles. Hydrol Earth Syst Sci 2010, 14:279–289. doi:10.5194/hess-14-279-2010.
Dunbabin, VM, Postma, JA, Schnepf, A, Pagès, L, Javaux, M, Wu, L, Leitner, D, Chen, YL, Rengel, Z, Diggle, AJ. Modelling root‐soil interactions using three‐dimensional models of root growth, architecture and function. Plant and Soil 2013, 372:93–124. doi:10.1007/s11104-013-1769-y.
Manoli, G, Bonetti, S, Domec, JC, Putti, M, Katul, G, Marani, M. Tree root systems competing for soil moisture in a 3D soil–plant model. Adv Water Resour 2014, 66:32–42.
Postma, JA, Schurr, U, Fiorani, F. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. Biotechnol Adv 2014, 32:53–65.
Warren, JM, Hanson, PJ, Iversen, CM, Kumar, J, Walker, AP, Wullschleger, SD. Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytol 2015, 205:59–78. doi:10.1111/nph.1303.
Feddes, RA, Kowalik, P, Kolinska‐Malinka, K, Zaradny, H. Simulation of field water uptake by plants using a soil water dependent root extraction function. J Hydrol 1976, 31:13–26.
Feddes, RA, Ho, H, Bruen, M, Dawson, T, de Rosnay, P, Dirmeyer, P, Jackson, RB, Kabat, P, Kleidon, A, Lilly, A, et al. Modeling root water uptake in hydrological and climate models. Bull Am Meteorol Soc 2001, 82:2797–2809.
Ivanov, VY, Bras, RL, Vivoni, ER. Vegetation‐hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resour Res 2008, 44:W03429. doi:10.1029/2006WR005588.
Fatichi, S, Ivanov, VY, Caporali, E. A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments. 1. Theoretical framework and plot‐scale analysis. J Adv Model Earth Syst 2012, 4:M05002.
Daly, E, Porporato, A, Rodriguez‐Iturbe, I. Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: upscaling from hourly to daily level. J Hydrometeorol 2004, 5:546–558.
Deckmyn, G, Verbeeck, H, de Beeck, MO, Vansteenkiste, D, Steppe, K, Ceulemans, R. ANAFORE: a stand‐scale process‐based forest model that includes wood tissue development and labile carbon storage in trees. Ecol Model 2008, 215:345–368.
Newman, EI. Resistance to water flow in soil and plant. I. Soil resistance in relation to amounts of root: theoretical estimate. J Appl Ecol 1969, 6:1–12.
Dixon, HH, Joly, J. On the ascent of sap. Philos Trans R Soc Lond Ser B 1894, 186:563–576.
Tyree, MT. The cohesion‐tension theory of sap ascent: current controversies. J Exp Bot 1997, 48:1753–1765.
Münch, E. Die Stoffbewegungen in der Pflanze. Jena, Germany: Gustav Fischer; 1930.
De Schepper, V, De Swaef, T, Bauweraerts, I, Steppe, K. Phloem transport: a review of mechanisms and controls. J Exp Bot 2013, 64:4839–4850. doi:10.1093/jxb/ert302.
Ryan, MG, Asao, S. Phloem transport in trees. Tree Physiol 2014, 34:1–4. doi:10.1093/treephys/tpt123.
Pockman, WT, Sperry, JS. Vulnerability to xylem cavitation and the distribution of Sonoran vegetation. Am J Bot 2000, 87:1287–1299.
Martínez‐Vilalta, J, Prat, E, Oliveras, I, Piñol, J. Xylem hydraulic properties of roots and stems of nine mediterranean woody species. Oecologia 2002, 133:19–29.
Lopez, OR, Kursar, TA, Cochard, H, Tyree, MT. Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species. Tree Physiol 2005, 25:1553–1562.
Maherali, H, Pockman, WT, Jackson, RB. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 2004, 85:2184–2199.
Meinzer, FC, Johnson, DM, Lachenbruch, B, McCulloh, KM, Woodruff, DR. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 2009, 23:922–930. doi:10.1111/j.1365-2435.2009.01577.x.
Domec, JC, Gartner, BL. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas‐fir trees. Trees 2001, 15:204–214.
Steppe, K, De Pauw, DJW, Doody, TM, Teskey, RO. Comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agr Forest Meteorol 2010, 150:1046–1056.
Hölttä, T, Vesala, T, Sevanto, S, Perämäki, M, Nikinmaa, E. Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees Struct Funct 2006, 20:67–78.
Thompson, MV, Holbrook, NM. Application of a single‐solute non‐steady‐state phloem model to the study of long‐distance assimilate transport. J Theor Biol 2003, 220:419–455.
Cochrane, TT, Cochrane, TA. Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation. Plant Physiol Biochem 2009, 47:205–209.
Woodruff, DR, Bond, BJ, Meinzer, FC. Does turgor limit growth in tall trees? Plant Cell Environ 2004, 27:229–236.
Woodruff, DR, Meinzer, FC. Size‐dependent changes in biophysical control of tree growth: the role of turgor. In: Size‐ and Age‐Related Changes in Tree Structure and Function. Dordrecht, Netherlands: Springer; 2011, 363–384.
Turgeon, R. The puzzle of phloem pressure. Plant Physiol 2010, 154:578–581.
Mencuccini, M, Hölttä, T, Sevanto, S, Nikinmaa, E. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem‐generated turgor signal. New Phytol 2013, 198:1143–1154.
Hölttä, T, Mencuccini, M, Nikinmaa, E. Linking phloem function to structure: analysis with a coupled xylem‐phloem transport model. J Theor Biol 2009, 259:325–337.
Sevanto, S, Hölttä, T, Holbrook, NM. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant Cell Environ 2011, 34:690–703. doi:10.1111/j.1365-3040.2011.02275.x.
Meinzer, FC, James, SA, Goldstein, G, Woodruff, D. Whole‐tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 2003, 2003:1147–1155.
Scholz, FG, Bucci, SJ, Goldstein, G, Meinzer, FC, Franco, AC, Miralles‐Wilhelm, F. Biophysical properties and functional significance of stem water storage tissues in neotropical savanna trees. Plant Cell Environ 2007, 30:236–248.
Barnard, DM, Meinzer, FC, Lachenbruch, B, McCulloh, KA, Johnson, DM, Woodruff, DR. Climate‐related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ 2011, 34:643–654.
Verbeeck, H, Steppe, K, Nadezhdina, N, De Beeck, MO, Deckmyn, GO, Meiresonne, L, Lemeur, R, Cermák, J, Ceulemans, R, Janssens, IA. Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Tree Physiol 2007, 27:1671–1685.
Cermák, J, Kucera, J, Bauerle, WL, Phillips, N, Hinckely, TM. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old‐growth douglas‐fir trees. Tree Physiol 2007, 27:181–198.
Scholz, FG, Phillips, NG, Bucci, SJ, Meinzer, FC, Goldstein, G. Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In: Size‐ and Age‐Related Changes in Tree Structure and Function. Dordrecht, Netherlands: Springer; 2011, 341–361.
Domec, JC, Gartner, BL. How do water transport and storage differ in coniferous earlywood and latewood? J Exp Bot 2002, 53:2369–2379.
Domec, JC, Gartner, BL. Relationship between growth rates and xylem hydraulic characteristics in young, mature and old‐growth ponderosa pine trees. Plant Cell Environ 2003, 26:471–483.
Génard, M, Fishman, S, Vercambre, G, Huguet, JG, Bussi, C, Besset, J, Habib, R. A biophysical analysis of stem and root diameter variations in woody plants. Plant Physiol 2001, 126:188–202.
Zweifel, R, Item, H, Häsler, R. Link between diurnal stem radius changes and tree water relations. Tree Physiol 2001, 21:869–887.
Zweifel, R, Zimmermann, L, Zeugin, F, Newbery, DM. Intra‐annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 2006, 57:1445–1459. doi:10.1093/jxb/erj125.
Fernández, JE, Cuevas, MV. Irrigation scheduling from stem diameter variations: a review. Agr Forest Meteorol 2010, 150:135–151.
King, G, Fonti, P, Nievergelt, D, Buntgen, U, Frank, D. Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agr Forest Meteorol 2013, 2013:36–46.
Köcher, P. V. Horna, and C. Leuschner. Stem water storage in five coexisting temperate broad‐leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol 2013, 33:817–832. doi:10.1093/treephys/tpt055.
Katul, GG, Leuning, R, Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model. Plant Cell Environ 2003, 26:339–350.
Loranty, MM, Mackay, DS, Ewers, BE, Traver, E, Kruger, EL. Competition for light between individual trees lowers reference canopy stomatal conductance: results from a model. J Geophys Res Biogeosci 2010, 115:G04019. doi:10.1029/2010JG001377.
Mackay, DS, Roberts, DE, Ewers, BE, Sperry, JS, McDowell, NG, Pockman, WT. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour Res 2015, 51:6156–6176. doi:10.1002/2015WR017244.
Bohrer, G, Mourad, H, Laursen, TA, Drewry, D, Avissar, R, Poggi, D, Oren, R, Katul, GG. Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: a new representation of tree hydrodynamics. Water Resour Res 2005, 41:W11404. doi:10.1029/2005WR004181.
Janott, M, Gayler, S, Gessler, A, Javaux, M, Klier, C, Priesack, E. A one‐dimensional model of water flow in soil‐plant systems based on plant architecture. Plant and Soil 2011, 341:233–256. doi:10.1007/s11104-010-0639-0.
Bittner, S, Legner, N, Beese, F, Priesack, E. Individual tree branch‐level simulation of light attenuation and water flow of three F. sylvatica L. trees. J Geophys Res 2012, 117:G01037. doi:10.1029/2011JG001780.
Hentschel, R, Bittner, S, Janott, M, Biernath, C, Holst, J, Ferrio, JP, Gessler, A, Priesack, E. Simulation of stand transpiration based on a xylem water flow model for individual trees. Agricultural and Forest Meteorology 2013, 182–183:31–42.
Chuang, YL, Oren, R, Bertozzi, AL, Phillips, N, Katul, GG. The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecol Model 2006, 191:447–468.
Hölttä, T, Cochard, H, Nikinmaa, E, Mencuccini, M. Capacitive effect of cavitation in xylem conduits: results from a dynamic model. Plant Cell Environ 2009, 32:10–21.
Nikinmaa, E, Sievänen, R, Hölttä, T. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3‐D model tree crown. Ann Bot 2014, 114:653–666.
Schiestl‐Aalto, P, Kulmala, L, Mäkinen, H, Nikinmaa, E, Mäkelä, A. CASSIA ‐ a dynamic model for predicting intra‐annual sink demand and interannual growth variation in scots pine. New Phytol 2015, 206:647–659. doi:10.1111/nph.13275.
Steppe, K, De Pauw, DJW, Lemeur, R, Vanrolleghem, PA. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol 2005, 26:257–273.
De Pauw, DJW, Steppe, K, De Baets, B. Identifiability analysis and improvement of a tree water flow and storage model. Math Biosci 2008, 211:314–332.
De Schepper, V, Steppe, K. Development and verification of a water and sugar transport model using measured stem diameter variations. J Exp Bot 2010, 61:2083–2099. doi:10.1093/jxb/erq018.
De Schepper, V, Steppe, K. Tree girdling responses simulated by a water and carbon transport model. Ann Bot 2011, 108:1147–1154. doi:10.1093/aob/mcr068.
Daudet, FA, Lacointe, A, Gaudillere, JP, Cruiziat, P. Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status. J Theor Biol 2002, 214:481–498. doi:10.1006/jtbi.2001.2473.
Hsiao, TC, Acevedo, E, Fereres, E, Henderson, DW. Stress metabolism: water stress, growth and osmotic adjustment. Philos Trans R Soc Lond B Biol Sci 1976, 273:479–500.
Wang, Z, Quebedeaux, B, Stutte, GW. Osmotic adjustment: effect of water stress on carbohydrates in leaves, stems and roots of apple. Aust J Plant Physiol 1995, 22:747–754.
Bartlett, MK, Scoffoni, C, Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis. Ecol Lett 2012, 15:393–405.
Cosgrove, DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol 2005, 6:850–861. doi:10.1038/nrm1746.
Hölttä, T, Mäkinen, H, Nöjd, P, Mäkelä, A, Nikinmaa, E. A physiological model of softwood cambial growth. Tree Physiol 2010, 30:1235–1252. doi:10.1093/treephys/tpq068.
Lockhart, JA. An analysis of irreversible plant cell elongation. J Theor Biol 1965, 8:264–275.
Cosgrove, D. Biophysical control of plant cell growth. Annu Rev Plant Physiol 1986, 37:377–405.
Boyer, JS, Silk, WK. Hydraulics of plant growth. Funct Plant Biol 2004, 2004:761–773.
Hsiao, TC. Plant responses to water stress. Annu Rev Plant Physiol 1973, 24:519–570.
Muller, B, Pantin, F, Génard, M, Turc, O, Freixes, S, Piques, M, Gibon, Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 2011, 62:1715–1729. doi:10.1093/jxb/erq438.
Tardieu, F, Granier, C, Muller, B. Water deficit and growth. Co‐ordinating processes without an orchestrator? Curr Opin Plant Biol 2011, 14:283–289.
Cannell, MGR, Thornley, JHM. Modelling plant respiration: some guiding principles. Ann Bot 2000, 85:45–54.
McDowell, NG. Mechanisms linking drought, hydraulics, carbon metabolism, and mortality. Plant Physiol 2011, 155:1051–1059.
Brando, PM, Nepstad, DC, Davidson, EA, Trumbore, SE, Ray, D, Camargo, P. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B 2008, 363:1839–1848. doi:10.1098/rstb.2007.0031.
Brzostek, ER, Dragoni, D, Schmid, HP, Rahman, AF, Sims, D, Wayson, CA, Johnson, DJ, Phillips, RP. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob Chang Biol 2014, 20:2531–2539. doi:10.1111/gcb.12528.
Fischer, EM, Seneviratne, SI, Vidale, PL, Lüthi, D, Schär, C. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Climate 2007, 20:5081–5099.
Lawlor, DW, Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water‐deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 2009, 103:561–579. doi:10.1093/aob/mcn244.
Bartlett, MK, Zhang, Y, Kreidler, N, Sun, S, Ardy, R, Cao, K, Sack, L. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol Lett 2014, 17:1580–1590. doi:10.1111/ele.12374.
Hartmann, H, Ziegler, W, Kolle, O, Trumbore, S. Thirst beats hunger ‐ declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol 2013, 200:340–349. doi:10.1111/nph.12331.
Gaylord, ML, Kolb, TE, Pockman, WT, Plaut, JA, Yepez, EA, Macalady, AK, Pangle, RE, McDowell, NG. Drought predisposes pinon–juniper woodlands to insect attacks and mortality. New Phytol 2013, 198:567–578.
Poyatos, R, Aguadé, D, Galiano, L, Mencuccini, M, Martínez‐Vilalta, J. Drought‐induced defoliation and long periods of near‐zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol 2013, 220:388–401. doi:10.1111/nph.12278.
Penuelas, J, Filella, I, Zhang, XY, Llorens, L, Ogaya, R, Lloret, L, Comas, P, Estiarte, M, Terradas, J. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 2004, 161:837–846. doi:10.1111/j.1469-8137.2004.01003.x.
Vico, G, Thompson, SE, Manzoni, S, Molini, A, Albertson, JD, Almeida‐Cortez, JS, Fay, PA, Feng, X, Guswa, AJ, Liu, H, et al. Climatic ecophysiological and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology 2015:660–681. doi:10.1002/eco.1533.
Manzoni, S, Vico, G, Thompson, S, Beyer, F, Weih, M. Contrasting leaf phonological strategies optimize carbon gain under droughts of different duration. Adv Water Resour 2015, 84:37–51. doi:10.1016/j.advwatres.2015.08.001.
McDowell, N, Pockman, W, Allen, C, Breshears, DD, Cobb, N, Kolb, T, Sperry, J, West, A, Williams, D, Yepez, E. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 2008, 178:719–739. doi:10.1111/j.1469-8137D2008D02436.x.
McDowell, NG, Beerling, DJ, Breshears, DD, Fisher, RA, Raffa, KF, Stitt, M. The interdependent mechanisms underlying climate‐driven vegetation mortality. Trends Ecol Evol 2011, 26:523–532.
Sevanto, S, McDowell, NG, Dickman, LT, Pangle, R, Pockman, WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 2014, 37:153–161. doi:10.1111/pce.1214.
Allen, CD, Macalady, AK, Chenchouni, H, Bachelet, D, McDowell, NG, Vennetier, M, Kitzberger, T, Rigling, A, Breshears, DD, Hogg, EH(T), et al. A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 2010, 259:660–684.
Phillips, OL, van der Heijden, G, Lewis, SL, López‐González, G, Aragao, LEOC, Lloyd, J, Malhi, Y, Monteagudo, A, Almeida, S, et al. Drought‐mortality relationships for tropical forests. New Phytol 2010, 187:631–646.
Choat, B, Jansen, S, Brodribb, TJ, Cochard, H, Delzon, S, Bhaskar, R, Bucci, SJ, Feild, TS, Gleason, SM, Hacke, UG, et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491:752–755.
Adams, HD, Guardiola‐Claramonte, M, Barron‐Gafford, GA, Breshears, DD, Villegas, JC, Zou, CB, Troch, PA, Huxman, TE. Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global change‐type drought. Proc Natl Acad Sci USA 2009, 106:7063–7066.
Breshears, DD, Myers, OB, Meyer, CW, Barnes, FJ, Zou, CB, Allen, CD, McDowell, NG, Pockman, WT. Tree die‐off in response to global change‐type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 2009, 7:185–189.
Breshears, DD, Adams, HD, Eamus, D, McDowell, NG, Law, DJ, Will, RE, Williams, AP, Zou, CB. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die‐off. Front Plant Sci 2013, 4:266. doi:10.3389/fpls.2013.00266.
McDowell, NG, Fisher, RA, Xu, C, Domec, JC, Hölttä, T, Mackay, DS, Sperry, JS, Boutz, A, Dickman, L, Gehres, N, et al. Evaluating theories of drought‐induced vegetation mortality using a multimodel‐experiment framework. New Phytol 2013, 200:304–321.
Meir, P, Mencuccini, M, Dewar, RC. Drought‐related tree mortality: addressing the gaps in understanding and prediction. New Phytol 2015, 207:28–33.
Reed, DE, Ewers, BE, Pendall, E. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes. Environ Res Lett 2014, 9:105004. doi:10.1088/1748-9326/9/10/105004.
Monteith, JL. Evaporation and environment. In: Fogg, GE, ed. Symposium Society Experimental Biology, The State and Movement of Water in Living Organisms, vol. 19. London: Cambridge University Press; 1965, 205–224.
Bonan, GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 2008, 320:1444–1449.
Allen, RG, Pereira, LS, Raes, D, and Smith, M. Crop evapotranspiration‐Guidelines for computing crop water requirements, volume 300 of FAO Irrigation and drainage paper. FAO – Food and Agriculture Organization of the United Nations, 1998.
Drewry, DT, Kumar, P, Long, S, Bernacchi, C, Liang, XZ, Sivapalan, M. Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. J Geophys Res 2010, 115(G04022):2010. doi:10.1029/2010JG001340.
Tague, CL, Band, LE. RHESSys: Regional Hydro‐Ecologic Simulation System‐an object‐oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact 2004, 8:1–42.
Tague, CL, McDowell, NG, Allen, CD. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern rocky mountains. PLoS One 2013, 8:e80286.
Niu, GY, Paniconi, C, Troch, PA, Scott, RL, Durcik, M, Zeng, X, Huxman, T, Goodrich, DC. An integrated modelling framework of catchment‐scale ecohydrological processes: 1. Model description and tests over an energy‐limited watershed. Ecohydrology 2014, 7:427–439. doi:10.1002/eco.1362.
Shen, C, Niu, J, Phanikumar, MS. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface‐land surface processes model. Water Resour Res 2013, 49:2552–2572. doi:10.1002/wrcr.20189.
Della Chiesa, S, Bertoldi, G, Niedrist, G, Obojes, N, Endrizzi, S, Albertson, JD, Wohlfahrt, G, Hörtnagl, L, Tappeiner, U. Modelling changes in grassland hydrological cycling along an elevational gradient in the Alps. Ecohydrology 2014, 7:1453–1473. doi:10.1002/eco.1471.
Zhou, X, Istanbulluoglu, E, Vivoni, ER. Modeling the ecohydrological role of aspect‐controlled radiation on tree–grass–shrub coexistence in a semiarid climate. Water Resour Res 2013, 49:2872–2895.
van Wijk, MT, Rodriguez‐Iturbe, I. Tree‐grass competition in space and time: insights from a simple cellular automata model based on ecohydrological dynamics. Water Resour Res 2002, 38:18.1–18.15.
Baldocchi, DD, Wilson, KB. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 2001, 142:155–184.
Nouvellon, Y, Rambal, S, Seen, DL, Moran, MS, Lhomme, JP, Begue, A, Chehbouni, AG, Kerr, Y. Modelling of daily fluxes of water and carbon from shortgrass steppes. Agr Forest Meteorol 2000, 100:137–153.
Montaldo, N, Rondena, R, Albertson, JD, Mancini, M. Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water‐limited ecosystems. Water Resour Res 2005, 41(W10416):2005. doi:10.1029/2005WR004094.
Vertessy, RA, Hatton, TJ, Benyon, RG, Dawes, WR. Long‐term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear‐felling and regeneration. Tree Physiol 1996, 16:221–232.
Cervarolo, G, Mendicino, G, Senatore, A. A coupled ecohydrological‐three‐dimensional unsaturated flow model describing energy, H2O and CO2 fluxes. Ecohydrology 2010, 3:205–225. doi:10.1002/eco.111.
Battaglia, M, Sands, P, White, D, Mummery, D. CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. For Ecol Manage 2004, 193:251–282.
Kirschbaum, MUF, Keith, H, Leuning, R, Cleugh, HA, Jacobsen, KL, van Gorsel, E, Raison, J. Modelling net ecosystem carbon and water exchange of a temperate Eucalyptus delegatensis forest using multiple constraints. Agr Forest Meteorol 2007, 145:48–68.
Dufrêne, E, Davi, H, François, C, le Maire, G, Le Dantec, V, Granier, A. Modelling carbon and water cycles in a beech forest Part I: model description and uncertainty analysis on modelled NEE. Ecol Model 2005, 185:407–436.
Ogée, J, Brunet, Y, Loustau, D, Berbigier, P, Delzon, S. MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Glob Chang Biol 2003, 9:697–717. doi:10.1046/j.1365-2486.2003.00628.
Wang, L, Koike, T, Yang, K, Jackson, TJ, Bindlish, R, Yang, D. Development of a distributed biosphere hydrological model and its evaluation with the southern great plains experiments (SGP97 and SGP99). J Geophys Res 2009, 114(D08107):2014. doi:10.1029/2008JD010800.
Govind, A, Chen, JM, Margolis, H, Ju, W, Sonnentag, O, Giasson, MA. A spatially explicit hydro‐ecological modeling framework (BEPS‐TerrainLab V2.0): model description and test in a boreal ecosystem in Eastern North America. J Hydrol 2009, 367:200–216.
Richards, LA. Capillary conduction of liquids through porous mediums. Physics 1931, 1:318–333.
Celia, MA, Bouloutas, ET, Zarba, RL. A general mass‐conservative numerical solution for the unsaturated flow equation. Water Resour Res 1990, 26:1483–1496.
Simunek, J, van Genuchten, MT. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 2008, 7:782–797.
Paniconi, C, Putti, M. A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resour Res 1994, 30:3357–3374.
Schwinning, S. The ecohydrology of roots in rocks. Ecohydrology 2010, 3:238–245. doi:10.1002/eco.134.
Oleson, KW, Lawrence, DM, Bonan, GB, Flanner, MG, Kluzek, E, Lawrence, PJ, Levis, S, Swenson, SC, Thornton, PE. Technical description of version 4.0 of the Community Land Model (CLM). Technical Report NCAR/TN‐478+STR, Natl. Cent. for Atmos. Res., Boulder, Colorado, 2010.
Huang, M, Piao, S, Sun, Y, Ciais, P, Cheng, L, Mao, J, Poulter, B, Shi, X, Zeng, Z, Wang, Y. Change in terrestrial ecosystem water‐use efficiency over the last three decades. Glob Chang Biol 2015, 21:2366–2378. doi:10.1111/gcb.12873.
Gitelson, AA, Gamon, JA. The need for a common basis for defining light‐use efficiency: implications for productivity estimation. Remote Sens Environ 2015, 156:196–201. doi:10.1016/j.rse.2014.09.017.
Anderson, MC, Norman, JM, Meyers, TP, Diak, GR. An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light‐use efficiency. Agr Forest Meteorol 2000, 101:265–289.
Istanbulluoglu, E, Wang, T, Wedin, DA. Evaluation of ecohydrologic model parsimony at local and regional scales in a semiarid grassland ecosystem. Ecohydrology 2011, 5:121–142. doi:10.1002/eco.211.
Arora, VK. Modelling vegetation as a dynamic component in soil‐vegetation‐atmosphere‐ transfer schemes and hydrological models. Rev Geophys 2002, 40:3‐1–3‐26. doi:10.1029/2001RG000103.
Friend, AD, Stevens, AK, Knox, RG, Cannell, MGR. A process‐based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Model 1997, 95:249–287.
Davi, H, Barbaroux, C, François, C, Dufrêne, E. The fundamental role of reserves and hydraulic constraints in predicting LAI and carbon allocation in forests. Agr Forest Meteorol 2009, 149:349–361.
Sala, A, Woodruff, DR, Meinzer, FC. Carbon dynamics in trees: feast or famine? Tree Physiol 2012, 32:764–775. doi:10.1093/treephys/tpr143.
Fatichi, S, Leuzinger, S, Körner, C. Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling. New Phytol 2014, 201:1086–1095. doi:10.1111/nph.12614.
Manzoni, S, Porporato, A. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 2009, 41:1355–1379. doi:10.1016/j.soilbio.2009.02.031.
Parton, WJ, Stewart, JWB, Cole, CV. Dynamics of C, N, P and S in grassland soils ‐ a model. Biogeochemistry 1988, 5:109–131.
Dickinson, RE, Berry, JA, Bonan, GB, Collatz, GJ, Field, CB, Fung, IY, Goulden, M, Hoffmann, WA, Jackson, RB, Myneni, R, et al. Nitrogen controls on climate model evapotranspiration. J Climate 2002, 15:278–294.
Kirschbaum, MUF, Paul, KI. Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biol Biochem 2002, 34:341–354.
Xu‐Ri,, Prentice, IC. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob Change Biol 2008, 14:1745–1764. doi:10.1111/j.1365-2486.2008.01625.x.
Zaehle, S, Friend, A. Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimates. Global Biogeochem Cycles 2010, 24:GB1005. doi:10.1029/2009GB003521.
Orwin, KH, Kirschbaum, MUF, St John, MG, Dickie, IA. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment. Ecol Lett 2011, 14:493–502. doi:10.1111/j.1461-0248.2011.01611.x.
Wang, G, Post, WM, Mayes, MA. Development of microbial‐enzyme‐mediated decomposition model parameters through steady‐state and dynamic analyses. Ecol Appl 2013, 23:255–272.
Allison, SD, Wallenstein, MD, Bradford, MA. Soil‐carbon response to warming dependent on microbial physiology. Nat Geosci 2010, 3:336–340.
Wieder, WR, Bonan, GB, Allison, SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Change 2013, 3:909–912.
Manzoni, S, Schimel, JP, Porporato, A. Responses of soil microbial communities to water stress: results from a meta‐analysis. Ecology 2012, 93:930–938.
Li, J, Wang, G, Allison, SD, Mayes, MA, Luo, Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial‐ecosystem models of varying complexity. Biogeochemistry 2014, 119:67–84. doi:10.1007/s10533-013-9948-8.
Manzoni, S, Trofymow, JA, Jackson, RB, Porporato, A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 2010, 80:89–106.
Sinsabaugh, RL, Manzoni, S, Moorhead, DL, Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 2013, 16:930–939. doi:10.1111/ele.12113.
Wu, L, McGechan, MB, McRoberts, N, Baddeley, JA, Watson, CA. SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling—model description. Ecol Model 2007, 200:343–359.
Hinsinger, P, Brauman, A, Devau, N, Gérard, F, Jourdan, C, Laclau, JP, Le Cadre, E, Jaillard, B, Plassard, C. Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 2011, 348:29–61. doi:10.1007/s11104-011-0903-y.
Sterner, RW, Elser, JJ, Vitousek, P. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press; 2002.
Field, HA, Mooney, C. The photosynthesis‐nitrogen relationship in wild plants. In: Givnish, TJ, ed. On the Economy of Plant Form and Function. Cambridge UK: Cambridge University Press; 1986, 25–55.
Evans, JR. Photosynthesis and nitrogen relationship in leaves of C3 plants. Oecologia 1989, 78:9–19.
Kattge, J, Knorr, W, Raddatz, T. and C. Wirth. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global‐scale terrestrial biosphere models. Glob Chang Biol 2009, 15:976–991. doi:10.1111/j.1365-2486.2008.01744.x.
Niinemets, U, Keenan, TF, Hallik, L. A worldwide analysis of within‐canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 2015, 205:973–993. doi:10.1111/nph.13096.
Welsh, AH, Peterson, AT, Altmann, SA. The fallacy of averages. Am Nat 1988, 132:277–288.
Pappas, C, Fatichi, S, Rimkus, S, Burlando, P, Huber, MO. The role of local scale heterogeneities in terrestrial ecosystem modeling. J Geophys Res Biogeosci 2015, 120:341–360. doi:10.1002/2014JG002735.
Dozier, J, Frew, J. Rapid calculation of terrain parameters for radiation modelling from digital elevation data. IEEE Trans Geosci Remote Sens 1990, 28:963–969.
Chen, Y, Hall, A, Liou, KN. Application of three‐dimensional solar radiative transfer to mountains. J Geophys Res 2006, 111:D21111. doi:10.1029/2006JD007163.
Bertoldi, G, Rigon, R, Over, TM. Impact of watershed geomorphic characteristics on the energy and water budgets. J Hydrometeorol 2006, 7:389–403.
Yetemen, O, Istanbulluoglu, EI, Flores‐Cervantes, JH, Vivoni, ER, Bras, RL. Ecohydrologic role of solar radiation on landscape evolution. Water Resour Res 2015, 51:1127–1157.
Ivanov, VY, Bras, RL, Vivoni, ER. Vegetation‐hydrology dynamics in complex terrain of semiarid areas: 2. Energy‐water controls of vegetation spatiotemporal dynamics and topographic niches of favorability. Water Resour Res 2008, 44:W03430. doi:10.1029/2006WR005595.
Fatichi, S, Ivanov, VY, Caporali, E. A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments. 2. Spatiotemporal analyses. J Adv Model Earth Syst 2012, 4:M05003.
Band, LE, Tague, CL, Groffman, P, Belt, K. Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export. Hydrol Process 2001, 15:2013–2028. doi:10.1002/hyp.253.
Lin, L, Webster, JR, Hwang, T, Band, LE. Effects of lateral nitrate flux and instream processes on dissolved inorganic nitrogen export in a forested catchment: a model sensitivity analysis. Water Resour Res 2015, 51:2680–2695. doi:10.1002/2014WR015962.
Caracciolo, D, Noto, LV, Istanbulluoglu, E, Fatichi, S, Zhou, X. Climate change and ecotone boundaries: insights from a cellular automata ecohydrology model in a mediterranean catchment with topography controlled vegetation pattern. Adv Water Resour 2014, 73:159–175.
Borgogno, F, D`Odorico, P, Laio, F, Ridolfi, L. Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 2009, 47:RG1005. doi:10.1029/2007RG000256.
Rietkerk, M, Boerlijst, MC, van Langevelde, F, HilleRisLambers, R, van de Koppel, J, Kumar, L, Prins, HHT, de Roos, AM. Self‐organization of vegetation in arid ecosystems. Am Nat 2002, 160:524–530.
Ursino, M. Modeling banded vegetation patterns in semiarid regions: interdependence between biomass growth rate and relevant hydrological processes. Water Resour Res 2007, 43:W04412. doi:10.1029/2006WR005292.
Saco, PM, Willgoose, GR, Hancock, GR. Eco‐geomorphology of banded vegetation patterns in arid and semi‐arid regions. Hydrol Earth Syst Sci 2007, 11:1717–1730.
Baudena, M, D`Andrea, F, Provenzale, A. A model for soil‐vegetation‐atmosphere interactions in water‐limited ecosystems. Water Resour Res 2008, 44:W12429. doi:10.1029/2008WR007172.
Thompson, S, Katul, G, McMahon, SM. Role of biomass spread in vegetation pattern formation within arid ecosystems. Water Resour Res 2008, 44:W10421. doi:10.1029/2008WR006916.
Accatino, F, De Michele, C, Vezzoli, R, Donzelli, D, Scholes, RJ. Tree–grass co‐existence in savanna: interactions of rain and fire. J Theor Biol 2010, 267:235–242.
Foti, R, Ramírez, JA. A mechanistic description of the formation and evolution of vegetation patterns. Hydrol Earth Syst Sci 2013, 17:63–84. doi:10.5194/hess-17-63-2013.
Running, SW, Coughlan, JC. A general model of forest ecosystem processes for regional applications, I: hydrologic balance, canopy gas exchange, and primary production processes. Ecol Model 1988, 42:125–154.
Prentice, IC, Cramer, W, Harrison, SP, Leemans, R, Monsereud, RA, Solomon, AM. A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 1992, 19:117–134.
Prentice, IC, Sykes, MT, Cramer, W. A simulation model for the transient effects of climate change on forest landscapes. Ecol Modell 1993, 65:51–70.
Lüdeke, MKB, Badeck, FW, Otto, RD, Häger, C, Dönges, S, Kindermann, J, Würth, G, Lang, T, Jäkel, U, Klaudius, A, et al. The Frankfurt Biosphere Model: a global process‐oriented model of seasonal and long‐term CO2 exchange between terrestrial ecosystems and the atmosphere. I. Model description and illustrative results for cold deciduous and boreal forests. Climate Res 1994, 4:143–166.
Ruimy, A, Dedieu, G, Saugier, B. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem Cycles 1996, 10:269–285.
Bonan, GB. Land‐atmosphere interactions for climate system models‐coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens Environ 1995, 51:57–73.
Bonan, GB, Levis, S, Sitch, S, Vertenstein, M, Oleson, KW. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Chang Biol 2003, 9:1543–1566. doi:10.1046/j.1529-8817.2003.00681.x.
Sitch, S, Huntingford, C, Gedney, N, Levy, PE, Lomas, M, Piao, L, Betts, R, Cias, P, Cox, P, Friedlingstein, P. Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Chang Biol 2008, 14:2015–2039. doi:10.1111/j.1365-2486.2008.01626.x.
Prinn, RG. Development and application of Earth System Models. Proc Natl Acad Sci USA 2012, 110:3673–3680. doi:10.1073/pnas.1107470109.
Wenzel, S, Cox, PM, Eyring, V, Friedlingstein, P. Emergent constraints on climate carbon cycle feedbacks in the CMIP5 Earth system models. J Geophys Res Biogeosci 2014, 119:794–807. doi:10.1002/2013JG00259.
Dickinson, RE, Henderson‐Sellers, A, Kennedy, PJ. Biosphere‐atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. Technical Report NCAR/TN‐387+STR, Natl. Cent. for Atmos. Res., Boulder, Colorado, 1993.
Thornton, PE, Lamarque, JE, Rosenbloom, NA, Mahowald, NM. Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles 2007, 21:GB4018. doi:10.1029/2006GB002868.
Prentice, IC, Bondeau, A, Cramer, W, Harrison, SP, Hickler, T, Lucht, W, Stich, S, Smith, B, Sykes, MT. Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large‐scale environmental change. In: Canadell, JP, Pataki, DE, Pitelka, LF, eds. Terrestrial Ecosystems in a Changing World. Berlin, Heidelberg: Springer; 2007.
Levis, S. Modeling vegetation and land use in models of the Earth System. WIREs Clim Change 2010, 1:840–856. doi:10.1002/wcc.83.
Quillet, A, Peng, C, Garneau, M. Toward dynamic global vegetation models for simulating vegetation‐climate interactions and feedbacks: recent developments, limitations, and future challenges. Environ Rev 2010, 18:333–353. doi:10.1139/A10-016.
Medlyn, BE, Duursma, RA, Zeppel, MJB. Forest productivity under climate change: a checklist for evaluating model studies. WIREs Clim Change 2011, 2:332–355. doi:10.1002/wcc.108.
Arain, MA, Yuan, F, Black, TA. Soil‐plant nitrogen cycling modulated carbon exchanges in a western temperate conifer forest in Canada. Agr Forest Meteorol 2006, 140:171–192.
Clark, DB, Mercado, LM, Sitch, S, Jones, CD, Gedney, N, Best, MJ, Pryor, M, Rooney, GG, Essery, RLH, Blyth, E, et al. The Joint UK Land Environment Simulator (JULES), model description – Part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 2011, 4:701–722.
Niu, GY, Yang, ZL, Mitchell, KE, Chen, F, Ek, MB, Barlage, M, Kumar, A, Manning, K, Niyogi, D, Rosero, E, et al. The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. J Geophys Res 2011, 116:D12109. doi:10.1029/2010JD015139.
Sitch, S, Smith, B, Prentice, IC, Arneth, A, Bondeau, A, Cramer, W, Kaplan, JO, Levis, S, Lucht, W, Sykes, MT, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 2003, 9:161–185.
Krinner, G, Viovy, N, de Noblet‐Ducoudre, N, Ogée, J, Polcher, J, Friedlingstein, P, Ciais, P, Sitch, S, Prentice, IC. A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Global Biogeochem Cycles 2005, 19:GB1015. doi:10.1029/2003GB002199.
Levis, S, Bonan, GB, Vertenstein, M, Oleson, KW. The Community Land Model`s Dynamic Global Vegetation Model (CLMDGVM): Technical description and user`s guide. Tech. note, NCAR/TN‐459+IA, Natl. Cent. for Atmos. Res., Boulder, CO, 2004.
Lawrence, DM, Oleson, KW, Flanner, MG, Thornton, PE, Swenson, SC, Lawrence, PJ, Zeng, X, Yang, ZL, Levis, S, Sakaguchi, K, et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst 2011, 3:M03001. doi:10.1029/2011MS000045.
Kucharik, C, Foley, J, Delire, C, Fisher, V, Coe, M, Lenters, J, Young‐Molling, C, Ramankutty, N, Norman, J, Gower, S. Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem Cycles 2000, 14:795–825.
Yang, X, Wittig, V, Jain, AK, Post, W. Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change. Global Biogeochem Cycles 2009, 23:GB4029. doi:10.1029/2009GB003474.
Tian, H, Chen, G, Liu, M, Zhang, C, Sun, G, Lu, C, Xu, X, Ren, W, Pan, S, Chappelka, A. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895‐2007. For Ecol Manage 2010, 259:1311–1327.
Thornton, PE, Law, BE, Gholz, HL, Clark, KL, Falge, E, Ellsworth, DS, Goldstein, AH, Monson, RK, Hollinger, D, Falk, M, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agr Forest Meteorol 2002, 113:185–222.
Medvigy, D, Wofsy, SD, Munger, JW, Hollinger, DY, Moorcroft, PR. Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2. J Geophys Res 2009, 114:G01002. doi:10.1029/2008JG000812.
Grant, RF, Barr, AG, Black, TA, Margolis, HA, Dunn, AL, Metsaranta, J, Wang, S, McCaughey, JH, Bourque, CA. Interannual variation in net ecosystem productivity of Canadian forests as affected by regional weather patterns – a Fluxnet‐Canada synthesis. Agr Forest Meteorol 2009, 149:2022–2039.
Cox, PM. Description of the TRIFFID Dynamic Global Vegetation Model. Technical Note 24, Hadley Centre, 2001.
Goll, DS, Brovkin, V, Parida, BR, Reick, CH, Kattge, J, Reich, PB, van Bodegom, PM, Niinemets, U. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 2012, 9:3547–3569. doi:10.5194/bg-9-3547-2012.
Sato, H, Itoh, A, Kohyama, T. SEIB‐DGVM: a new dynamic global vegetation model using a spatially explicit individual‐based approach. Ecol Model 2007, 200:279–307.
Woodward, FI, Lomas, MR. Vegetation dynamics ‐ simulating responses to climatic change. Biol Rev 2004, 2004:643–670.
Smith, B, Prentice, IC, Sykes, MT. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 2001, 10:621–637.
Scheiter, S, Langan, L, Higgins, SI. Next‐generation dynamic global vegetation models: learning from community ecology. New Phytol 2013, 198:957–969.
Keenan, TF, Davidson, E, Moffat, A, Munger, W, Richardson, AD. Using model‐data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Glob Chang Biol 2012, 18:2555–2569. doi:10.1111/j.1365-2486.2012.02684.x.
Carvalhais, N, Reichstein, M, Seixas, J, Collatz, GJ, Pereira, JS, Berbigier, P, Carrara, A, Granier, A, Montagnani, L, Papale, D, et al. Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochem Cycles 2008, 22:GB2007. doi:10.1029/2007GB003033.
Pavlick, R, Drewry, DT, Bohn, K, Reu, B, Kleidon, A. The Jena Diversity‐Dynamic Global Vegetation Model (JeDi‐DGVM): a diverse approach to representing terrestrial bio‐geography and biogeochemistry based on plant functional trade‐offs. Biogeosciences 2013, 10:4137–4177. doi:10.5194/bg-10-4137-2013 1058.
Pappas, C, Fatichi, S, Leuzinger, S, Wolf, A, Burlando, P. Sensitivity analysis of a process‐based ecosystem model: pinpointing parameterization and structural issues. J Geophys Res Biogeosci 2013, 118:505–528. doi:10.1002/jgrg.20035.
Wang, YP, Houlton, BZ, Field, CB. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem Cycles 2007, 21:GB1018. doi:10.1029/2006GB002797.
Yang, X, Thornton, PE, Ricciuto, DM, Post, WM. The role of phosphorus dynamics in tropical forests – a modeling study using CLM‐CNP. Biogeosciences 2014, 11:1667–1681. doi:10.5194/bg-11-1667-2014.
Zaehle, S, Dalmonech, D. Carbon‐nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Environ Sustain 2011, 3:311–320. doi:10.1016/j.cosust.2011.08.008.
Bugmann, HKM, Yan, X, Sykes, MT, Martin, P, Lindner, M, Desanker, PV, Cumming, SG. A comparison of forest gap models: model structure and behaviour. Clim Change 1996, 34:289–313.
Snell, RS, Huth, A, Nabel, JEMS, Bocedi, G, Travis, JMJ, Gravel, D, Bugmann, H, Gutiérrez, AG, Hickler, T, Higgins, SI, et al. Using dynamic vegetation models to simulate plant range shifts. Ecography 2014, 37:1184–1197.
West, GB, Enquist, BJ, Brown, JH. A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 2009, 106:7040–7045. doi:10.1073/pnas.0812294106.
Moorcroft, PR, Hurtt, GC, Pacala, SW. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 2001, 71:557–585.
Purves, DW, Lichstein, JW, Strigul, N, Pacala, SW. Predicting and understanding forest dynamics using a simple tractable model. Proc Natl Acad Sci USA 2008, 105:17018–17022.
Strigul, N, Pristinski, D, Purves, D, Dushoff, J, Pacala, S. Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecol Monogr 2008, 78:523–545.
Kim, Y, Knox, RG, Longo, M, Medvigy, D, Hutyra, LR, Pyle, EH, Wofsy, SC, Bras, RL, Moorcroft, PR. Seasonal carbon dynamics and water fluxes in an Amazon rainforest. Glob Chang Biol 2012, 18:1322–1334. doi:10.1111/j.1365-2486.2011.02629.x.
Medvigy, D, Moorcroft, PR. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philos Trans R Soc Lond Ser B 2012, 367:222–235. doi:10.1098/rstb.2011.0253.
Dietze, MC, Matthes, JH. A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecol Lett 2014, 2014:1418–1426. doi:10.1111/ele.12345.
Zeppel, MJB, Adams, HD, Anderegg, WRL. Mechanistic causes of tree drought mortality: recent results, unresolved questions and future research needs. New Phytol 2011, 192:800–803. doi:10.1111/j.1469-8137.2011.03960.x.
Franklin, O, Aoki, K, Seidl, R. A generic model of thinning and stand density effects on forest growth, mortality and net increment. Ann For Sci 2009, 66:815–815. doi:10.1051/forest/2009073.
Manusch, C, Bugmann, H, Heiri, C, Wolf, A. Tree mortality in dynamic vegetation models ‐a key feature for accurately simulating forest properties. Ecol Model 2012, 243:101–111.
Cox, PM, Betts, RA, Collins, M, Harris, PP, Huntingford, C, Jones, CD. Amazonian forest dieback under climate‐carbon cycle projections for the 21st century. Theor Appl Climatol 2004, 78:137–156.
Malhi, Y, Roberts, JT, Betts, RA, Killeen, TJ, Li, W, Nobre, CA. Climate change, deforestation, and the fate of the Amazon. Science 2008, 319:169–172.
Malhi, Y, Arag ao, LEOC, Galbraith, D, Huntingford, C, Fisher, R, Zelazowski, P, Sitch, S, McSweeney, C, Meir, P. Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest. Proc Natl Acad Sci USA 2008, 106:20610–20615. doi:10.1073/pnas.0804619106.
Nepstad, DC, Stickler, CM, Soares‐Filho, B, Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near‐term forest tipping point. Philos Trans R Soc B 2008, 363:1737–1746.
Davidson, EA, de Araújo, AC, Artaxo, P, Balch, JK, Brown, IF, Bustamante, MMC, Coe, MT, DeFries, RS, Munger, W, Keller, M, et al. The Amazon basin in transition. Nature 2012, 481:321–328. doi:10.1038/nature10717.
Markewitz, D, Devine, S, Davidson, EA, Brando, P, Nepstad, DC. Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol 2010, 187:592–607. doi:10.1111/j.1469-8137.2010.03391.x.
Ivanov, VY, Hutyra, LR, Wofsy, SC, Munger, JW, Saleska, SR, de Oliveira, RC Jr, de Camargo, PB. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resour Res 2012, 48:W12507. doi:10.1029/2012WR011972.
Powell, TL, Galbraith, DR, Christoffersen, BO, Harper, A, Hewlley, M, Imbuzeiro, A, Rowland, L, Almeida, S, Brando, PM, Lola da Costa, AC, et al. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytol 2013, 200:350–365. doi:10.1111/nph.12390.
Gatti, LV, Gloor, M, Miller, JB, Doughty, CE, Malhi, Y, Domingues, LG, Basso, LS, Martinewski, A, Correia, CSC, Borges, VF, et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 2014, 506:76. doi:10.1038/nature12957.
Brando, PM, Goetz, SJ, Baccini, A, Nepstad, DC, Beck, PSA, Christman, MC. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc Natl Acad Sci USA 2010, 107:14685–14690. doi:10.1073/pnas.0908741107.
Fu, R, Yin, L, Li, W, Arias, PA, Dickinson, RE, Huang, L, Chakraborty, S, Fernandes, K, Liebmann, B, Fisher, R, et al. Increased dry‐season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci USA 2013, 110:18110–18115. doi:10.1073/pnas.1302584110.
Knox, R, Bisht, G, Wang, J, Bras, RL. Precipitation variability over the forest to non‐forest transition in southwestern Amazonia. J Climate 2011, 24:2368–2377.
Butt, N, de Oliveira, PA, Costa, MH. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J Geophys Res 2011, 116:D11120. doi:10.1029/2010JD015174.
Khanna, J, Medvigy, D. Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondônia, Brazil. J Geophys Res Atmos 2014, 119:13067–13078. doi:10.1002/2014JD022278.
Myers‐Smith, IH, Forbes, BC, Wilmking, M, Hallinger, M, Lantz, T, Blok, D, Tape, KD, Macias‐Fauria, M, Sass‐Klaassen, U, Lévesque, E, et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 2011, 6:045509. doi:10.1088/1748-9326/6/4/045509.
Loranty, MM, Goetz, SJ. Shrub expansion and climate feedbacks in Arctic tundra. Environ Res Lett 2012, 7:011005. doi:10.1088/1748-9326/7/1/011005.
Pomeroy, JW, Bewley, DS, Essery, RLH, Hedstrom, NR, Link, T, Granger, RJ, Sicart, JE, Ellis, CR, Janowicz, JR. Shrub tundra snowmelt. Hydrol Process 2006, 20:923–941. doi:10.1002/hyp.6124.
Drake, BG, Gonzàlez‐Meler, MA, Long, SP. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev Plant Physiol Plant Mol Biol 1997, 48:609–639.
Ainsworth, EA, Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 2007, 30:258–270. doi:10.1111/j.1365-3040.2007.01641.x.
Hickler, T, Smith, B, Prentice, IC, Mjöfors, K, Miller, P, Arneth, A, Sykes, MT. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Chang Biol 2008, 14:1531–1542. doi:10.1111/j.1365-2486.2008.01598.x.
Körner, C. Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 2006, 172:393–411. doi:10.1111/j.1469-8137.2006.01886.x.
Leuzinger, S, Luo, Y, Beier, C, Dieleman, W, Vicca, S, Körner, C. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 2011, 26:236–241. doi:10.1016/j.tree.2011.02.011.
Gedney, N, Cox, PM, Bletts, RA, Boucher, O, Huntingford, C, Stott, PA. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439:835–838.
Betts, RA, Boucher, O, Collins, M, Cox, PM, Falloon, PD, Gedney, N, Hemming, DL, Huntingford, C, Jones, CD, Sexton, DMH, et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 2007, 448:1037–1041. doi:10.1038/nature06045.
Huntingford, C, Zelazowski, P, Galbraith, D, Mercado, LM, Sitch, S, Fisher, R, Lomas, M, Walker, AP, Jones, CD, Booth, BBB, et al. Simulated resilience of tropical rainforests to CO2‐induced climate change. Nat Geosci 2013, 6:268–273. doi:10.1038/ngeo1741.
Schimel, D, Stephens, BB, Fisher, JB. Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci USA 2015, 112:436–441.
Körner, C, Morgan, JA, Norby, RJ. CO2 fertilization: when, where, how much?. In: Terrestrial Ecosystems in a Changing World. Berlin, Germany: Springer; 2007.
Norby, RJ, Zak, DR. Ecological lessons from free‐Air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 2011, 42:181–203. doi:10.1146/annurev-ecolsys-102209-144647.
van der Sleen, P, Groenendijk, P, Vlam, M, Anten, NPR, Boom, A, Bongers, F, Pons, TL, Terburg, G, Zuidema, PA. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water‐use efficiency increased. Nat Geosci 2015, 8:24–28. doi:10.1038/NGEO2313.
Medvigy, D, Wofsy, SC, Munger, JW, Moorcroft, PR. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc Natl Acad Sci USA 2010, 107:8275–8280. doi:10.1073/pnas.0912032107.
Paschalis, A, Fatichi, S, Katul, GG, Ivanov, VY. Cross‐scale impact of climate temporal variability on ecosystem water and carbon fluxes. J Geophys Res Biogeosci 2015, 120. doi:10.1002/2015JG003002.
Mutke, J, Barthlott, W. Patterns of vascular plant diversity at continental to global scales. Biol Skrifter 2005, 55:521–531.
Bonan, GB, Levis, S, Kergoat, L, Oleson, KW. Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Global Biogeochem Cycles 2002, 16:Pages 5‐1–5‐23. doi:10.1029/2000GB001360.
Fyllas, NM, Gloor, E, Mercado, LM, Sitch, S, Quesada, CA, Domingues, TF, Galbraith, DR, Torre‐Lezama, A, Vilanova, E, Ramírez‐Angulo, E, et al. Analysing Amazonian forest productivity using a new individual and trait‐based model (TFS v.1). Geosci Model Dev 2014, 7:1251–1269. doi:10.5194/gmd-7-1251-2014.
Sakschewski, B, von Bloh, W, Boit, A, Rammig, A, Kattge, J, Poorter, L, Peñuelas, J, Thonicke, K. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Chang Biol 2015, 21:2711–2725. doi:10.1111/gcb.12870.
Verheijen, LM, Aerts, R, Brovkin, V, Cavender‐Bares, J, Cornelissen, JHC, Kattge, J, van Bodegom, PM. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an Earth System Model. Glob Chang Biol 2015, 21:3074–3086. doi:10.1111/gcb.12871.
Wright, IJ, Reich, PB, Westoby, M, Ackerly, DD, Baruch, Z, Bongers, F, Cavender‐Bares, J, Chapin, T, Cornelissen, JHC, Diemer, M, et al. The worldwide leaf economics spectrum. Nature 2004, 428:821–827.
Chave, J, Coomes, D, Jansen, S, Lewis, SL, Swenson, NG, Zanne, AE. Towards a worldwide wood economics spectrum. Ecology Letters 2009, 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x.
Manzoni, S, Vico, G, Porporato, A, Katul, G. Biological constraints on water transport in the soil–plant–atmosphere system. Adv Water Resour 2013, 51:292–304.
Reich, PB, Walters, MB, Ellsworth, DS. From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 1997, 94:13730–13734.
Reich, PB. The world‐wide `fast–slow` plant economics spectrum: a traits manifesto. J Ecol 2014, 102:275–301. doi:10.1111/1365-2745.12211.
ter Steege, H, Pitman, NCA, Sabatier, D, Baraloto, C, Salom ao, RP, Guevara, JE, Phillips, OL, Castilho, CV, Magnusson, WE, Molino, JF, et al. Hyperdominance in the Amazonian tree flora. Science 2013, 342:1243092. doi:10.1126/science.1243092.
Saxton, KE, Rawls, WJ. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 2006, 70:1569–1578. doi:10.2136/sssaj2005.0117.
Romano, N, Nasta, P, Severino, G, Hopmans, JW. Using bimodal lognormal functions to describe soil hydraulic properties. Soil Sci Soc Am J 2011, 75:468–480. doi:10.2136/sssaj2010.0084.
Yang, X, Post, WM, Thornton, PE, Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 2013, 10:2525–2537. doi:10.5194/bg-10-2525-2013.
de Brogniez, D, Ballabio, C, Stevens, A, Jones, RJ, Montanarella, L, van Wesemael, B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur J Soil Sci 2015, 66:121–134. doi:10.1111/ejss.12193.
Dietze, MC, Sala, A, Carbone, MS, Czimczik, CI, Mantooth, JA, Richardson, AD, Vargas, R. Nonstructural carbon in woody plants. Annu Rev Plant Biol 2014, 65:667–687. doi:10.1146/annurev-arplant-050213-040054.
Aubinet, M, Grelle, A, Ibrom, A, Rannik, Ü, Moncrie, J, Foken, T, Kowalski, AS, Martin, PH, Berbigier, P, Bernhofer, C, et al. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 2000, 30:113–175.
Baldocchi, D, Falge, E, Gu, L, Olson, R, Hollinger, D, Running, S, Anthoni, P, Bernhofer, C, Davis, K, Evans, R, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 2001, 82:2415–2434.
Baldocchi, DD. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 2003, 9:479–492.
Baldocchi, DD. Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Austral J Bot 2008, 56:1–26.
Aubinet, M, Vesala, T, Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer Atmospheric Sciences. Dordrechet, The Netherlands: Springer Netherlands; 2012.
Robinson, DA, Campbell, CS, Hopmans, JW, Hornbuckle, BK, Jones, SB, Knight, R, Ogden, F, Selker, J, Wendroth, O. Soil moisture measurements for ecological and hydrological watershed scale observatories: a review. Vadose Zone J 2008, 7:358–389. doi:10.2136/vzj2007.0143.
Vereecken, H, Huisman, JA, Bogena, HR, Vanderborght, J, Vrugt, JA, Hopmans, JW. On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour Res 2008, 44:W00D06. doi:10.1029/2008WR006829.
Fatichi, S, Katul, GG, Ivanov, VY, Pappas, C, Paschalis, A, Consolo, A, Kim, J, Burlando, P. Abiotic and biotic controls of soil moisture spatio‐temporal variability and the occurrence of hysteresis. Water Resour Res 2015, 51:3505–3524. doi:10.1002/2014WR016102.
Falge, E, Baldocchi, D, Olson, R, Anthoni, P, Aubinet, M, Bernhofer, C, Burba, G, Ceulemans, R, Clement, R. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agr Forest Meteorol 2001, 107:43–69.
Moffat, AM, Papale, D, Reichstein, M, Hollinger, DY, Richardson, AD, Barr, AG, Beckstein, C, Braswell, BH, Churkina, G, Desai, AR, et al. Comprehensive comparison of gap‐filling techniques for eddy covariance net carbon fluxes. Agr Forest Meteorol 2007, 147:209–232.
Wilson, K, Goldstein, A, Falge, E, Aubinet, M, Baldocchi, D, Berbigier, P, Bernhofer, C, Ceulemans, R, Dolman, H, Field, C, et al. Energy balance closure at FLUXNET sites. Agr Forest Meteorol 2002, 113:223–243.
Leuning, R, van Gorsel, E, Massman, WJ, Isaac, PR. Reflections on the surface energy imbalance problem. Agr Forest Meteorol 2012, 156:65–74. doi:10.1016/j.agrformet.2011.12.002.
Liu, C, Zhang, X, Zhang, Y. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large‐scale weighing lysimeter and micro‐lysimeter. Agr Forest Meteorol 2002, 111:109–120.
Seneviratne, SI, Lehner, I, Gurtz, J, Teuling, AJ, Lang, H, Moser, U, Grebner, D, Menzel, L, Schro, K, Vitvar, T, et al. Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour Res 2012, 48:W06526.
Lischke, H, Löffler, TJ. Intraspecific density dependence is required to maintain species diversity in spatio‐temporal forest simulations with reproduction. Ecol Model 2006, 198:341–361. doi:10.1016/j.ecolmodel.2006.05.005.
Nepstad, DC, Tohver, IM, Ray, D, Moutinho, P, Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 2007, 88:2259–2269.
Brienen, RJW, Phillips, OL, Feldpausch, TR, Gloor, E, Baker, TR, Lloyd, J, Lopez‐Gonzalez, G, Monteagudo‐Mendoza, A, Malhi, Y, Lewis, SL, et al. Long‐term decline of the Amazon carbon sink. Nature 2015, 519:344–348. doi:10.1038/nature14283.
Malhi, Y, Wood, D, Baker, TR, Wright, J, Phillips, OL, Cochrane, T, Meir, P, Chave, J, Almeida, S, Arroyo, L, et al. The regional variation of aboveground live biomass in old‐growth Amazonian forests. Global Change Biol 2006, 12:1107–1138. doi:10.1111/j.1365-2486.2006.01120.x.
Babst, F, Alexander, MR, Szejner, P, Bouriaud, O, Klesse, S, Roden, J, Ciais, P, Poulter, B, Frank, D, Moore, DJP, et al. A tree‐ring perspective on the terrestrial carbon cycle. Oecologia 2014, 176:307–322. doi:10.1007/s00442-014-3031-6.
Fatichi, S, Leuzinger, S. Reconciling observations with modeling: the fate of water and carbon allocation in a mature deciduous forest exposed to elevated CO2. Agr Forest Meteorol 2013, 174‐175:144–157. doi:10.1016/j.agrformet.2013.02.005.
De Kauwe, MG, Medlyn, BE, Zaehle, S, Walker, AP, Dietze, MC, Hickler, T, Jain, AK, Luo, Y, Parton, WJ, Prentice, IC, et al. Forest water use and water use efficiency at elevated CO2: a model‐data intercomparison at two contrasting temperate forest FACE sites. Glob Chang Biol 2013, 19:1759–1779. doi:10.1111/gcb.12164.
Zaehle, S, Medlyn, BE, De, KMG, WalkerAP, DMC, Hickler, T, Luo, Y, Wang, YP, El‐Masri, B, Thornton, P, et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free‐Air CO2 enrichment studies. New Phytol 2014, 202:803–822. doi:10.1111/nph.12697.
Medlyn, BE, Zaehle, S, De Kauwe, MG, Walker, AP, Dietze, MC, Hanson, PJ, Hickler, T, Jain, AK, Luo, Y, Parton, W, et al. Using ecosystem experiments to improve vegetation models. Nat Clim Change 2015, 5:528–534. doi:10.1038/nclimate2621.
Smith, NG, Rodgers, VL, Brzostek, ER, Kulmatiski, A, Avolio, ML, Hoover, DL, Koerner, SE, Grant, K, Jentsch, A, Fatichi, S, et al. Towards a better integration of biological data from precipitation manipulation experiments into Earth system models. Rev Geophys 2014, 52:412–434. doi:10.1002/2014RG000458.
Kayler, ZE, De Boeck, HJ, Fatichi, S, Grünzweig, JM, Merbold, L, Beier, C, McDowell, N, Dukes, JS. Experiments to confront the environmental extremes of climate change. Front Ecol Environ 2015, 13:219–225. doi:10.1890/140174.
Schimel, D, Pavlick, R, Fisher, JB, Asner, GP, Saatchi, S, Townsend, P, Miller, C, Frankenberg, C, Hibbard, K, Cox, P. Observing terrestrial ecosystems and the carbon cycle from space. Glob Chang Biol 2015, 2015:1762–1776. doi:10.1111/gcb.12822.
Vivoni, ER, Rango, A, Anderson, CA, Pierini, NA, Schreiner‐McGraw, AP, Saripalli, S, Laliberte, AS. Ecohydrology with unmanned aerial vehicles. Ecosphere 2014:5(130). doi:10.1890/ES14-00217.1.
Asner, GP, Powell, GVN, Mascaro, J, Knapp, DE, Clark, JK, Jacobson, J, Kennedy‐Bowdoin, T, Balaji, A, Paez‐Acosta, G, Victoria, E, et al. High‐resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA 2010, 107:16738–16742.
Asner, GP, Clark, JK, Mascaro, J, Galindo García, GA, Chadwick, KD, Encinales, DNA, Paez‐Acosta, G, Montenegro, EC, Kennedy‐Bowdoin, T, Duque, A, et al. High‐resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 2012, 2012:2683–2696.
Justice, CO, Vermote, E, Townshend, JRG, Defries, R, Roy, DP, Hall, DK, Salomonson, VV, Privette, JL, Riggs, G, Strahler, A, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEEns on Geosciences and Remote Sensing 1998, 36:1228–1249.
Guanter, L, Zhang, Y, Jung, M, Joiner, J, Voig, M, Berry, JA, Frankenberg, C, Huete, AR, Zarco‐Tejada, P, Lee, JE, et al. Global and time‐resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci USA 2014, 111:E1327–E1333. doi:10.1073/pnas.1320008111.
Myneni, RB, Hoffman, S, Knyazikhin, Y, Privette, JL, Glassy, J, Tian, Y, Wang, Y, Song, X, Zhang, Y, Smith, GR, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 2002, 83:214–231.
Yang, Y, Shang, S, Guan, H, Jiang, L. A novel algorithm to assess gross primary production for terrestrial ecosystems from MODIS imagery. J Geophys Res 2013, 118:590–605. doi:10.1002/jgrg.20056.
Serbin, SP, Singh, A, McNeil, BE, Kingdon, CC, Townsend, PA. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol Appl 2014, 24:1651–1669.
Knyazikhin, Y, Schull, MA, Stenberg, P, Mottus, M, Rautiainen, M, Yang, Y, Marshak, A, Carmona, PL, Kaufmann, RK, Lewis, P, et al. Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci USA 2012, 3:E185–E192. doi:10.1073/pnas.1210196109.
Homolová, L, Malenovsky, Z, Clevers, JGPW, García‐Santos, G, Schaepman, ME. Review of optical‐based remote sensing for plant trait mapping. Ecol Complex 2013, 15:1–16.
Brocca, L, Hasenauer, S, Lacava, T, Melone, F, Moramarco, T, Wagner, W, Dorigo, W, Matgen, P, Martínez‐Fernández, J, Llorens, P, et al. Soil moisture estimation through ASCAT and AMSR‐E sensors: an intercomparison and validation study across Europe. Remote Sens Environ 2011, 115:3390–3408.
Entekhabi, D, Njoku, EG, O`Neill, PE, Kellogg, KH, Crow, WT, Edelstein, WN, Entin, JK, Goodman, SD, Jackson, TJ, Johnson, J, et al. The soil moisture active passive (SMAP) mission. Proc IEEE 2010, 98:704–716. doi:10.1109/JPROC.2010.2043918.
Cox, PM, Pearson, D, Booth, BB, Friedlingstein, P, Huntingford, C, Jones, CD, Luke, CM. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 2013, 494:341–344. doi:10.1038/nature11882.
Graven, HD, Keeling, RF, Piper, SC, Patra, PK, Stephens, BB, Wofsy, SC, Welp, LR, Sweeney, C, Tans, PP, Kelley, JJ, et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 2013, 341:1085–1089.
Frankenberg, C, Pollock, R, Lee, RAM, Rosenberg, R, Blavier, JF, Crisp, D, O`Dell, CW, Osterman, GB, Roehl, C, Wennberg, PO, et al. The Orbiting Carbon Observatory (OCO‐2): spectrometer performance evaluation using pre‐launch direct sun measurements. Atmos Meas Tech 2015, 8:301–313. doi:10.5194/amt-8-301-2015.
McDowell, NG, Ryan, MG, Zeppel, MJB, Tissue, DT. Improving our knowledge of drought‐induced forest mortality through experiments, observations, and modeling. New Phytol 2013, 200:289–293.
Xu, C, McDowell, NG, Sevanto, S, Fisher, RA. Our limited ability to predict vegetation dynamics under water stress. New Phytol 2013, 200:298–300.
Fatichi, S, Ivanov, VY. Interannual variability of evapotranspiration and vegetation productivity. Water Resour Res 2014, 50:3275–3294. doi:10.1002/2013WR015044.
Hartig, F, Dyke, J, Hickler, T, Higgins, SI, O`Hara, RB, Scheiter, S, Huth, A. Connecting dynamic vegetation models to data ‐ an inverse perspective. J Biogeogr 2012, 39:2240–2252.
Dietze, MC, LeBauer, D, Kooper, R. On improving the communication between models and data. Plant Cell Environ 2013, 36:1575–1585.