Guha‐Sapir, G, Below, R, Hoyois, P. The CRED/EM‐DAT International Disaster Database 2015, Universit`e Catholique de Louvain ‐ Brussels – Belgium, 2015. Available at: www.emdat.be. (Accessed January 27, 2015).
UNISDR. Sendai framework for disaster risk reduction 2015–2030, 2014. Available at: http://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf. (Accessed September 21, 2015).
World Meteorological Organisation (WMO). Disaster Risk Reduction (DRR) Programme, Available at: www.wmo.int/pages/prog/drr/projects/Thematic/MHEWS/MHEWS_en.html. (Accessed July 17, 2015).
Stephens, E, Day, JJ, Pappenberger, F, Cloke, H. Precipitation and floodiness. Geophys Res Lett 2015, 42(23): 10316–10323. doi:10.1002/2015GL066779.
Braman, LS, van Aalst, MK, Mason, SJ, Suarez, P, Ait‐Chellouche, Y, Tall, A. Climate forecasts in disaster management: Red Cross flood operations in West Africa, 2008. Disasters 2013, 37:144–164. doi:10.1111/j.1467-7717.2012.01297.x.
ECMWF. Changes in ECMWF model, Available at: www.ecmwf.int/en/forecasts/documentation‐and‐support/changes‐ecmwf‐model. (Accessed August 5, 2015).
Brown, A, Milton, S, Cullen, M, Golding, B, Mitchell, J, Shelly, A. Unified modeling and prediction of weather and climate: a 25‐year journey. Bull Am Meteorol Soc 2012, 93:1865–1877. doi:10.1175/BAMS-D-12-00018.1.
Alfieri, L, Salamon, P, Pappenberger, F, Wetterhall, F, Thielen, J. Operational early warning systems for water‐related hazards in Europe. Environ Sci Pol 2012, 21:35–49.
Alfieri, L, Burek, P, Dutra, E, Krzeminski, B, Muraro, D, Thielen, J, Pappenberger, F. GloFAS ‐ global ensemble streamflow forecasting and flood early warning. Hydrol Earth Syst Sci 2013, 17:1161–1175.
Bierkens, MFP. Global hydrology 2015: state, trends, and directions. Water Resour Res 2015, 51:1–25. doi:10.1002/2015WR017173.
Pappenberger, F, Cloke, H, Balsamo, G, Ngo‐Duc, T, Oki, T. Global runoff routing with the hydrological component of the ECMWF NWP system. Int J Climatol 2009, 30:2155–2174.
Ramos, MH, Mathevet, T, Thielen, J, Pappenberger, F. Communicating uncertainty in hydrometeorological forecasts: mission impossible? Meteorol Appl 2010, 17:223–235. doi:10.1002/met.202.
Novak, DR, Bailey, C, Brill, KF, Burke, P, Hogsett, WA, Rausch, R, Schichtel, M. Precipitation and temperature forecast performance at the Weather Prediction Center. Weather Forecast 2013, 29:489–504. doi:10.1175/WAF-D-13-00066.1.
Mittermaier, M, Roberts, N, Thompson, SA. A long‐term assessment of precipitation forecast skill using the Fractions Skill Score. Meteorol Appl 2013, 20:176–186. doi:10.1002/met.296.
Liu, Y, Duan, Q, Zhao, L, Ye, A, Tao, Y, Miao, C, Mu, X, Schaake, JC. Evaluating the predictive skill of post‐processed NCEP GFS ensemble precipitation forecasts in China`s Huai river basin. Hydrol Process 2013, 27:57–74. doi:10.1002/hyp.9496.
Richardson, D, Bidlot, J, Ferranti, L, Ghelli, A, Haiden, T, Hewson, T, Janousek, M, Prates, F, Vitart, F. Verification Statistics and Evaluations of ECMWF Forecasts in 2011–2012. Technical Memorandum 688. Berkshire, England: ECMWF; 2012.
Bartholmes, J, Todini, E. Coupling meteorological and hydrological models for flood forecasting. Hydrol Earth Syst Sci 2005, 9:333–346.
Lorenz, E. The predictability of a flow which contains many scales of motion. Tellus A 1969, 21:289–307.
Cuo, L, Pagano, TC, Wang, QJ. A review of quantitative precipitation forecasts and their use in short‐ to medium‐range streamflow forecasting. J Hydrometeorol 2011, 12:713–728. doi:10.1175/2011JHM1347.1.
Simmons, AJ, Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q J R Meteorol Soc 2002, 128:647–677. doi:10.1256/003590002321042135.
Krishnamurti, TN, Kishtawal, CM, LaRow, TE, Bachiochi, DR, Zhang, Z, Williford, CE, Gadgil, S, Surendran, S. Improved weather and seasonal climate forecasts from multimodel superensemble. Science 1999, 285:1548–1550. doi:10.1126/science.285.5433.1548.
Olson, DA, Junker, NW, Korty, B. Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Weather Forecast 1995, 10:498–511. doi:10.1175/1520-0434(1995)010h0498:EOYOQPi2.0.CO;2.
Arduino, G, Reggiani, P, Todini, E. Recent advances in flood forecasting and flood risk assessment. Hydrol Earth Syst Sci 2005, 9:280–284.
Haiden, T, Janousek, M, Bauer, P, Bidlot, J, Ferranti, L, Hewson, T, Prates, F, Richardson, D, Vitart, F. Evaluation of ECMWF Forecasts, Including 2013–2014 Upgrades. Technical Memorandum 742. Berkshire, England: ECMWF; 2014.
Ebert, EE, McBride, JL. Verification of precipitation in weather systems: determination of systematic errors. J Hydrol 2000, 239:179–202. doi:10.1016/S0022-1694(00)00343-7.
Tang, Y, Lean, HW, Bornemann, J. The benefits of the Met Office variable resolution NWP model for forecasting convection. Meteorol Appl 2013, 20:417–426. doi:10.1002/met.1300.
Cloke, H, Pappenberger, F. Ensemble flood forecasting: a review. J Hydrol 2009, 375:613–626.
Demeritt, D, Cloke, H, Pappenberger, F, Thielen, J, Bartholmes, J, Ramos, MH. Ensemble predictions and perceptions of risk, uncertainty, and error in flood forecasting. Environ Hazards 2007, 7:115–127. doi:10.1016/j.envhaz.2007.05.001.
Kauffeldt, A. Disinformative and Uncertain Data in Global Hydrology: Challenges for Modelling and Regionalisation [dissertation]. Uppsala: Uppsala Universitet; 2014, 79 p.
Shaw, E, Beven, K, Chappell, NA, Lamb, R. Hydrology in Practice. 4th ed. Oxfordshire, England: Spon Press; 2011, 543 p.
Wood, AW, Lettenmaier, DP. An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys Res Lett 2008, 35:1–5. doi:10.1029/2008GL034648.
Pagano, TC, Shrestha, DL, Wang, QJ, Robertson, D, Hapuarachchi, P. Ensemble dressing for hydrological applications. Hydrol Process 2013, 27:106–116. doi:10.1002/hyp.9313.
Buizza, R, Houtekamer, PL, Pellerin, G, Toth, Z, Zhu, Y, Wei, M. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon Weather Rev 2005, 133:1076–1097. doi:10.1175/MWR2905.1.
Leutbecher, M, Palmer, T. Ensemble forecasting. J Comput Phys 2008, 227:2515–3539.
Buizza, R, Milleer, M, Palmer, T. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q J R Meteorol Soc 1999, 125:2887–2908.
Clark, MP, Hay, LE. Use of medium‐range numerical weather prediction model output to produce forecasts of streamflow. J Hydrometeorol 2004, 5:15–32. doi:10.1175/1525-7541(2004)005h0015:UOMNWPi2.0.CO;2.
Hydrological processes special issue, edited by Hannah L. Cloke,, Florian, Pappenberger, Florian, Pappenberger, Schalk, Jan van Andel, Jutta, Thielen, Maria-Helena, Ramos, Hydrological ensemble prediction systems. Hydrol Process 2013, 27:1–4. doi:10.1002/hyp.9679.
Stephens, E, Cloke, H. Improving flood forecasts for better flood preparedness in the UK (and beyond). Geogr J 2014, 180:310–316. doi:10.1111/geoj.12103.
Bierkens, MFP, Bell, VA, Burek, P, Chaney, N, Condon, LE, David, CH, de Roo, A, Doll, P, Drost, N, Famiglietti, JS, et al. Hyper‐resolution global hydrological modelling: what is next? “Everywhere and locally relevant”. Hydrol Process 2015, 29:310–320.
Demargne, J, Wu, L, Regonda, SK, Brown, JD, Lee, H, He, M, Seo, DJ, Hartman, R, Herr, HD, Fresch, M, et al. The science of NOAA`s operational hydrologic ensemble forecast system. Bull Am Meteorol Soc 2014, 95:79–98.
NOAA (National Oceanic and Atmospheric Administration). NWS Directives System; Operations and Services, http://www.nws.noaa.gov/directives/010/010.htm. (Accessed September 9, 2015).
Thielen, J, Bartholmes, J, Ramos, MH, de Roo, A. The European Flood Alert System ‐ part 1: concept and development. Hydrol Earth Syst Sci 2009, 13:125–140.
World Meteorological Organization (WMO). EC statement on the role and operation of National Meteorological and Hydrological Services, Available at: www.wmo.int/pages/governance/policy/ec_statement_nmhs_en.html. (Accessed September 30, 2015)
SMHI. About E-HYPE, hypeweb.smhi.se/europehype/about/. (Accessed May 29, 2015).
Donnelly, C, Andersson, JCM, Arheimer, B. Using flow signatures and catchment similarities to evaluate the E‐HYPE multi‐basin model across Europe. Hydrol Sci J 2015. doi:10.1080/02626667.2015.1027710.
Lindstrom, G, Pers, C, Rosberg, J, Stromqvist, J, Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol Res 2010, 41:3–4.
Completing the Forecast: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts. Committee on Estimating and Communicating Uncertainty in Weather and Climate Forecasts; Board on Atmospheric Sciences and Climate; Division on Earth and Life Studies; National Research Council. Washington, DC: The National Academies Press; 2006, 112 p.
NOAA. CHPS Documentation, http://www.nws.noaa.gov/oh/hrl/general/indexdoc.htm\#hefs. (Accessed June 12, 2015)
Burnash, R, Ferral, R, McGuire, R, McGuire, R. A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computers. Sacramento, CA: U.S. Department of Commerce, National Weather Service, and State of California, Department of Water Resources; 1973, 204 p.
Anderson, E. National Weather Service River Forecast System‐Snow Accumulation and Ablation Model. Technical Memorandum NWS HYDRO‐17. Washington, DC: US Department of Commerce; 1973.
Brown, JD, Wu, L, He, M, Regonda, S, Lee, H, Seo, DJ. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification. J Hydrol 2014, 519:2869–2889. doi:10.1016/j.jhydrol.2014.05.028.
Brown, JD, He, M, Regonda, S, Wu, L, Lee, H, Seo, DJ. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 2. Streamflow verification. J Hydrol 2014, 519:2847–2868. doi:10.1016/j.jhydrol.2014.05.030.
Wu, H, Adler, RF, Tian, Y, Huffman, GJ, Li, H, Wang, J. Real‐time global flood estimation using satellite‐based precipitation and a coupled land surface and routing model. Water Resour Res 2014, 50:2693–2717. doi:10.1002/2013WR014710.
Yilmaz, KK, Adler, RF, Tian, Y, Hong, Y, Pierce, HF. Evaluation of a satellite‐based global flood monitoring system. Int J Remote Sens 2010, 31:3763–3782. doi:10.1080/01431161.2010.483489.
NASA. Global Flood and Landslide Monitoring, http://pmm.nasa.gov/trmm/flood‐and‐landslide‐monitoring. (Accessed December 9, 2015).
van der Knijff, J, Younis, J, de Roo, A. Lisflood: a GIS‐based distributed model for river basin scale water balance and flood simulation. Int J Geogr Inf Sci 2010, 24:189–212.
Werner, M, Schellekens, J, Gijsbers, P, van Dijk, M, van den Akker, O, Heynert, K. The Delft ‐ FEWS flow forecasting system. Environ Model Softw 2013, 40:65–77. doi:10.1016/j.envsoft.2012.07.010.
Verlaan, M, De Kleermaeker, S, Buckman, L. GLOSSIS: Global storm surge forecasting and information system 2015. In: Australasian Coasts %26 Ports Conference, Auckland, New Zealand, 15–18 September, 2015.
Deltares. The wflow_hbv model, http://schj.home.xs4all.nl/html/wflow\_hbv.html. (Accessed June 16, 2015).
Deltares. Guanabara Limpa Project Interface, http://guanabaralimpa.deltares.nl/. (Accessed August 21, 2015).
Deltares. Adaguc Portal, http://adaguc.deltares.nl/. (Accessed August 21, 2015).
Hannah, DM, Demuth, S, van Lanen, HAJ, Looser, U, Prudhomme, C, Rees, G, Stahl, K, Tallaksen, LM. Large‐scale river flow archives: importance, current status and future needs. Hydrol Process 2011, 25:1191–1200. doi:10.1002/hyp.7794.
Wood, EF, Roundy, JK, Troy, TJ, van Beek, LPH, Bierkens, MFP, Blyth, E, de Roo, A, Doll, P, Ek, M, Famiglietti, J, et al. Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth`s terrestrial water. Water Resour Res 2011, 47:1944–7973. doi:10.1029/2010WR010090.
Liu, Y, Weerts, AH, Clark, M, Hendricks Franssen, HJ, Kumar, S, Moradkhani, H, Seo, DJ, Schwanenberg, D, Smith, P, van Dijk, AIJM, et al. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrol Earth Syst Sci 2012, 16:3863–3887. doi:10.5194/hess-16-3863-2012.
Pappenberger, F, Stephens, E, Thielen, J, Salamon, P, Demeritt, D, van Andel, SJ, Wetterhall, F, Alfieri, L. Visualizing probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication. Hydrol Process 2013, 27:132–146.
Pappenberger, F, Cloke, H, Parker, D, Wetterhall, F, Richardson, D, Thielen, J. The monetary benefit of early flood warnings in Europe. Environ Sci Policy 2015, 51:278–291.
Pagano, TC, Wood, AW, Ramos, MH, Cloke, HL, Pappenberger, F, Clark, MP, Cranston, M, Kavetski, D, Mathevet, T, Sorooshian, S, et al. Challenges of operational river forecasting. J Hydrometeorol 2014, 15:1692–1707. doi:10.1175/jhm-d-13-0188.1.
Alfieri, L, Pappenberger, F, Wetterhall, F, Haiden, T, Richardson, D, Salamon, P. Evaluation of ensemble streamflow predictions in Europe. J Hydrol 2014, 517:913–922. doi:10.1016/j.jhydrol.2014.06.035.
Wanders, N, Karssenberg, D, de Roo, A, de Jong, SM, Bierkens, MFP. The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol Earth Syst Sci 2014, 18:2343–2357. doi:10.5194/hess-18-2343-2014.
Widen‐Nilsson, E, Halldin, S, Xu, C. Global water‐balance modelling with WASMODM: parameter estimation and regionalisation. J Hydrol 2007, 340:105–118.
Hossain, F, Katiyar, N. Improving flood forecasting in international river basins. EOS Trans AGU 2006, 87:49–60.
Rakovec, O, Weerts, AH, Hazenberg, P, Torfs, PJJF, Uijlenhoet, R. State updating of a distributed hydrological model with ensemble kalman filtering: effects of updating frequency and observation network density on forecast accuracy. Hydrol Earth Syst Sci 2012, 16:3435–3449. doi:10.5194/hess-16-3435-2012.
Deltares. OpenDA, https://www.deltares.nl/en/software/openda/. (Accessed December 9, 2015).
Fennessy, MJ, Shukla, J. Impact of initial soil wetness on seasonal atmospheric prediction. J Clim 1999, 12:3167–3180.
Li, H, Luo, L, Wood, E, Schaake, J. The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. J Geophys Res 2009, 114:1–10.
Weisheimer, A, Palmer, TN. On the reliability of seasonal climate forecasts. J R Soc Interface 2014, 11:1–10. doi:10.1098/rsif.2013.1162.
Yuan, X, Wood, EF, Ma, Z. A review on climate‐model‐based seasonal hydrologic forecasting: physical understanding and system development. Wiley Interdiscip Rev Water 2015, 2:523–536. doi:10.1002/wat2.1088.
Pagano, T, Wood, A, Werner, K, Tama‐Sweet, R. Western U.S. water supply forecasting: a tradition evolves. EOS Forum 2014, 95:28–29. doi:10.1002/2014EO030007.
World Meteorological Organisation (WMO). Subseasonal to Seasonal Prediction Project, http://www.wmo.int/pages/prog/arep/wwrp/new/S2S_project_main_page.html. (Accessed September 21, 2015).
World Meteorological Organization (WMO). Capacity Assessment of National Meteorological and Hydrological Services in Support of Disaster Risk Reduction. Geneva: World Meteorological Organization; 2008, 338 p.
Raynaud, D, Thielen, J, Salamon, P, Burek, P, Anquetin, S, Alfieri, L. A dynamic runoff co‐efficient to improve flash flood early warning in Europe: evaluation on the 2013 central European floods in Germany. Meteorol Appl 2014, 22:410–418.
Gourley, J, Erlingis, J, Hong, Y, Wells, E. Evaluation of tools used for monitoring and forecasting flash floods in the United States. Weather Forecast 2012, 27:158–173.
Georgakakos,, K, Graham,, R, Jubach,, R, Modrick,, T, Shamir,, E, Spencer,, C, Sperfslage,, J. 2013. Global Flash Flood Guidance System, Phase 1, HRC Technical Report No. 9. San Diego, CA: Hydrologic Research Center; February 28, 2013, 151 p.
Hapuarachchi, HAP, Wang, QJ. A Review of Methods and Systems Available for Flash Flood Forecasting. Water for a Healthy Country National Research Flagship. Clayton: CSIRO; 2008, 61 p.
Hapuarachchi, HAP, Wang, QJ, Pagano, TC. A review of advances in flash flood forecasting. Hydrol Process 2011, 2:2771–2784.
Alfieri, L, Pappenberger, F, Wetterhall, F. The extreme runoff index for flood early warning in Europe. Nat Hazards Earth Syst Sci 2014, 14:1505–1515.
Tsonevsky, I. New EFI parameters for forecasting severe convection. ECMWF Newsl 2015, 144:27–32.
ECMWF. A global approach to predicting flash floods, http://www.ecmwf.int/en/about/media‐centre/news/2015/global‐approach‐predicting‐flash‐floods. (Accessed December 9, 2015).
ECMWF. TIGGE ‐ The THORPEX Interactive Grand Global Ensemble, http://tigge.ecmwf.int/ (Accessed September 9, 2015).
Fan, FM, Schwanenberg, D, Collischonn, W, Weerts, A. Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil. J Hydrol Reg Stud 2015, 4:196–227. doi:10.1016/j.ejrh.2015.05.012.
Khan, S, Hong, Y, Vergara, H, Gourley, J, Brakenridge, G, De Groeve, T, Flamig, Z, Policelli, F, Yong, B. Microwave satellite data for hydrologic modeling in ungauged basins. IEEE Geosci Remote Sens Lett 2012, 9:663–667. doi:10.1109/LGRS.2011.2177807.
García‐Pintado, J, Mason, DC, Dance, SL, Cloke, HL, Neal, JC, Freer, J, Bates, PD. Satellite‐supported flood forecasting in river networks: a real case study. J Hydrol 2015, 523:706–724. doi:10.1016/j.jhydrol.2015.01.084.
Yamazaki, D, O`Loughlin, F, Trigg, M, Miller, Z, Pavelsky, T, Bates, P. Development of the global width database for large rivers. Water Resour Res 2014, 50:3467–3480.