Gräler, B, van den Berg, MJ, Vandenberghe, S, Petroselli, A, Grimaldi, S, Baets, BD, Verhoest, NEC. Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci 2013, 17:1281–1296.

Serinaldi, F. Dismissing return periods!. Stoch Environ Res Risk Assess 2015, 29:1179–1189. doi:10.1007/s00477-014-0916-1.

Volpi, E, Fiori, A, Grimaldi, S, Lombardo, F, Koutsoyiannis, D. One hundred years of return period: strengths and limitations. Water Resour Res 2015, 51:8570–8585. doi:10.1002/2015WR017820.

Salvadori, G, and De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour Res 2004, 40:W12511. doi:10.1029/2004WR003133.

Salvadori, G, DeMichele, C, Durante, F. On the return period and design in a multivariate framework. Hydrol Earth Syst Sci 2011, 15:3293–3305.

Requena, AI, Mediero, L, Garrote, L. A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrol Earth Syst Sci 2013, 17:3023–3038.

Robson, A, Reed, D. Statistical Procedures for Flood Frequency Estimation: Volume 3 of the Flood Estimation Handbook. Wallingford: Centre for Ecology %26 Hydrology; 2008, 338.

Yue, S, Rasmussen, P. Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrol Process 2002, 16:2881–2898.

Salvadori, G. Bivariate return periods via 2‐copulas. Stat Methodol 2004, 1:129–144.

Salvadori, G, and De Michele, C. Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resour Res 2010, 46:W10501. doi:10.1029/2009WR009040.

Vandenberghe, S, Verhoest, NEC, Onof, C, and De Baets, B. A comparative copula-based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett-Lewis modeled rainfall, Water Resour Res 2011, 47:W07529. doi:10.1029/2009WR008388.

Salvadori, G, Tomasicchio, GR, D`Alessandro, F. Practical guidelines for multivariate analysis and design in coastal and off‐shore engineering. Coast Eng 2014, 88:1–14.

Chebana, F, Ouarda, TBMJ. Multivariate quantiles in hydrological frequency analysis. Environmetrics 2009, 22:63–78.

Hingray, B, Picouet, C, Musy, C. Hydrology. A Science for Engineers. Lausanne: CRC Press; 2014, 592.

Weingartner, R. Regionalhydrologische Analysen—Grundlagen und Anwendungen. Beiträge zur Hydrologie der Schweiz, vol. 37. Bern: Schweizerische Gesellschaft für Hydrologie und Limnologie (SGHL); 1999, 178.

Lang, M, Ouarda, TBMJ, Bobée, B. Towards operational guidelines for over‐threshold modeling. J Hydrol 1999, 225:103–117.

Coles, S. An introduction to statistical modeling of extreme values. London: Springer; 2001, 208.

Serinaldi, F. Can we tell more than we can know? The limits of bivariate drought analyses in the United States. Stoch Environ Res Risk Assess 2015, 30:1691–1704. doi:10.1007/s00477-015-1124-3.

Kotz, S, Balakrishnan, N, Johnson, NL. Continuous Multivariate Distributions, Volume 1, Models and Applications. 2nd ed. New York: Wiley; 2000, 752.

Salvadori, G, De Michele, C, Kottegoda, NT, Rosso, R. Extremes in Nature. An Approach Using Copulas, vol. 56. Dordrecht: Springer; 2007, 292.

International Commission on Statistical Hydrology. Copula function. Available at: http://www.stahy.org. (Accessed April 20, 2016)

Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris 1959, 8:229–231.

Genest, C, Favre, A‐C. Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 2007, 12:347–367.

Nelsen, RB. An Introduction to Copulas. 2nd ed. New York: Springer Science %26 Business Media; 2005, 269.

Genest, C, Rémillard, B, Beaudoin, D. Goodness‐of‐fit tests for copulas: a review and a power study. Insur Math Econ 2009, 44:199–213.

Meylan, P, Favre, A‐C, Musy, A. Predictive Hydrology: A Frequency Analysis Approach. St. Helier: Science Publishers; 2012, 212.

Joe, H. Dependence modeling with copulas. Vancouver: Chapman %26 Hall/CRC; 2014, 459.

Salvadori, G, Durante, F, Michele, CD, Bernardi, M, Petrella, L. A multivariate copula‐based framework for dealing with hazard scenarios and failure probabilities. Water Resour Res 2016, 52:3701–3721. doi:10.1002/2015WR017225.

Renard, B, Lang, M. Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv Water Resour 2007, 30:897–912.

Durante, F, Salvadori, G. On the construction of multivariate extreme value models via copulas. Environmetrics 2010, 21:143–161.

Shiau, JT. Return period of bivariate distributed extreme hydrological events. Stoch Environ Res Risk Assess 2003, 17:42–57.

Ghoudi, K, Khoudraji, A, Rivest, EL‐P. Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Can J Stat 1998, 26:187–197. doi:10.2307/3315683.

Salvadori, G, Durante, F, Michele, CD. Multivariate return period calculation via survival functions. Water Resour Res 2013, 2013:2308–2311. doi:10.1002/wrcr.20204.

Volpi, E, Fiori, A. Hydraulic structures subject to bivariate hydrological loads: return period, design, and risk assessment. Water Resour Res 2014, 50:885–897. doi:10.1002/2013WR014214.

Salvadori, G, Durante, F, Tomasicchio, GR, D`Alessandro, F. Practical guidelines for the multivariate assessment of the structural risk in coastal and off‐shore engineering. Coast Eng 2015, 95:77–83.

Salvadori, G, Michele, CD. Chapter 5: multivariate extreme value methods. In: AghaKouchak, A, Easterling, D, Hsu, K, Schubert, S, Sorooshian, S, eds. Extremes in a Changing Climate: Detection, Analysis and Uncertainty. Dordrecht: Springer Science+Business Media; 2013, 115–162.

Volpi, E, Fiori, A. Design event selection in bivariate hydrological frequency analysis. Hydrol Sci J 2012, 57:1506–1515. doi:10.1080/02626667.2010.726357.

Yue, S, Ouarda, TBMJ, Bobée, B, Legendre, P, Bruneau, P. Approach for describing statistical properties of flood hydrograph. J Hydrol Eng 2002, 7:147–153.

Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol Process 2005, 19:507–515.

Chernobai, A, Rachev, ST, Fabozzi, FJ. Composite goodness‐of‐fit tests for left‐truncated loss samples. In: Lee, C‐F, Lee, J, eds. Handbook of Financial Econometrics and Statistics. New York: Springer Science+Business Media; 2015, 575–596.

Serinaldi, F. Assessing the applicability of fractional order statistics for computing confidence intervals for extreme quantiles. J Hydrol 2009, 376:528–541.

Reed, DW. Reinforcing flood‐risk estimation. Philos Trans R Soc Lond B Biol Sci 2002, 360:1373–1387.

Serinaldi, F. An uncertain journey around the tails of multivariate hydrological distributions. Water Resour Res 2013, 2013:6527–6547. doi:10.1002/wrcr.20531.

Dung, NV. Handling uncertainty in bivariate quantile estimation—an application to flood hazard analysis in the Mekong Delta. J Hydrol 2015, 527:704–717. doi:10.1016/j.jhydrol.2015.05.033.

Zhang, Q, Xiao, M, Singh, VP. Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China. Glob Planet Change 2015, 129:1–9. doi:10.1016/j.gloplacha.2015.03.001.