Aldaya,, M. M., Allan,, J. A., & Hoekstra,, A. Y. (2010). Strategic importance of green water in international crop trade. Ecological Economics, 69(4), 887–894.
Allan,, J. (1993). Fortunately there are substitutes for water otherwise our hydro‐political futures would be impossible. In Priorities for water resources allocation and management (pp. 13–26). London, England: ODA.
Allan,, J. A. (1998). Virtual water: A strategic resource global solutions to regional deficits. Ground Water, 36(4), 545–546.
Antonelli,, M., Tamea,, S., & Yang,, H. (2017). Intra‐EU agricultural trade, virtual water flows and policy implications. Science of the Total Environment, 587–588, 439–448.
Biewald,, A., Rolinski,, S., Lotze‐Campen,, H., Schmitz,, C., & Dietrich,, J. P. (2014). Valuing the impact of trade on local blue water. Ecological Economics, 101, 43–53.
Cao,, X. C., Wu,, M. Y., Guo,, X. P., Zheng,, Y. L., Gong,, Y., Wu,, N., & Wang,, W. G. (2017). Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Science of the Total Environment, 609, 587–597.
Carr,, J. A., D`Odorico,, P., Laio,, F., & Ridolfi,, L. (2013). Recent history and geography of virtual water trade. PLoS One, 8(2), e55825.
Chapagain,, A. K., Hoekstra,, A. Y., & Savenije,, H. H. (2005). Saving water through global trade (Value of Water Research Report Series No. 17). Delft, The Netherlands: UNESCO‐IHE.
Chapagain,, A. K., Hoekstra,, A. Y., & Savenije,, H. H. G. (2006). Water saving through international trade of agricultural products. Hydrology and Earth System Sciences, 10(3), 455–468.
Dabrowski,, J. M., Masekoameng,, E., & Ashton,, P. J. (2009). Analysis of virtual water flows associated with the trade of maize in the SADC region: Importance of scale. Hydrology and Earth System Sciences, 13(10), 1967–1977.
Dabrowski,, J. M., Murray,, K., Ashton,, P. J., & Leaner,, J. J. (2009). Agricultural impacts on water quality and implications for virtual water trading decisions. Ecological Economics, 68(4), 1074–1082.
Dalin,, C., & Conway,, D. (2016). Water resources transfers through southern African food trade: Water efficiency and climate signals. Environmental Research Letters, 11(1), 015005.
Dalin,, C., Hanasaki,, N., Qiu,, H., Mauzerall,, D. L., & Rodriguez‐Iturbe,, I. (2014). Water resources transfers through Chinese interprovincial and foreign food trade. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9774–9779.
Dalin,, C., Konar,, M., Hanasaki,, N., Rinaldo,, A., & Rodriguez‐Iturbe,, I. (2012). Evolution of the global virtual water trade network. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 5989–5994.
Dalin,, C., & Rodriguez‐Iturbe,, I. (2016). Environmental impacts of food trade via resource use and greenhouse gas emissions. Environmental Research Letters, 11(3), 035012.
Dalin,, C., Suweis,, S., Konar,, M., Hanasaki,, N., & Rodriguez‐Iturbe,, I. (2012). Modeling past and future structure of the global virtual water trade network. Geophysical Research Letters, 39, L24402.
Dalin,, C., Wada,, Y., Kastner,, T., & Puma,, M. J. (2017). Groundwater depletion embedded in international food trade. Nature, 543(7647), 700–704.
Davis,, K. F., Rulli,, M. C., Seveso,, A., & D`Odorico,, P. (2017). Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 10(12), 919–924.
de Fraiture,, C., Cai,, X., Amarasinghe,, U., Rosegrant,, M., & Molden,, D. (2004). Does international cereal trade save water? The impact of virtual water trade on global water use (Comprehensive Assessment Research Report No. 4). Colombo, Sri Lanka.
D`Odorico,, P., Carr,, J., Laio,, F., & Ridolfi,, L. (2012). Spatial organization and drivers of the virtual water trade: A community‐structure analysis. Environmental Research Letters, 7(3), 034007.
D`Odorico,, P., Davis,, K. F., Rosa,, L., Carr,, J. A., Chiarelli,, D., Dell`Angelo,, J., … Rulli,, M. C. (2018). The global food‐energy‐water nexus. Reviews of Geophysics, 56. https://doi.org/10.1029/2017RG000591
D`Odorico,, P., Laio,, F., & Ridolfi,, L. (2010). Does globalization of water reduce societal resilience to drought? Geophysical Research Letters, 37, L13403.
Duarte,, R., Pinilla,, V., & Serrano,, A. (2016). Understanding agricultural virtual water flows in the world from an economic perspective: A long term study. Ecological Indicators, 61, 980–990.
Fader,, M., Gerten,, D., Thammer,, M., Heinke,, J., Lotze‐Campen,, H., Lucht,, W., & Cramer,, W. (2011). Internal and external green‐blue agricultural water footprints of nations, and related water and land savings through trade. Hydrology and Earth System Sciences, 15(5), 1641–1660.
Falkenmark,, M. (1997). Meeting water requirements of an expanding world population. Philosophical Transactions of the Royal Society B, 352(1356), 929–936.
Faramarzi,, M., Yang,, H., Mousavi,, J., Schulin,, R., Binder,, C. R., & Abbaspour,, K. C. (2010). Analysis of intra‐country virtual water trade strategy to alleviate water scarcity in Iran. Hydrology and Earth System Sciences, 14(8), 1417–1433.
Feng,, K., Chapagain,, A., Suh,, S., Pfister,, S., & Hubacek,, K. (2011). Comparison of bottom‐up and top‐down approaches to calculating the water footprints of nations. Economic Systems Research, 23(4), 371–385.
Feng,, K., Hubacek,, K., Pfister,, S., Yu,, Y., & Sun,, L. (2014). Virtual scarce water in China. Environmental Science %26 Technology, 48(14), 7704–7713.
Franke,, N., Hoekstra,, A., & Boyacioglu,, H. (2013). Grey water footprint accounting: Tier1 supporting guidelines (Value of Water Research Report Series No. 65). Delft, The Netherlands: UNESCO‐IHE.
Gleeson,, T., Wada,, Y., Bierkens,, M. F. P., & van Beek,, L. P. H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200.
Guan,, D., & Hubacek,, K. (2007). Assessment of regional trade and virtual water flows in China. Ecological Economics, 61(1), 159–170.
Han,, M. Y., Chen,, G. Q., & Li,, Y. L. (2018). Global water transfers embodied in international trade: Tracking imbalanced and inefficient flows. Journal of Cleaner Production, 184, 50–64.
Hanasaki,, N. (2016). Estimating virtual water contents using a global hydrological model: Basis and applications. In Q. Tang, & T. Oki, (Eds.), Terrestrial water cycle and climate change: Natural and human‐induced impacts (pp. 209–228). Hoboken, NJ: John Wiley %26 Sons.
Hanasaki,, N., Inuzuka,, T., Kanae,, S., & Oki,, T. (2010). An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology, 384(3–4), 232–244.
Hoekstra,, A. Y. (2014). Sustainable, efficient, and equitable water use: The three pillars under wise freshwater allocation. WIREs Water, 1(1), 31–40.
Hoekstra,, A. Y. (2016). A critique on the water‐scarcity weighted water footprint in LCA. Ecological Indicators, 66, 564–573.
Hoekstra,, A. Y. (2017). Water footprint assessment: Evolvement of a new research field. Water Resources Management, 31(10), 3061–3081.
Hoekstra,, A. Y., & Chapagain,, A. K. (2007). The water footprints of Morocco and the Netherlands: Global water use as a result of domestic consumption of agricultural commodities. Ecological Economics, 64(1), 143–151.
Hoekstra,, A. Y., Chapagain,, A. K., Aldaya,, M. M., & Mekonnen,, M. M. (2011). The water footprint assessment manual: Setting the global standard. London, England: Earthscan.
Hoekstra,, A. Y., & Hung,, P. Q. (2002). Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade (Value of Water Research Report Series No. 11). Delft, The Netherlands: UNESCO‐IHE.
Hoekstra,, A. Y., & Hung,, P. Q. (2005). Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Change, 15(1), 45–56.
Hoekstra,, A. Y., & Mekonnen,, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3232–3237.
Horlemann,, L., & Neubert,, S. (2006). Virtual water trade: A realistic concept for resolving the water crisis (Report No. 25). Bonn, Germany: The German Development Institute.
Islam,, M. S., Oki,, T., Kanae,, S., Hanasaki,, N., Agata,, Y., & Yoshimura,, K. (2007). A grid‐based assessment of global water scarcity including virtual water trading. Water Resources Management, 21(1), 19–33.
Jägermeyr,, J., Gerten,, D., Schaphoff,, S., Heinke,, J., Lucht,, W., & Rockstrom,, J. (2016). Integrated crop water management might sustainably halve the global food gap. Environmental Research Letters, 11(2), 025002.
Jalava,, M., Guillaume,, J. H. A., Kummu,, M., Porkka,, M., Siebert,, S., & Varis,, O. (2016). Diet change and food loss reduction: What is their combined impact on global water use and scarcity? Earth`s Future, 4(3), 62–78.
Jiang,, W., & Marggraf,, R. (2015). Bilateral virtual water trade in agricultural products: A case study of Germany and China. Water International, 40(3), 483–498.
Konar,, M., & Caylor,, K. K. (2013). Virtual water trade and development in Africa. Hydrology and Earth System Sciences, 17(10), 3969–3982.
Konar,, M., Dalin,, C., Hanasaki,, N., Rinaldo,, A., & Rodriguez‐Iturbe,, I. (2012). Temporal dynamics of blue and green virtual water trade networks. Water Resources Research, 48, W07509.
Konar,, M., Hussein,, Z., Hanasaki,, N., Mauzerall,, D. L., & Rodriguez‐Iturbe,, I. (2013). Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences, 17(8), 3219–3234.
Konar,, M., Reimer,, J. J., Hussein,, Z., & Hanasaki,, N. (2016). The water footprint of staple crop trade under climate and policy scenarios. Environmental Research Letters, 11(3), 035006.
Kummu,, M., de Moel,, H., Porkka,, M., Siebert,, S., Varis,, O., & Ward,, P. J. (2012). Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of the Total Environment, 438, 477–489.
Kummu,, M., Fader,, M., Gerten,, D., Guillaume,, J. H. A., Jalava,, M., Jägermeyr,, J., … Varis,, O. (2017). Bringing it all together: Linking measures to secure nations` food supply. Current Opinion in Environmental Sustainability, 29, 98–117.
Lamastra,, L., Miglietta,, P. P., Toma,, P., De Leo,, F., & Massari,, S. (2017). Virtual water trade of Agri‐food products: Evidence from Italian‐Chinese relations. Science of the Total Environment, 599‐600, 474–482.
Liu,, C., Kroeze,, C., Hoekstra,, A. Y., & Gerbens‐Leenes,, W. (2012). Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecological Indicators, 18, 42–49.
Liu,, J., Wiberg,, D., Zehnder,, A. J. B., & Yang,, H. (2007). Modelling the role of irrigation in winter wheat yield and crop water productivity in China. Irrigation Science, 26(1), 21–33.
Liu,, J., Williams,, J. R., Zehnder,, A. J. B., & Yang,, H. (2007). GEPIC – Modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 94(2), 478–493.
Liu,, J., Yang,, H., Gosling,, S. N., Kummu,, M., Florke,, M., Pfister,, S., … Oki,, T. (2017). Water scarcity assessments in the past, present, and future. Earth`s Future, 5(6), 545–559.
Liu,, J., Zehnder,, A. J. B., & Yang,, H. (2007). Historical trends in China`s virtual water trade. Water International, 32(1), 78–90.
Liu,, W., Antonelli,, M., Liu,, X., & Yang,, H. (2017). Towards improvement of grey water footprint assessment: With an illustration for global maize cultivation. Journal of Cleaner Production, 147, 1–9.
Liu,, W., Yang,, H., Ciais,, P., Stamm,, C., Zhao,, X., Williams,, J. R., … Schulin,, R. (2018). Integrative crop–soil–management modelling to assess gobal phosphorus losses from major crop cultivations. Global Biogeochemical Cycles, 32, 1074–1086. https://doi.org/10.1029/2017GB005849
Liu,, W., Yang,, H., Folberth,, C., Wang,, X., Luo,, Q., & Schulin,, R. (2016). Global investigation of impacts of PET methods on simulating crop‐water relations for maize. Agricultural and Forest Meteorology, 221, 164–175.
Liu,, W., Yang,, H., Liu,, J., Azevedo,, L. B., Wang,, X., Xu,, Z., … Schulin,, R. (2016). Global assessment of nitrogen losses and trade‐offs with yields from major crop cultivations. Science of the Total Environment, 572, 526–537.
Liu,, W., Yang,, H., Liu,, Y., Kummu,, M., Hoestra,, A. Y., Liu,, J., & Schulin,, R. (2018). Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification. Science of the Total Environment, 633, 1591–1601.
Lun,, F., Liu,, J. G., Ciais,, P., Nesme,, T., Chang,, J. F., Wang,, R., … Obersteiner,, M. (2018). Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus‐use efficiency. Earth System Science Data, 10(1), 1–18.
Ma,, J., Hoekstra,, A. Y., Wang,, H., Chapagain,, A. K., & Wang,, D. (2006). Virtual versus real water transfers within China. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1469), 835–842.
Marston,, L., & Konar,, M. (2017). Drought impacts to water footprints and virtual water transfers of the Central Valley of California. Water Resources Research, 53(7), 5756–5773.
Marston,, L., Konar,, M., Cai,, X. M., & Troy,, T. J. (2015). Virtual groundwater transfers from overexploited aquifers in the United States. Proceedings of the National Academy of Sciences of the United States of America, 112(28), 8561–8566.
Mekonnen,, M. M., & Hoekstra,, A. Y. (2010). A global and high‐resolution assessment of the green, blue and grey water footprint of wheat. Hydrology and Earth System Sciences, 14(7), 1259–1276.
Mekonnen,, M. M., & Hoekstra,, A. Y. (2011). National water footprint accounts: The green, blue and grey water footprint of production and consumption (Value of Water Research Report Series No. 50). Delft, The Netherlands: UNESCO‐IHE.
Mekonnen,, M. M., & Hoekstra,, A. Y. (2014). Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators, 46, 214–223.
Mekonnen,, M. M., & Hoekstra,, A. Y. (2015). Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environmental Science %26 Technology, 49(21), 12860–12868.
Mekonnen,, M. M., & Hoekstra,, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323.
Mekonnen,, M. M., & Hoekstra,, A. Y. (2018). Global anthropogenic phosphorus loads to fresh water and associated grey water footprints and water pollution levels: A high‐resolution global study. Water Resrouces Research, 54, 345–358.
Müller,, C., Elliott,, J., Chryssanthacopoulos,, J., Arneth,, A., Balkovic,, J., Ciais,, P., … Yang,, H. (2017). Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 10, 1403–1422.
O`Bannon,, C., Carr,, J., Seekell,, D. A., & D`Odorico,, P. (2014). Globalization of agricultural pollution due to international trade. Hydrology and Earth System Sciences, 18(2), 503–510.
Oita,, A., Malik,, A., Kanemoto,, K., Geschke,, A., Nishijima,, S., & Lenzen,, M. (2016). Substantial nitrogen pollution embedded in international trade. Nature Geoscience, 9(2), 111–115.
Oki,, T., & Kanae,, S. (2004). Virtual water trade and world water resources. Water Science and Technology, 49(7), 203–209.
Oki,, T., & Kanae,, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072.
Oki,, T., Sato,, M., Kawamura,, A., Miyake,, M., Kanae,, S., & Musiake,, K. (2003). Virtual water trade to Japan and in the world. In A. Y. Hoekstra, (Ed.), Virtual water trade: Proceedings of the international expert meeting on virtual water trade Value of Water Research Report Series No. 12 (). Delft, The Netherlands: UNESCO‐IHE.
Oki,, T., Yano,, S., & Hanasaki,, N. (2017). Economic aspects of virtual water trade. Environmental Research Letters, 12(4), 044002.
Perrone,, D., & Hornberger,, G. M. (2014). Water, food, and energy security: Scrambling for resources or solutions? WIREs Water, 1(1), 49–68.
Pfister,, S., Boulay,, A. M., Berger,, M., Hadjikakou,, M., Motoshita,, M., Hess,, T., … Henderson,, A. (2017). Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water‐scarcity weighted water footprint in LCA". Ecological Indicators, 72, 352–359.
Pfister,, S., Koehler,, A., & Hellweg,, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science %26 Technology, 43(11), 4098–4104.
Porkka,, M., Guillaume,, J. H. A., Siebert,, S., Schaphoff,, S., & Kummu,, M. (2017). The use of food imports to overcome local limits to growth. Earth`s Future, 5, 393–407.
Porkka,, M., Kummu,, M., Siebert,, S., & Varis,, O. (2013). From food insufficiency towards trade dependency: A historical analysis of global food availability. PLoS One, 8(12), e82714.
Porwollik,, V., Müller,, C., Elliott,, J., Chryssanthacopoulos,, J., Iizumi,, T., Ray,, D. K., … Wu,, X. (2017). Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy, 88, 10–21.
Qu,, S., Liang,, S., Konar,, M., Zhu,, Z. Q., Chiu,, A. S. F., Jia,, X. P., & Xu,, M. (2018). Virtual water scarcity risk to the global trade system. Environmental Science %26 Technology, 52(2), 673–683.
Ridoutt,, B. G., & Pfister,, S. (2010). A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environmental Change, 20(1), 113–120.
Rodell,, M., Velicogna,, I., & Famiglietti,, J. S. (2009). Satellite‐based estimates of groundwater depletion in India. Nature, 460(7258), 999–U80.
Rosenzweig,, C., Elliott,, J., Deryng,, D., Ruane,, A. C., Muller,, C., Arneth,, A., … Jones,, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268–3273.
Salmoral,, G., & Yan,, X. (2018). Food‐energy‐water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resources, Conservation and Recycling, 133, 320–330.
Savenije,, H. H. G. (2000). Water scarcity indicators: The deception of the numbers. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(3), 199–204.
Smith,, M. (1992). CROPWAT: A computer program for irrigation planning and management (FAO Irrigation and Drainage Paper No. 46). Rome, Italy: FAO.
Steduto,, P., Hsiao,, T. C., Raes,, D., & Fereres,, E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426–437.
Sun,, J., Mooney,, H., Wu,, W. B., Tang,, H. J., Tong,, Y. X., Xu,, Z. C., … Liu,, J. G. (2018). Importing food damages domestic environment: Evidence from global soybean trade. Proceedings of the National Academy of Sciences of the United States of America, 115(21), 5415–5419.
Sun,, S., Wang,, Y., Engel,, B. A., & Wu,, P. (2016). Effects of virtual water flow on regional water resources stress: A case study of grain in China. Science of the Total Environment, 550, 871–879.
Sun,, S., Wu,, P., Wang,, Y., & Zhao,, X. (2013). The virtual water content of major grain crops and virtual water flows between regions in China. Journal of the Science of Food and Agriculture, 93(6), 1427–1437.
Suweis,, S., Konar,, M., Dalin,, C., Hanasaki,, N., Rinaldo,, A., & Rodriguez‐Iturbe,, I. (2011). Structure and controls of the global virtual water trade network. Geophysical Research Letters, 38, L10403.
Suweis,, S., Rinaldo,, A., Maritan,, A., & D`Odorico,, P. (2013). Water‐controlled wealth of nations. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4230–4233.
Tamea,, S., Carr,, J. A., Laio,, F., & Ridolfi,, L. (2014). Drivers of the virtual water trade. Water Resources Research, 50(1), 17–28.
Tuninetti,, M., Tamea,, S., D`Odorico,, P., Laio,, F., & Ridolfi,, L. (2015). Global sensitivity of high‐resolution estimates of crop water footprint. Water Resources Research, 51(10), 8257–8272.
Tuninetti,, M., Tamea,, S., Laio,, F., & Ridolfi,, L. (2017). To trade or not to trade: Link prediction in the virtual water network. Advances in Water Resources, 110, 528–537.
Wada,, Y., van Beek,, L. P. H., & Bierkens,, M. F. P. (2012). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research, 48, W00L06.
Wan,, L. Y., Cai,, W. J., Jiang,, Y. K., & Wang,, C. (2016). Impacts on quality‐induced water scarcity: Drivers of nitrogen‐related water pollution transfer under globalization from 1995 to 2009. Environmental Research Letters, 11(7), 074017.
Wang,, Y., Wu,, P., Engel,, B. A., & Sun,, S. (2014). Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China. Science of the Total Environment, 497, 1–9.
Wang,, Y., Wu,, P., Zhao,, X., & Engel,, B. A. (2014). Virtual water flows of grain within China and its impact on water resource and grain security in 2010. Ecological Engineering, 69, 255–264.
Wichelns,, D. (2015). Virtual water and water footprints do not provide helpful insight regarding international trade or water scarcity. Ecological Indicators, 52, 277–283.
Yang,, H., Pfister,, S., & Bhaduri,, A. (2013). Accounting for a scarce resource: Virtual water and water footprint in the global water system. Current Opinion in Environmental Sustainability, 5(6), 599–606.
Yang,, H., Reichert,, P., Abbaspour,, K. C., & Zehnder,, A. J. B. (2003). A water resources threshold and its implications for food security. Environmental Science %26 Technology, 37(14), 3048–3054.
Yang,, H., Wang,, L., Abbaspour,, K. C., & Zehnder,, A. J. B. (2006). Virtual water trade: An assessment of water use efficiency in the international food trade. Hydrology and Earth System Sciences, 10(3), 443–454.
Yang,, H., & Zehnder,, A. (2007). "Virtual water": An unfolding concept in integrated water resources management. Water Resources Research, 43(12), W12301.
Yano,, S., Hanasaki,, N., Itsubo,, N., & Oki,, T. (2015). Water scarcity footprints by considering the differences in water sources. Sustainability, 7(8), 9753–9772.
Yoo,, S. H., Kim,, T., Im,, J. B., & Choi,, J. Y. (2012). Estimation of the international virtual water flow of grain crop products in Korea. Paddy and Water Environment, 10(2), 83–93.
Zhang,, Z. Y., Shi,, M. J., & Yang,, H. (2012). Understanding Beijing`s water challenge: A decomposition analysis of changes in Beijing`s water footprint between 1997 and 2007. Environmental Science %26 Technology, 46(22), 12373–12380.
Zhang,, Z. Y., Yang,, H., Shi,, M. J., Zehnder,, A. J. B., & Abbaspour,, K. C. (2011). Analyses of impacts of China`s international trade on its water resources and uses. Hydrology and Earth System Sciences, 15(9), 2871–2880.
Zhao,, X., Li,, Y., Yang,, H., Liu,, W., Tillotson,, M., Guan,, D., … Wang,, H. (2018). Measuring scarce water saving from interregional virtual water flows in China. Environmental Research Letters, 13(5), 054012.
Zhao,, X., Liu,, J., Yang,, H., Duarte,, R., Tillotson,, M. R., & Hubacek,, K. (2016). Burden shifting of water quantity and quality stress from megacity shanghai. Water Resources Research, 52(9), 6916–6927.
Zhao,, X., Liu,, J. G., Liu,, Q. Y., Tillotson,, M. R., Guan,, D. B., & Hubacek,, K. (2015). Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1031–1035.
Zhuo,, L., Mekonnen,, M. M., & Hoekstra,, A. Y. (2014). Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrology and Earth System Sciences, 18(6), 2219–2234.
Zhuo,, L., Mekonnen,, M. M., & Hoekstra,, A. Y. (2016a). Consumptive water footprint and virtual water trade scenarios for China – With a focus on crop production, consumption and trade. Environment International, 94, 211–223.
Zhuo,, L., Mekonnen,, M. M., & Hoekstra,, A. Y. (2016b). The effect of inter‐annual variability of consumption, production, trade and climate on crop‐related green and blue water footprints and inter‐regional virtual water trade: A study for China (1978‐2008). Water Research, 94, 73–85.