Anderson,, J. K., Wondzell,, S. M., Gooseff,, M. N., & Haggerty,, R. (2005). Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H. J. Andrews Experimental Forest, Oregon, USA. Hydrological Processes, 19(15), 2931–2949.
Aubeneau,, A. F., Drummond,, J. D., Schumer,, R., Bolster,, D., Tank,, J. L., & Packman,, A. I. (2015). Effects of benthic and hyporheic reactive transport on breakthrough curves. Freshwater Science, 34(1), 301–315. https://doi.org/10.1086/680037
Aubeneau,, A. F., Hanrahan,, B., Bolster,, D., & Tank,, J. (2016). Biofilm growth in gravel bed streams controls solute residence time distributions. Journal of Geophysical Research: Biogeosciences, 121(7), 1840–1850. https://doi.org/10.1002/2016JG003333
Aubeneau,, A. F., Martin,, R. L., Bolster,, D., Schumer,, R., Jerolmack,, D., & Packman,, A. I. (2015). Fractal patterns in riverbed morphology produce fractal scaling of water storage times. Geophysical Research Letters, 42(13), 5309–5315. https://doi.org/10.1002/2015GL064155
Bandaragoda,, C., & Neilson,, B. T. (2011). Increasing parameter certainty and data utility through multi‐objective calibration of a spatially distributed temperature and solute model. Hydrology and Earth System Sciences, 15(5), 1547–1561. https://doi.org/10.5194/hess-15-1547-2011
Belnap,, J., Welter,, J. R., Grimm,, N. B., Barger,, N., Ludwig,, J. a., Ecology,, S., & Feb,, N. (2011). Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology, 86(2), 298–307.
Bencala,, K. E., & Walters,, R. A. (1983). Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model. Water Resources Research, 19(3), 718–724. https://doi.org/10.1029/WR019i003p00718
Beven,, K. J. (2001). On hypothesis testing in hydrology. Hydrological Processes, 15(9), 1655–1657. https://doi.org/10.1002/hyp.436
Beven,, K. J. (2018). On hypothesis testing in hydrology: Why falsification of models is still a really good idea. WIREs Water, 5, e1278. https://doi.org/10.1002/wat2.1278
Blaen,, P. J., Kurz,, M. J., Drummond,, J. D., Knapp,, J. L. A., Mendoza‐Lera,, C., Schmadel,, N. M., … Krause,, S. (2018). Woody debris is related to reach‐scale hotspots of lowland stream ecosystem respiration under baseflow conditions. Ecohydrology, 11(5), 1–9. https://doi.org/10.1002/eco.1952
Blöschl,, G., Sivapalan,, M., Wagener,, T., Viglione,, A., & Savenije,, H. (2013). Runoff prediction in ungauged basins: Synthesis across processes, places and scales. Cambridge, United Kingdom: Cambridge University Press, 465 pp. isbn:978‐1107028180.
Boano,, F., Camporeale,, C., Revelli,, R., & Ridolfi,, L. (2006). Sinuosity‐driven hyporheic exchange in meandering rivers. Geophysical Research Letters, 33(18), 1–4.
Boano,, F., Harvey,, J. W., Marion,, A., Packman,, A. I., Revelli,, R., Ridolfi,, L., & Worman,, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603–679. https://doi.org/10.1002/2012RG000417
Boano,, F., Packman,, A. I., Cortis,, A., Revelli,, R., & Ridolfi,, L. (2007). A continuous time random walk approach to the stream transport of solutes. Water Resources Research, 43, W10425. https://doi.org/10.1029/2007wr006062
Boano,, F., Revelli,, R., & Ridolfi,, L. (2008). Reduction of the hyporheic zone volume due to the stream‐aquifer interaction. Geophysical Research Letters, 35(9), L09401.
Boano,, F., Revelli,, R., & Ridolfi,, L. (2013). Modeling hyporheic exchange with unsteady stream discharge and bedform dynamics. Water Resources Research, 49(7), 4089–4099. https://doi.org/10.1002/wrcr.20322
Bottacin‐Busolin,, A., & Marion,, A. (2010). Combined role of advective pumping and mechanical dispersion on time scales of bed form‐induced hyporheic exchange. Water Resources Research, 46(8), 1–12. https://doi.org/10.1029/2009WR008892
Briggs,, M. A., Gooseff,, M. N., Arp,, C. D., & Baker,, M. A. (2009). A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. Water Resources Research, 45, W10425.
Briggs,, M. A., Lautz,, L. K., McKenzie,, J. M., Gordon,, R. P., & Hare,, D. K. (2012). Using high‐resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resources Research, 48(2), 1–16. https://doi.org/10.1029/2011WR011227
Brosten,, T. R., Bradford,, J. H., McNamara,, J. P., Zarnetske,, J. P., Gooseff,, M. N., & Bowden,, W. B. (2006). Profiles of temporal thaw depths beneath two arctic stream types using ground‐penetrating radar. Permafrost and Periglacial Processes, 17(4), 341–355.
Buffington,, J. M., & Tonina,, D. (2009). Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass, 3(3), 1038–1062. https://doi.org/10.1111/j.1749-8198.2009.00225.x
Butturini,, A., & Sabater,, F. (1999). Importance of transient storage zones for ammonium and phosphate retention in a sandy‐bottom Mediterranean stream. Freshwater Biology, 41(3), 593–603.
Cardenas,, M. B. (2008). Surface water–groundwater interface geomorphology leads to scaling of residence times. Geophysical Research Letters, 35(8), L08402.
Cardenas,, M. B. (2009). A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resources Research, 45(1), 1–5. https://doi.org/10.1029/2008WR007442
Cardenas,, M. B., & Wilson,, J. L. (2006). The influence of ambient groundwater discharge on exchange zones induced by current‐bedform interactions. Journal of Hydrology, 331(1–2), 103–109. https://doi.org/10.1016/j.jhydrol.2006.05.012
Cardenas,, M. B., & Wilson,, J. L. (2007a). Exchange across a sediment–water interface with ambient groundwater discharge. Journal of Hydrology, 346(3–4), 69–80.
Cardenas,, M. B., & Wilson,, J. L. (2007b). Hydrodynamics of coupled flow above and below a sediment–water interface with triangular bedforms. Advances in Water Resources, 30(3), 301–313. https://doi.org/10.1016/j.advwatres.2006.06.009
Caruso,, A., Ridolfi,, L., & Boano,, F. (2016). Impact of watershed topography on hyporheic exchange. Advances in Water Resources, 94, 400–411. https://doi.org/10.1016/j.advwatres.2016.06.005
Castro,, N. M., & Hornberger,, G. M. (1991). Surface–subsurface water interactions in an alluviated mountain stream channel. Water Resources Research, 27(7), 1613–1621.
Church,, M., & Ferguson,, R. I. (2015). Morphodynamics: Rivers beyond steady state. Water Resources Research, 51(4), 1883–1897. https://doi.org/10.1002/2014WR016862
Clark,, M., Schaefli,, B., Schymanski,, S., Samaniego,, L., Luce,, C. H., Jackson,, B., … Ceola,, S. (2016). Improving the theoretical underpinnings of process‐based hydrologic models. Water Resources Research, 52, 2350–2365. https://doi.org/10.1002/2015WR017910
Condon,, L. E., & Maxwell,, R. M. (2015). Evaluating the relationship between topography and groundwater using outputs from a continental‐scale integrated hydrology model. Water Resources Research, 51, 6602–6621. https://doi.org/10.1002/2014WR016259
Covino,, T. P., & McGlynn,, B. L. (2007). Stream gains and losses across a mountain‐to‐valley transition: Impacts on watershed hydrology and stream water chemistry. Water Resources Research, 43(10), W10431.
Crook,, N., Binley,, A. M., Knight,, R., Robinson,, D. A., Zarnetske,, J. P., & Haggerty,, R. (2008). Electrical resistivity imaging of the architecture of substream sediments. Water Resources Research, 44(4), W00D13. https://doi.org/10.1029/2008WR006968
De Anna,, P., Le Borgne,, T., Dentz,, M., Tartakovsky,, A. M., Bolster,, D., & Davy,, P. (2013). Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Physical Review Letters, 110(18), 1–5. https://doi.org/10.1103/PhysRevLett.110.184502
Dooge,, J. C. I. (1986). Looking for hydrologic laws. Water Resources Research, 22(9 S), 46S–58S. https://doi.org/10.1029/WR022i09Sp0046S
Drummond,, J. D., Covino,, T. P., Aubeneau,, A. F., Leong,, D., Patil,, S., Schumer,, R., & Packman,, A. I. (2012). Effects of solute breakthrough curve tail truncation on residence time estimates: A synthesis of solute tracer injection studies. Journal of Geophysical Research: Biogeosciences, 117(3), 1–11. https://doi.org/10.1029/2012JG002019
Dudley‐Southern,, M., & Binley,, A. (2015). Temporal responses of groundwater–surface water exchange to successive storm events. Water Resources Research, 51(2), 1112–1126. https://doi.org/10.1002/2014WR016623
Dullien,, F. A. (1979). Porous media: Fluid transport and pore structure. New York, NY: Academic Press.
Elliott,, A. H., & Brooks,, N. H. (1997). Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research, 33(1), 123–136.
Ensign,, S. H., & Doyle,, M. W. (2006). Nutrient spiraling in streams and river networks. Journal of Geophysical Research, 111(G4), G04009.
Fabian,, M. W., Endreny,, T. A., Bottacin‐Busolin,, A., & Lautz,, L. K. (2011). Seasonal variation in cascade‐driven hyporheic exchange, northern Honduras. Hydrological Processes, 25(10), 1630–1646. https://doi.org/10.1002/hyp.7924
Fischer,, H. B., List,, E. J., Koh,, R. C. Y., Imberger,, J.. & Brooks, N. H. (1979). Mixing in Inland and Coastal Waters. San Diego, CA: Academic Press.
Fox,, A., Boano,, F., & Arnon,, S. (2014). Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune‐shaped bed forms. Water Resources Research, 50, 1895–1907. https://doi.org/10.1002/2013WR014668
Fox,, A., Laube,, G., Fleckenstein,, J. H., & Arnon,, S. (2016). The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resources Research, 52, 7460–7477. https://doi.org/10.1002/2016WR018677
Frissell,, C. A., Liss,, W. J., Warren,, C. E., & Hurley,, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10(2), 199–214.
Fritz,, B. G., & Arntzen,, E. V. (2007). Effect of rapidly changing river stage on uranium flux through the hyporheic zone. Ground Water, 45(6), 753–760.
Gerecht,, K. E., Cardenas,, M. B., Guswa,, A. J., Sawyer,, A. H., Nowinski,, J. D., & Swanson,, T. E. (2011). Dynamics of hyporheic flow and heat transport across a bed‐to‐bank continuum in a large regulated river. Water Resources Research, 47(3), W03524. https://doi.org/10.1029/2010wr009794
Gilbert,, J. M., & Maxwell,, R. M. (2017). Examining regional groundwater–surface water dynamics using an integrated hydrologic model of the San Joaquin River basin. Hydrology and Earth System Sciences, 21(2), 923–947. https://doi.org/10.5194/hess-21-923-2017
Godsey,, S. E., & Kirchner,, J. W. (2014). Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainage density flowing channels and stream order. Hydrological Processes, 28(23), 5791–5803. https://doi.org/10.1002/hyp.10310
Gomez‐Velez,, J. D., & Harvey,, J. W. (2014). A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins. Geophysical Research Letters, 41(18), 6403–6412. https://doi.org/10.1002/2014GL061099
Gomez‐Velez,, J. D., Harvey,, J. W., Cardenas,, M. B., & Kiel,, B. (2015). Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geoscience, 8, 1–8. https://doi.org/10.1038/ngeo2567
Gomez‐Velez,, J. D., Wilson,, J. L., & Cardenas,, M. B. (2012). Residence time distributions in sinuosity‐driven hyporheic zones and their biogeochemical effects. Water Resources Research, 48(9), 1–17. https://doi.org/10.1029/2012WR012180
González‐Pinzón,, R., Ward,, A. S., Hatch,, C. E., Wlostowski,, A. N., Singha,, K., Gooseff,, M. N., … Brock,, J. T. (2015). A field comparison of multiple techniques to quantify groundwater–surface‐water interactions. Freshwater Science, 34(1), 139–160. https://doi.org/10.1086/679738
Grant,, S. B., Azizian,, M., Cook,, P., Boano,, F., & Rippy,, M. (2018). Factoring stream turbulence into global assessments of nitrogen pollution. Science, 359(6381), 1266–1269.
Guo,, L., & Lin,, H. (2016). Critical zone research and observatories: Current status and future perspectives. Vadose Zone Journal, 15(9), 14. https://doi.org/10.2136/vzj2016.06.0050
Gupta,, H. V., Wagener,, T., & Liu,, Y. (2008). Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrological Processes, 22, 2267–2274.
Haggerty,, R., & Gorelick,, S. M. (1995). Multiple‐rate mass transfer for modeling diffusion and surface reactions in media with pore‐scale heterogeneity. Water Resources Research, 31(10), 2383–2400.
Haggerty,, R., Wondzell,, S. M., & Johnson,, M. A. (2002). Power‐law residence time distribution in the hyporheic zone of a 2nd‐order mountain stream. Geophysical Research Letters, 29(13), 1640.
Hall,, R. O., Bernhardt,, E. S., Likens,, G. E., Bernhardt,, E. S., & Likens,, G. E. (2002). Relating nutrient uptake with transient storage in forested mountain streams. Limnology and Oceanography, 47(1), 255–265.
Harman,, C. J., Ward,, A. S., & Ball,, A. (2016). How does reach‐scale stream‐hyporheic transport vary with discharge? Insights from rSAS analysis of sequential tracer injections in a headwater mountain stream. Water Resources Research, 52, 7130–7150. https://doi.org/10.1002/2016WR018832
Hart,, D. R., Mulholland,, P. J., Marzolf,, E. R., DeAngelis,, D. L., & Hendricks,, S. P. (1999). Relationships between hydraulic parameters in a small stream under varying flow and seasonal conditions. Hydrological Processes, 13(10), 1497–1510.
Harvey,, J. W., Conklin,, M. H., & Koelsch,, R. S. (2003). Predicting changes in hydrologic retention in an evolving semi‐arid alluvial stream. Advances in Water Resources, 26(9), 939–950.
Harvey,, J. W., & Fuller,, C. C. (1998). Effect of enhanced manganese oxidation in the hyporheic zone on basin‐scale geochemical mass balance. Water Resources Research, 34(4), 623–636.
Harvey,, J. W., & Wagner,, B. J. (2000). Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. In J. B. Jones, & P. J. Mulholland, (Eds.), Streams and ground waters (pp. 3–44). New York, NY: Academic Press.
Harvey,, J. W., Wagner,, B. J., & Bencala,, K. E. (1996). Evaluating the reliability of the stream tracer approach to characterize stream‐subsurface water exchange. Water Resources Research, 32(8), 2441–2451.
Herzog,, S., Higgins,, C., & McCray,, J. (2015). Engineered streambeds for induced hyporheic flow: Enhanced removal of nutrients, pathogens, and metals from urban streams. Journal of Environmental Engineering, 142, 1–10. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001012
Hester,, E. T., & Doyle,, M. W. (2008). In‐stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research, 44(3), W03417. https://doi.org/10.1029/2006WR005810
Horsburgh,, J. S., Aufdenkampe,, A. K., Mayorga,, E., Lehnert,, K. A., Hsu,, L., Song,, L., … Whitenack,, T. (2016). Observations data model 2: A community information model for spatially discrete earth observations. Environmental Modelling and Software, 79, 55–74. https://doi.org/10.1016/j.envsoft.2016.01.010
Jackson,, T. R., Haggerty,, R., & Apte,, S. V. (2013). A fluid‐mechanics based classification scheme for surface transient storage in riverine environments: Quantitatively separating surface from hyporheic transient storage. Hydrology and Earth System Sciences, 17(7), 2747–2779. https://doi.org/10.5194/hess-17-2747-2013
Jencso,, K. G., McGlynn,, B. L., Gooseff,, M. N., Bencala,, K. E., & Wondzell,, S. M. (2010). Hill slope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources. Water Resources Research, 46(10), W10524. https://doi.org/10.1029/2009WR008818
Jencso,, K. G., McGlynn,, B. L., Gooseff,, M. N., Wondzell,, S. M., Bencala,, K. E., & Marshall,, L. A. (2009). Hydrologic connectivity between landscapes and streams: Transferring reach‐and plot‐scale understanding to the catchment scale. Water Resources Research, 45(4), W04428.
Jerolmack,, D. J., & Paola,, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19), 1–5. https://doi.org/10.1029/2010GL044638
Jin,, H. S., & Ward,, G. M. (2005). Hydraulic characteristics of a small coastal plain stream of the southeastern United States: Effects of hydrology and season. Hydrological Processes, 19(20), 4147–4160. https://doi.org/10.1002/hyp.5878
Jones,, K. L., Poole,, G. C., Woessner,, W. W., Vitale,, M. V., Boer,, B. R., O`Daniel,, S. J., … Geffen,, B. A. (2008). Geomorphology, hydrology, and aquatic vegetation drive seasonal hyporheic flow patterns across a gravel dominated floodplain. Hydrological Processes, 22(13), 2105–2113.
Karwan,, D. L., & Saiers,, J. E. (2009). Influences of seasonal flow regime on the fate and transport of fine particles and a dissolved solute in a New England stream. Water Resources Research, 45(11), W11423.
Kelleher,, C. A., Wagener,, T., McGlynn,, B. L., Ward,, A. S., Gooseff,, M. N., & Payn,, R. A. (2013). Identifiability of transient storage model parameters along a mountain stream. Water Resources Research, 49(9), 5290–5306. https://doi.org/10.1002/wrcr.20413
Kennedy,, V. C., Jackman,, A. P., Zand,, S. M., Zellweger,, G. W., Avanzino,, R. J., & Walters,, R. A. (1984). Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble‐bed stream in Santa Clara County, California, USA: 2. Mathematical modeling. Journal of Hydrology, 75(1–4), 67–110.
Kiel,, B., & Cardenas,, M. (2014). Lateral hyporheic exchange throughout the Mississippi River network. Nature Geoscience, 7, 413–417. https://doi.org/10.1038/ngeo2157
Klemeš,, V. (1986). Dilettantism in hydrology transtion or destiny. Water Resources Research, 22(9), 177S–188S.
Knapp,, J. L. A., González‐Pinzón,, R., Drummond,, J. D., Larsen,, L. G., Cirpka,, O. A., & Harvey,, J. W. (2017). Tracer‐based characterization of hyporheic exchange and benthic biolayers in streams. Water Resources Research, 53(2), 1575–1594. https://doi.org/10.1002/2016WR019393
Larkin,, R. G., & Sharp,, J. M. (1992). On the relationship between river‐basin geomorphology, aquifer hydraulics, and ground‐water flow direction in alluvial aquifers. Bulletin of the Geological Society of America, 104(12), 1608–1620.
Lautz,, L. K., & Siegel,, D. I. (2007). The effect of transient storage on nitrate uptake lengths in streams: An inter‐site comparison. Hydrological Processes, 21, 3533–3548. https://doi.org/10.1002/hyp.6569
Legrand‐Marcq,, C., & Laudelout,, H. (1985). Longitudinal dispersion in a forest stream. Journal of Hydrology, 78(3–4), 317–324.
Li,, A., Aubeneau,, A. F., Bolster,, D., Tank,, J. L., & Packman,, A. I. (2017). Covariation in patterns of turbulence‐driven hyporheic flow and denitrification enhances reach‐scale nitrogen removal. Water Resources Research, 53(8), 6927–6944. https://doi.org/10.1002/2016WR019949
Lowry,, C. S., Deems,, J. S., Loheide,, S. P., II, & Lundquist,, J. D. (2010). Linking snowmelt‐derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California. Hydrological Processes, 24(20), 2821–2833. https://doi.org/10.1002/hyp.7714
Lowry,, C. S., Walker,, J. F., Hunt,, R. J., & Anderson,, M. P. (2007). Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resources Research, 43(10), W10408.
Mahl,, U. H., Tank,, J. L., Roley,, S. S., & Davis,, R. T. (2015). Two‐stage ditch floodplains enhance N‐removal capacity and reduce turbidity and dissolved P in agricultural streams. Journal of the American Water Resources Association, 51(4), 923–940. https://doi.org/10.1111/1752-1688.12340
Maier,, H. S., & Howard,, K. W. F. (2011). Influence of oscillating flow on hyporheic zone development. Ground Water, 49(6), 830–844. https://doi.org/10.1111/j.1745-6584.2010.00794.x
Malzone,, J. M., Anseeuw,, S. K., Lowry,, C. S., & Allen‐King,, R. (2015). Temporal hyporheic zone response to water table fluctuations. Groundwater, 54(2), 274–285. https://doi.org/10.1111/gwat.12352
Malzone,, J. M., Lowry,, C. S., & Ward,, A. S. (2016). Response of the hyporheic zone to transient groundwater fluctuations on the annual and storm event time scales. Water Resources Research, 52, 1–20. https://doi.org/10.1002/2014WR015716
McDonnell,, J. J., Sivapalan,, M., Vache,, K., Dunn,, S., Grant,, G. E., Haggerty,, R., … Roderick,, M. L. (2007). Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resources Research, 43, W07301.
McDonnell,, J. J., & Woods,, R. (2004). On the need for catchment classification. Journal of Hydrology, 299(1–2), 2–3. https://doi.org/10.1016/S0022-1694(04)00421-4
Meerschaert,, M. M., & Sikorskii,, A. (2011). Stochastic models for fractional calculus, De Gruyter studies in mathematics (Vol. 43). Berlin: De Gruyter 291 pp.
Menichino,, G. T., Ward,, A. S., & Hester,, E. T. (2014). Macropores as preferential flow paths in meander bends. Hydrological Processes, 28(3), 482–495. https://doi.org/10.1002/hyp.9573
Montgomery,, D. R. (1999). Process domains and the river continuum. Journal of the American Water Resources Association, 35(2), 397–410.
Morrice,, J. A., Valett,, H. M., Dahm,, C. N., & Campana,, M. E. (1997). Alluvial characteristics, groundwater–surface water exchange and hydrological retention in headwater streams. Hydrological Processes, 11(3), 253–267.
Mouquet,, N., Lagadeuc,, Y., Devictor,, V., Doyen,, L., Duputié,, A., Eveillard,, D., … Loreau,, M. (2015). Predictive ecology in a changing world. Journal of Applied Ecology, 52(5), 1293–1310. https://doi.org/10.1111/1365-2664.12482
Musial,, C., Sawyer,, A. H., Barnes,, R., Bray,, S., & Knights,, D. (2016). Surface water–groundwater exchange dynamics in a tidal freshwater zone. Hydrological Processes, 30, 739–750. https://doi.org/10.1002/hyp.10623
Neal,, C., Reynolds,, B., Kirchner,, J. W., Rowland,, P., Norris,, D., Sleep,, D., … Armstrong,, L. (2013). High‐frequency precipitation and stream water quality time series from Plynlimon, Wales: An openly accessible data resource spanning the periodic table. Hydrological Processes, 27(17), 2531–2539. https://doi.org/10.1002/hyp.9814
Neal,, C., Reynolds,, B., Norris,, D., Kirchner,, J. W., Neal,, M., Rowland,, P., … Wright,, D. (2011). Three decades of water quality measurements from the Upper Severn experimental catchments at Plynlimon, Wales: An openly accessible data resource for research, modelling, environmental management and education. Hydrological Processes, 25(24), 3818–3830. https://doi.org/10.1002/hyp.8191
Neal,, C., Reynolds,, B., Rowland,, P., Norris,, D., Kirchner,, J. W., Neal,, M., … Armstrong,, L. (2012). High‐frequency water quality time series in precipitation and streamflow: From fragmentary signals to scientific challenge. Science of the Total Environment, 434, 3–12. https://doi.org/10.1016/j.scitotenv.2011.10.072
Neilson,, B. T., Chapra,, S. C., Stevens,, D. K., & Bandaragoda,, C. (2010). Two‐zone transient storage modeling using temperature and solute data with multiobjective calibration: 1. Temperature. Water Resources Research, 46(12), W12520. https://doi.org/10.1029/2009WR008756
Neilson,, B. T., Stevens,, D. K., Chapra,, S. C., & Bandaragoda,, C. (2010). Two‐zone transient storage modeling using temperature and solute data with multiobjective calibration: 2. Temperature and solute. Water Resources Research, 46(12), 1–17. https://doi.org/10.1029/2009WR008759
Newbold,, J. D., Elwood,, J. W., O`Neill,, R. V., & Sheldon,, A. L. (1983). Phosphorus dynamics in a woodland stream ecosystem: A study of nutrient spiralling. Ecology, 64(5), 1249–1265.
Newbold,, J. D., Elwood,, J. W., O`Neill,, R. V., & Van Winkle,, W. (1981). Measuring nutrient spiraling in streams. Canadian Geotechnical Journal, 38, 860–863.
Noetinger,, B., Roubinet,, D., Russian,, A., Le Borgne,, T., Delay,, F., Dentz,, M., … Gouze,, P. (2016). Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale. Transport in Porous Media, 115(2), 345–385. https://doi.org/10.1007/s11242-016-0693-z
Packman,, A. I., & Bencala,, K. E. (2000). Modeling surface–subsurface hydrological interactions. In J. B. Jones, & P. J. Mulholland, (Eds.), Streams and ground waters (pp. 45–80). New York, NY: Academic Press.
Packman,, A. I., Salehin,, M., & Zaramella,, M. (2004). Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform‐induced advective flows. Journal of Hydraulic Engineering, 130, 647–656. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(647)
Paola,, C., Straub,, K., Mohrig,, D., & Reinhardt,, L. (2009). The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth‐Science Reviews, 97(1–4), 1–43. https://doi.org/10.1016/j.earscirev.2009.05.003
Passalacqua,, P., Belmont,, P., Staley,, D. M., Simley,, J. D., Arrowsmith,, J. R., Bode,, C. A., … Wheaton,, J. M. (2015). Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth‐Science Reviews, 148, 174–193.
Patil,, S., Covino,, T. P., Packman,, A. I., McGlynn,, B. L., Drummond,, J. D., Payn,, R. A., & Schumer,, R. (2013). Intrastream variability in solute transport: Hydrologic and geomorphic controls on solute retention. Journal of Geophysical Research: Earth Surface, 118(2), 413–422. https://doi.org/10.1029/2012JF002455
Payn,, R. A., Gooseff,, M. N., McGlynn,, B. L., Bencala,, K. E., & Wondzell,, S. M. (2009). Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States. Water Resources Research, 45(11), W11427.
Peters,, R. H. (1982). Useful concepts for predictive ecology. In E. Saarinen, (Ed.), Conceptual issues in ecology (pp. 215–227). Dordrecht, Holland: Springer.
Phillips,, J. D. (2009). Changes, perturbations, and responses in geomorphic systems. Progress in Physical Geography, 33(1), 17–30. https://doi.org/10.1177/0309133309103889
Pinder,, G. F., & Sauer,, S. P. (1971). Numerical simulation of flood wave modification due to bank storage effects. Water Resources Research, 7(1), 63–70.
Pokrajac,, D., & Manes,, C. (2009). Velocity measurements of a free‐surface turbulent flow penetrating a porous medium composed of uniform‐size spheres. Transport in Porous Media, 78(3), 367–383. https://doi.org/10.1007/s11242-009-9339-8
Poole,, G. C., & Berman,, C. H. (2001). An ecological perspective on in‐stream temperature: Natural heat dynamics and mechanisms of human‐caused thermal degradation. Environmental Management, 27(6), 787–802.
Pryshlak,, T. T., Sawyer,, A. H., Stonedahl,, S. H., & Soltanian,, M. R. (2015). Multiscale hyporheic exchange through strongly heterogeneous sediments. Water Resources Research, 51(11), 9127–9140. https://doi.org/10.1002/2015WR017293
Refice,, A., D`Addabbo,, A., & Capolongo,, D. (2018). In A. Refice,, A. D`Addabbo,, & D. Capolongo, (Eds.), Flood monitoring through remote sensing. Cham, Switzerland: Springer International Publishing.
Revelli,, R., Boano,, F., Camporeale,, C., & Ridolfi,, L. (2008). Intra‐meander hyporheic flow in alluvial rivers. Water Resources Research, 44(12), W12428.
Rigler,, F. H., & Peters,, R. H. (1995). In O. Kinne, (Ed.), Science and limnology. Oldendorn/Luhe, Germany: Ecology Institute. https://doi.org/10.2307/1352662
Roche,, K. R., Blois,, G., Best,, J. L., Christensen,, K., Aubeneau,, A. F., & Packman,, A. I. (2018). Turbulence links momentum and solute exchange in coarse‐grained streambeds. Water Resources Research, 54, 3225–3242. https://doi.org/10.1029/2017WR021992
Salehin,, M., Packman,, A. I., & Paradis,, M. (2004). Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resources Research, 40(11), W11504.
Salehin,, M., Packman,, A. I., & Wörman,, A. (2003). Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation. Advances in Water Resources, 26(9), 951–964. https://doi.org/10.1016/S0309-1708(03)00084-8
Sawyer,, A. H., & Cardenas,, M. B. (2009). Hyporheic flow and residence time distributions in heterogeneous cross‐bedded sediment. Water Resources Research, 45(8), W08406.
Sawyer,, A. H., Cardenas,, M. B., Bomar,, A., & Mackey,, M. (2009). Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river. Hydrological Processes, 23(15), 2129–2137.
Sawyer,, A. H., Cardenas,, M. B., & Buttles,, J. (2011). Hyporheic exchange due to channel‐spanning logs. Water Resources Research, 47(8), W08502.
Sawyer,, A. H., Lazareva,, O., Kroeger,, K. D., Crespo,, K., Chan,, C. S., Stieglitz,, T., & Michael,, H. A. (2014). Stratigraphic controls on fluid and solute fluxes across the sediment–water interface of an estuary. Limnology and Oceanography, 59(3), 997–1010. https://doi.org/10.4319/lo.2014.59.3.0997
Sawyer,, A. H., Shi,, F., Kirby,, J. T., & Michael,, H. A. (2013). Dynamic response of surface water–groundwater exchange to currents, tides, and waves in a shallow estuary. Journal of Geophysical Research: Oceans, 118(4), 1749–1758. https://doi.org/10.1002/jgrc.20154
Schmadel,, N. M., Neilson,, B. T., Heavilin,, J., Stevens,, D. K., & Worman,, A. (2014). The influence of spatially variable stream hydraulics on reach scale transient storage modeling. Water Resources Research, 50, 9287–9299. https://doi.org/10.1002/2015WR017273
Schmadel,, N. M., Ward,, A. S., Kurz,, M. J., Fleckenstein,, J. H., Zarnetske,, J. P., Knapp,, J. L. A., … Folegot,, S. (2016). Stream solute tracer timescales changing with discharge and reach length confound process interpretation. Water Resources Research, 52, 3227–3245. https://doi.org/10.1002/2015WR018062
Schmadel,, N. M., Ward,, A. S., Lowry,, C. S., & Malzone,, J. M. (2016). Hyporheic exchange controlled by dynamic hydrologic boundary conditions. Geophysical Research Letters, 43, 4408–4417. https://doi.org/10.1002/2016GL068286
Schmid,, B. H. (2008). Can longitudinal solute transport parameters be transferred to different flow rates? Journal of Hydrologic Engineering, 13(6), 505–509.
Schmid,, B. H., Innocenti,, I., San,, U., & Sanfilippo,, U. (2010). Characterizing solute transport with transient storage across a range of flow rates: The evidence of repeated tracer experiments in Austrian and Italian streams. Advances in Water Resources, 33(11), 1340–1346. https://doi.org/10.1016/j.advwatres.2010.06.001
Selker,, J., van de Giesen,, N. C., Westhoff,, M. C., Luxemburg,, W., & Parlange,, M. B. (2006). Fiber optics opens window on stream dynamics. Geophysical Research Letters, 33(24), 24401.
Singha,, K., Day‐Lewis,, F. D., & Lane,, J. W. (2007). Geoelectrical evidence of bicontinuum transport in groundwater. Geophysical Research Letters, 34(12), 12401.
Snelder,, T. H., Biggs,, B. J. F., & Woods,, R. A. (2005). Improved eco‐hydrological classification of rivers. River Research and Applications, 21(6), 609–628. https://doi.org/10.1002/rra.826
Stonedahl,, S. H., Harvey,, J. W., & Packman,, A. I. (2013). Interactions between hyporheic flow produced by stream meanders, bars, and dunes. Water Resources Research, 49(9), 5450–5461. https://doi.org/10.1002/wrcr.20400
Stonedahl,, S. H., Harvey,, J. W., Wörman,, A., Salehin,, M., & Packman,, A. I. (2010). A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resources Research, 46(12), W12539. https://doi.org/10.1029/2009WR008865
Swanson,, R. D., Singha,, K., Day‐lewis,, F. D., Binley,, A. M., Keating,, K., & Haggerty,, R. (2012). Direct geoelectrical evidence of mass transfer at the laboratory scale. Water Resources Research, 48(10), 1–10. https://doi.org/10.1029/2012WR012431
Tank,, J. L., Rosi‐Marshall,, E. J., Baker,, M. A., & Hall,, R. O. (2008). Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river. Ecology, 89(10), 2935–2945.
Taylor,, S. G. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London. Series A, 219, 186–203. https://doi.org/10.1098/rspa.1953.0139
Tonina,, D., & Buffington,, J. M. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3), 1063–1086. https://doi.org/10.1111/j.1749-8198.2009.00226.x
Vannote,, R. L., Minshall,, G. W., Cummins,, K. W., Sedell,, J. R., & Cushing,, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.
Vaux,, W. G. (1962). Interchange of stream and intragravel water in a salmon spawning riffle. U.S. Fish. Wildlife Serv. Special Sci. Rep. (Vol. 405). Bureau of Commercial Fisheries.
Vaux,, W. G. (1968). Intragravel flow and interchange of water in a streambed. Fishery Bulletin, 66(3), 479.
Voltz,, T. J., Gooseff,, M. N., Ward,, A. S., Singha,, K., Fitzgerald,, M., & Wagener,, T. (2013). Riparian hydraulic gradient and stream–groundwater exchange dynamics in steep headwater valleys. Journal of Geophysical Research: Earth Surface, 118(2), 953–969. https://doi.org/10.1002/jgrf.20074
Wagener,, T., Sivapalan,, M., Troch,, P., & Woods,, R. (2007). Catchment classification and hydrologic similarity. Geography Compass, 1(4), 901–931. https://doi.org/10.1111/j.1749-8198.2007.00039.x
Wagener,, T., Sivapalan,, M., Troch,, P. A., McGlynn,, B. L., Harman,, C. J., Gupta,, H. V., … Wilson,, J. S. (2010). The future of hydrology: An evolving science for a changing world. Water Resources Research, 46(5), 1–10. https://doi.org/10.1029/2009WR008906
Wagner,, B. J., & Harvey,, J. W. (1997). Experimental design for estimating parameters of rate‐limited mass transfer: Analysis of stream tracer studies. Water Resources Research, 33(7), 1731–1741.
Ward,, A. S. (2015). The evolution and state of interdisciplinary hyporheic research. WIREs Water, 3(1), 83–103. https://doi.org/10.1002/wat2.1120
Ward,, A. S., Fitzgerald,, M., Gooseff,, M. N., Voltz,, T. J., Binley,, A. M., & Singha,, K. (2012). Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream. Water Resources Research, 48(4), W04513.
Ward,, A. S., Gooseff,, M. N., & Singha,, K. (2010). Imaging hyporheic zone solute transport using electrical resistivity. Hydrological Processes, 24(7), 948–953.
Ward,, A. S., Gooseff,, M. N., & Johnson,, P. A. (2011). How can subsurface modifications to hydraulic conductivity be designed as stream restoration structures? Analysis of Vaux`s conceptual models to enhance hyporheic exchange. Water Resources Research, 47(8), 13. https://doi.org/10.1029/2010WR010028
Ward,, A. S., Gooseff,, M. N., & Singha,, K. (2013). How does subsurface characterization affect simulations of hyporheic exchange? Ground Water, 51(1), 14–28. https://doi.org/10.1111/j.1745-6584.2012.00911.x
Ward,, A. S., Gooseff,, M. N., Voltz,, T. J., Fitzgerald,, M., Singha,, K., & Zarnetske,, J. P. (2013). How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream? Water Resources Research, 49(9), 5473–5486. https://doi.org/10.1002/wrcr.20434
Ward,, A. S., Kelleher,, C. A., Mason,, S. J. K., Wagener,, T., McIntyre,, N., McGlynn,, B., … Payn,, R. A. (2017). A software tool to assess uncertainty in transient‐storage model parameters using Monte Carlo simulations. Freshwater Science, 36(1), 195–217. https://doi.org/10.1086/690444
Ward,, A. S., Payn,, R. A., Gooseff,, M. N., McGlynn,, B. L., Bencala,, K. E., Kelleher,, C. A., … Wagener,, T. (2013). Variations in surface water–ground water interactions along a headwater mountain stream: Comparisons between transient storage and water balance analyses. Water Resources Research, 49(6), 3359–3374. https://doi.org/10.1002/wrcr.20148
Ward,, A. S., Schmadel,, N. M., & Wondzell,, S. M. (2018a). Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network. Advances in Water Resources, 114, 64–82. https://doi.org/10.1016/j.advwatres.2018.01.018
Ward,, A. S., Schmadel,, N. M., & Wondzell,, S. M. (2018b). Time‐variable transit time distributions in the hyporheic zone of a headwater mountain stream. Water Resources Research, 54, 2017–2036. https://doi.org/10.1002/2017WR021502
Ward,, A. S., Schmadel,, N. M., Wondzell,, S. M., Gooseff,, M. N., & Singha,, K. (2017). Dynamic hyporheic and riparian flow path geometry through base flow recession in two headwater mountain streamcorridors. Water Resources Research, 53, 3988–4003. https://doi.org/10.1002/2016WR019875
Ward,, A. S., Schmadel,, N. M., Wondzell,, S. M., Harman,, C. J., Gooseff,, M. N., & Singha,, K. (2016). Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession. Water Resources Research, 52, 1479–1497.
Williams,, D. D., & Hynes,, H. B. (1974). The occurrence of benthos deep in the substratum of a stream. Freshwater Biology, 4, 233–256. https://doi.org/10.1111/j.1365-2427.1974.tb00094.x
Woessner,, W. W. (2000). Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Ground Water, 38, 423–429. https://doi.org/10.1111/j.1745-6584.2000.tb00228.x
Wondzell,, S. M. (2006). Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrological Processes, 20(2), 267–287.
Wondzell,, S. M. (2011). The role of the hyporheic zone across stream networks. Hydrological Processes, 25(22), 3525–3532. https://doi.org/10.1002/hyp.8119
Wondzell,, S. M., & Gooseff,, M. N. (2014). Geomorphic controls on hyporheic exchange across scales: Watersheds to particles. In J. Schroder, & E. Wohl, (Eds.), Treatise on geomorphology (Vol. 9, pp. 203–218). San Diego, CA: Academic Press.
Wondzell,, S. M., Gooseff,, M. N., & McGlynn,, B. L. (2010). An analysis of alternative conceptual models relating hyporheic exchange flow to diel fluctuations in discharge during baseflow recession. Hydrological Processes, 24(6), 686–694.
Wondzell,, S. M., LaNier,, J., & Haggerty,, R. (2009). Evaluation of alternative groundwater flow models for simulating hyporheic exchange in a small mountain stream. Journal of Hydrology, 364(1–2), 142–151.
Wondzell,, S. M., & Swanson,, F. J. (1999). Floods, channel storage and the hyporheic zone. Water Resources Research, 35(2), 555–567.
Wörman,, A. (2007). Reach scale and evaluation methods as limitations for transient storage properties in streams and rivers. Water Resources Research, 43(10), 13. https://doi.org/10.1029/2006wr005808
Wörman,, A., Packman,, A. I., Marklund,, L., Harvey,, J. W., & Stone,, S. H. (2007). Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophysical Research Letters, 34(7), 1–5. https://doi.org/10.1029/2007GL029426
Wroblicky,, G. J., Campana,, M. E., Valett,, H. M., & Dahm,, C. N. (1998). Seasonal variation in surface–subsurface water exchange and lateral hyporheic area of two stream‐aquifer systems. Water Resources Research, 34(3), 317–328.
Zarnetske,, J. P., Gooseff,, M. N., Brosten,, T. R., Bradford,, J. H., McNamara,, J. P., & Bowden,, W. B. (2007). Transient storage as a function of geomorphology, discharge, and permafrost active layer conditions in Arctic tundra streams. Water Resources Research, 43(7), W07410.
Zimmer,, M. A., & Lautz,, L. K. (2014). Temporal and spatial response of hyporheic zone geochemistry to a storm event. Hydrological Processes, 28(4), 2324–2337. https://doi.org/10.1002/hyp.9778