Bakker,, M., & Lane,, S. N. (2017). Archival photogrammetric analysis of river–floodplain systems using structure from motion (SfM) methods. Earth Surface Processes and Landforms, 42(8), 1274–1286. https://doi.org/10.1002/esp.4085
Bangen,, S. G., Wheaton,, J. M., Bouwes,, N., Bouwes,, B., & Jordan,, C. (2014). A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology, 206, 343–361. https://doi.org/10.1016/j.geomorph.2013.10.010
Belletti,, B., Rinaldi,, M., Buijse,, A. D., Gurnell,, A. M., & Mosselman,, E. (2015). A review of assessment methods for river hydromorphology. Environmental Earth Sciences, 73(5), 2079–2100. https://doi.org/10.1007/s12665-014-3558-1
Belletti,, B., Rinaldi,, M., Bussettini,, M., Comiti,, F., Gurnell,, A. M., Mao,, L., … Vezza,, P. (2017). Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units. Geomorphology, 283, 143–157. https://doi.org/10.1016/j.geomorph.2017.01.032
Benda,, L., Miller,, D., Barquin,, J., McCleary,, R., Cai,, T., & Ji,, Y. (2016). Building virtual watersheds: A global opportunity to strengthen resource management and conservation. Environmental Management, 57(3), 722–739. https://doi.org/10.1007/s00267-015-0634-6
Beyer,, H. L. (2012). Geospatial modelling environment (version 0.7. 2.1). Spatial Ecology, LLC. Retrieved from http://www.spatialecology.com/gme
Bizzi,, S., Demarchi,, L., Grabowski,, R. C., Weissteiner,, C. J., & Van de Bund,, W. (2016). The use of remote sensing to characterise hydromorphological properties of European rivers. Aquatic Sciences, 78(1), 57–70. https://doi.org/10.1007/s00027-015-0430-7
Bizzi,, S., & Lerner,, D. N. (2015). The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Research and Applications, 31(1), 16–27. https://doi.org/10.1002/rra.2717
Bizzi,, S., Piégay,, H., Demarchi,, L., Van de Bund,, W., Weissteiner,, C. J., & Gob,, F. (2018). LiDAR‐based fluvial remote sensing to assess 50–100‐year human‐driven channel changes at a regional level: The case of the Piedmont region, Italy. Earth Surface Processes and Landforms, 44, 471–489. https://doi.org/10.1002/esp.4509
Brasington,, J., Vericat,, D., & Rychkov,, I. (2012). Modelling river bed morphology, roughness andsurface sedimentology using high resolution terrestrial laser scanning. Water Resources Research, 48: W11519. https://doi.org/10.1029/2012WR012223
Brierley,, G., & Fryirs,, K. (2009). Don`t fight the site: Three geomorphic considerations in catchment‐scale river rehabilitation planning. Environmental Management, 43(6), 1201–1218. https://doi.org/10.1007/s00267-008-9266-4
Brierley,, G., Fryirs,, K., Cook,, N., Outhet,, D., Raine,, A., Parsons,, L., & Healey,, M. (2011). Geomorphology in action: Linking policy with on‐the‐ground actions through applications of the River Styles Framework. Applied Geography, 31(3), 1132–1143. https://doi.org/10.1016/j.apgeog.2011.03.002
Brierley,, G., Fryirs,, K., Cullum,, C., Tadaki,, M., Huang,, H. Q., & Blue,, B. (2013). Reading the landscape: Integrating the theory and practice of geomorphology to develop place‐based understandings of river systems. Progress in Physical Geography, 37(5), 601–621. https://doi.org/10.1177/0309133313490007
Brierley,, G. J. (2019). Finding the voice of the river: Beyond management and restoration. UK: Palgrave Macmillan.
Brierley,, G. J., & Fryirs,, K. A. (2005). Geomorphology and river management: Applications of the River Styles Framework. Oxford, UK: Blackwell Publications.
Brierley,, G. J., & Fryirs,, K. A. (Eds.). (2008). River futures: An integrative scientific approach to river repair. Washington, DC: Island Press.
Buscombe,, D. (2013). Transferable wavelet method for grain‐size distribution from images of sediment surfaces and thin sections, and other natural granular patterns. Sedimentology, 60, 1709–1732. https://doi.org/10.1111/sed.12049
Cantelli,, A., Lauer,, W., Marr,, J., McElroy,, B., & Parker,, G. (2019). Data repository. USA. Retrieved from: National Center for Earth Surface Dynamics. National Science Foundation Science and Technology Center, University of Minnesota Supercomputer Institute. https://repository.nced.umn.edu/browser.php?current=author%26author=37%26dataset_id=15
Carbonneau,, P., Fonstad,, M. A., Marcus,, W. A., & Dugdale,, S. J. (2012). Making riverscapes real. Geomorphology, 137(1), 74–86. https://doi.org/10.1016/j.geomorph.2010.09.030
Carbonneau,, P. E., Bizzi,, S., & Marchetti,, G. (2018). Robotic photosieving from low‐cost multirotor sUAS: A proof‐of‐concept. Earth Surface Processes and Landforms, 43(5), 1160–1166. https://doi.org/10.1002/esp.4298
Carbonneau,, P. E., Lane,, S. N., & Bergeron,, N. E. (2004). Catchment‐scale mapping of surface grain size in gravel bed rivers using airborne digital imagery. Water Resources Research, 40(7), W07202. https://doi.org/10.1029/2003WR002759
Church,, M. (1992). Channel morphology and typology. In P. Calow, & G. E. Petts, (Eds.), The rivers handbook. Oxford, UK: Blackwell.
Clubb,, F. J., Mudd,, S. M., Milodowski,, D. T., Valters,, D. A., Slater,, L. J., Hurst,, M. D., & Limaye,, A. B. (2017). Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds. Earth Surface Dynamics, 5(3), 369–385. https://doi.org/10.5194/esurf-5-369-2017
Connor‐Streich,, G., Henshaw,, A. J., Brasington,, J., Bertoldi,, W., & Harvey,, G. L. (2018). Let`s get connected: A new graph theory‐based approach and toolbox for understanding braided river morphodynamics. Wiley Interdisciplinary Reviews: Water, 5(5), e1296. https://doi.org/10.1002/wat2.1296
Croke,, J., Fryirs,, K., & Thompson,, C. (2016). Defining the floodplain in hydrologically‐variable settings: Implications for flood risk management. Earth Surface Processes and Landforms, 41, 2153–2164. https://doi.org/10.1002/esp.4014
Cullum,, C., Brierley,, G., Perry,, G. L., & Witkowski,, E. T. (2017). Landscape archetypes for ecological classification and mapping: The virtue of vagueness. Progress in Physical Geography, 41(1), 95–123. https://doi.org/10.1177/0309133316671103
Czuba,, J. A., & Foufoula‐Georgiou,, E. (2014). A network‐based framework for identifying potential synchronizations and amplifications of sediment delivery in river basins. Water Resources Research, 50(5), 3826–3851. https://doi.org/10.1002/2013WR014227
Czuba,, J. A., & Foufoula‐Georgiou,, E. (2015). Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resources Research, 51(3), 1401–1421. https://doi.org/10.1002/2014WR016139
Czuba,, J. A., Foufoula‐Georgiou,, E., Gran,, K. B., Belmont,, P., & Wilcock,, P. R. (2017). Interplay between spatially explicit sediment sourcing, hierarchical river‐network structure, and in‐channel bed material sediment transport and storage dynamics. Journal of Geophysical Research: Earth Surface, 122(5), 1090–1120. https://doi.org/10.1002/2016JF003965
Demarchi,, L., Bizzi,, S., & Piégay,, H. (2016). Hierarchical object‐based mapping of riverscape units and in‐stream mesohabitats using LiDAR and VHR imagery. Remote Sensing, 8(2), 97. https://doi.org/10.3390/rs8020097
Demarchi,, L., Bizzi,, S., & Piégay,, H. (2017). Regional hydromorphological characterization with continuous and automated remote sensing analysis based on VHR imagery and low‐resolution LiDAR data. Earth Surface Processes and Landforms, 42(3), 531–551. https://doi.org/10.1002/esp.4092
Detert,, M., & Weitbrecht,, V. (2013). User guide to gravelometric image analysis by BASEGRAIN. In S. Fukuoka,, H. Nakagawa,, T. Sumi,, & H. Zhang, (Eds.), Advances in science and research. London, UK: Taylor %26 Francis.
Dietrich,, J. T. (2016). Riverscape mapping with helicopter‐based structure‐from‐motion photogrammetry. Geomorphology, 252, 144–157. https://doi.org/10.1016/j.geomorph.2015.05.008
Dingle,, E. H., Paringit,, E. C., Totentino,, P. L. M., Williams,, R. D., Hoey,, T. B., Barrett,, B., … Stott,, E. (2019). Decadal‐scale morphological adjustment of a lowland tropical river. Geomorphology, 333, 30–42. https://doi.org/10.1016/j.geomorph.2019.01.022
Downs,, P. W., Dusterhoff,, S. R., Leverich,, G. T., Soar,, P. J., & Napolitano,, M. B. (2018). Fluvial system dynamics derived from distributed sediment budgets: Perspectives from an uncertainty‐bounded application. Earth Surface Processes and Landforms, 43(6), 1335–1354. https://doi.org/10.1002/esp.4319
Egozi,, R., & Ashmore,, P. (2008). Defining and measuring braiding intensity. Earth Surface Processes and Landforms, 33(14), 2121–2138. https://doi.org/10.1002/esp.1658
Fisher,, G. B., Bookhagen,, B., & Amos,, C. B. (2013). Channel planform geometry and slopes from freely available high‐spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes. Geomorphology, 194, 46–56. https://doi.org/10.1016/j.geomorph.2013.04.011
Frings,, R.,. M., & Ten Brinke,, W. B. M. (2018). Ten reasons to set up sediment budgets for river management. International Journal of River Basin Management, 16, 35–40. https://doi.org/10.1080/15715124.2017.1345916
Frodeman,, R. (1995). Geological reasoning: Geology as an interpretive and historical science. Geological Society of America Bulletin, 107(8), 960–968. https://doi.org/10.1130/0016-7606(1995)107%3C0960:GRGAAI%3E2.3.CO;2
Fryirs,, K. (2013). (Dis)connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 30–46. https://doi.org/10.1002/esp.3242
Fryirs,, K. (2015). Developing and using geomorphic condition assessments for river rehabilitation planning, implementation and monitoring. WIREsWater, 2(6), 649–667. https://doi.org/10.1002/wat2.1100
Fryirs,, K., & Brierley,, G. J. (2001). Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: Implications for geomorphic river recovery. Geomorphology, 38(3–4), 237–265. https://doi.org/10.1016/S0169-555X(00)00093-3
Fryirs,, K., Spink,, A., & Brierley,, G. (2009). Post‐European settlement response gradients of river sensitivity and recoveryacross the upper Hunter catchment, Australia. Earth Surface Processes and Landforms, 34, 897–918.
Fryirs,, K., & Brierley,, G. J. (2010). Antecedent controls on river character and behaviour in partly confined valley settings: Upper hunter catchment, NSW, Australia. Geomorphology, 117(1–2), 106–120. https://doi.org/10.1016/j.geomorph.2009.11.015
Fryirs,, K., & Brierley,, G. J. (2016). Assessing the geomorphic recovery potential of rivers: Forecasting future trajectories of adjustment for use in river management. WIREsWater, 3, 727–748. https://doi.org/10.1002/wat2.1158
Fryirs,, K., Brierley,, G. J., & Erskine,, W. D. (2012). Use of ergodic reasoning to reconstruct the historical range of variability and evolutionary trajectory of rivers. Earth Surface Processes and Landforms, 37(7), 763–773. https://doi.org/10.1002/esp.3210
Fryirs,, K. A., & Brierley,, G. J. (2013). Geomorphic analysis of river systems: An approach to Reading the landscape. Chichester, UK: John Wiley and Sons.
Fryirs,, K. A., & Brierley,, G. J. (2018). What`s in a name? A naming convention for geomorphic river types using the River Styles Framework. PLoS One, 13(9), e0201909. https://doi.org/10.1371/journal.pone.0201909
Fryirs,, K. A., Brierley,, G. J., Preston,, N. J., & Kasai,, M. (2007). Buffers, barriers and blankets: The (dis) connectivity of catchment‐scale sediment cascades. Catena, 70(1), 49–67. https://doi.org/10.1016/j.catena.2006.07.007
Fryirs,, K. A., Ralph,, T. J., Larkin,, Z. T., Tooth,, S., Humphries,, M., McCarthy,, T., … Mosimanyana,, E. (2018). A nested hierarchical perspective to enhance interpretations and communication in fluvial geomorphology for use in water resources management: Lessons from the Okavango Delta, Botswana. The Geographical Journal, 184, 192–207. https://doi.org/10.1111/geoj.12250
Fryirs,, K. A., Wheaton,, J. M., & Brierley,, G. J. (2016). An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms, 41(5), 701–710. https://doi.org/10.1002/esp.3893
Gilbert,, J. T., Macfarlane,, W. W., & Wheaton,, J. M. (2016). The valley bottom extraction tool (V‐BET): A GIS tool for delineating valley bottoms across entire drainage networks. Computers %26 Geosciences, 97, 1–14. https://doi.org/10.1016/j.cageo.2016.07.014
Gorelick,, N., Hancher,, M., Dixon,, M., Ilyushchenko,, S., Thau,, D., & Moore,, R. (2017). Google earth engine: Planetary‐scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Grabowski,, R. C., Surian,, N., & Gurnell,, A. M. (2014). Characterizing geomorphological change to support sustainable river restoration and management. Wiley Interdisciplinary Reviews: Water, 1(5), 483–512. https://doi.org/10.1002/wat2.1037
Graham,, D. J., Rice,, S. P., & Reid,, I. (2005). A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41, W07020. https://doi.org/10.1029/2004wr003868
Gurnell,, A. M., Rinaldi,, M., Belletti,, B., Bizzi,, S., Blamauer,, B., Braca,, G., … Demarchi,, L. (2016). A multi‐scale hierarchical framework for developing understanding of river behaviour to support river management. Aquatic Sciences, 78(1), 1–16. https://doi.org/10.1007/s00027-015-0424-5
Hawley,, R. J. (2018). Making stream restoration more sustainable: A geomorphically, ecologically, and socioeconomically principled approach to bridge the practice with the science. Bioscience, 68(7), 517–528. https://doi.org/10.1093/biosci/biy048
Heckmann,, T., & Schwanghart,, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment—Exploring sediment cascades using graph theory. Geomorphology, 182, 89–103. https://doi.org/10.1016/j.geomorph.2012.10.033
Hiers,, J. K., Jackson,, S. T., Hobbs,, R. J., Bernhardt,, E. S., & Valentine,, L. E. (2016). The precision problem in conservation and restoration. Trends in Ecology and Evolution, 31(11), 820–830. https://doi.org/10.1016/j.tree.2016.08.001
Horton,, A. J., Constantine,, J. A., Hales,, T. C., Goossens,, B., Bruford,, M. W., & Lazarus,, E. D. (2017). Modification of river meandering by tropical deforestation. Geology, 45(6), 511–514. https://doi.org/10.1130/G38740.1
Isikdogan,, F., Bovik,, A., & Passalacqua,, P. (2017). RivaMap: An automated river analysis and mapping engine. Remote Sensing of Environment, 202, 88–97. https://doi.org/10.1016/j.rse.2017.03.044
Jain,, V., Fryirs,, K., & Brierley,, G. (2008). Where do floodplains begin? The role of total stream power and longitudinal profile form on floodplain initiation processes. Geological Society of America Bulletin, 120, 127–141. https://doi.org/10.1016/j.geomorph.2005.08.012
Jones,, A. F., Brewer,, P. A., Johnstone,, E., & Macklin,, M. G. (2007). High‐resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surface Processes and Landforms, 32(10), 1574–1592. https://doi.org/10.1002/esp.1505
Jungwirth,, M., Muhar,, S., & Schmutz,, S. (2002). Re‐establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology, 47(4), 867–887. https://doi.org/10.1046/j.1365-2427.2002.00914.x
Kasprak,, A., Hough‐Snee,, N., Beechie,, T., Bouwes,, N., Brierley,, G., Camp,, R., … Rosgen,, D. (2016). The blurred line between form and process: A comparison of stream channel classification frameworks. PLoS One, 11(3), e0150293. https://doi.org/10.1371/journal.pone.0150293
Lammers,, R. W., & Bledsoe,, B. P. (2018). A network scale, intermediate complexity model for simulating channel evolution over years to decades. Journal of Hydrology, 566, 886–900. https://doi.org/10.1016/j.jhydrol.2018.09.036
Leduc,, P., Peirce,, S., & Ashmore,, P. (2019). Challenges and applications of structure‐from‐motion photogrammetry in a physical model of a braided river. Earth Surface Dynamics, 7(1), 97–106. https://doi.org/10.5194/esurf-7-97-2019
Legg,, N. T., Heimburg,, C., Collins,, B. D., & Olson,, P. L. (2014). The channel migration toolbox: ArcGIS tools for measuring stream. Retrieved from https://fortress.wa.gov/ecy/publications/documents/1406032.pdf
Macfarlane,, W. W., Gilbert,, J. T., Jensen,, M. L., Gilbert,, J. D., Hough‐Snee,, N., McHugh,, P. A., … Bennett,, S. N. (2017). Riparian vegetation as an indicator of riparian condition: Detecting departures from historic condition across the north American west. Journal of Environmental Management, 202(2), 447–460. https://doi.org/10.1016/j.jenvman.2016.10.054
Macfarlane,, W. W., Wheaton,, J. M., Bouwes,, N., Jensen,, M. L., Gilbert,, J. T., Hough‐Snee,, N., & Shivik,, J. A. (2017). Modeling the capacity of riverscapes to support beaver dams. Geomorphology, 27, 72–99. https://doi.org/10.1016/j.geomorph.2015.11.019
Marçal,, M., Brierley,, G., & Lima,, R. (2017). Using geomorphic understanding of catchment‐scale process relationships to support the management of river futures: Macaé Basin, Brazil. Applied Geography, 84, 23–41. https://doi.org/10.1016/j.apgeog.2017.04.008
Marcus,, W. A., & Fonstad,, M. A. (2010). Remote sensing of rivers: The emergence of a subdiscipline in the river sciences. Earth Surface Processes and Landforms, 35(15), 1867–1872. https://doi.org/10.1002/esp.2094
Marcus,, W. A., Legleiter,, C. J., Aspinall,, R. J., Boardman,, J. W., & Crabtree,, R. L. (2003). High spatial resolution hyperspectral mapping of in‐stream habitats, depths, and woody debris in mountain streams. Geomorphology, 55(1–4), 363–380. https://doi.org/10.1016/S0169-555X(03)00150-8
Marra,, W. A., Kleinhans,, M. G., & Addink,, E. A. (2014). Network concepts to describe channel importance and change in multichannel systems: Test results for the Jamuna River, Bangladesh. Earth Surface Processes and Landforms, 39(6), 766–778. https://doi.org/10.1002/esp.3482
Marteau,, B., Vericat,, D., Gibbins,, C., Batalla,, R. J., & Green,, D. R. (2017). Application of structure‐from‐motion photogrammetry to river restoration. Earth Surface Processes and Landforms, 42(3), 503–515. https://doi.org/10.1002/esp.4086
Monegaglia,, F., Zolezzi,, G., Güneralp,, I., Henshaw,, A. J., & Tubino,, M. (2018). Automated extraction of meandering river morphodynamics from multitemporal remotely sensed data. Environmental Modelling %26 Software, 105, 171–186. https://doi.org/10.1016/j.envsoft.2018.03.028
O`Brien,, G., Wheaton,, J. M., Fryirs,, K., Macfarlane,, W., Brierley, G., Whitehead, K., … Volk,, C. (2019). Modelling valley bottom confinement at the network scale. Earth Surface Processes and Landforms, 44, 1828–1845. https://doi.org/10.1002/esp.4615
O`Brien,, G. R., Wheaton,, J., Fryirs,, K., McHugh,, P., Bouwes,, N., Brierley,, G., & Jordan,, C. (2017). A geomorphic assessment to inform strategic stream restoration planning in the middle fork John Day watershed, Oregon, USA. Journal of Maps, 13(2), 369–381. https://doi.org/10.1080/17445647.2017.1313787
Passalacqua,, P., Belmont,, P., Staley,, D., Simley,, J., Arrowsmith,, J. R., Bodee,, C., … Wheaton,, J. (2015). Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth Science Reviews, 148, 174–193. https://doi.org/10.1016/j.earscirev.2015.05.012
Pasternack,, G. B., & Wyrick,, J. R. (2017). Flood‐driven topographic changes in a gravel‐cobble river over segment, reach, and morphological unit scales. Earth Surface Processes and Landforms, 42(3), 487–502. https://doi.org/10.1002/esp.4064
Pavelsky,, T. M., & Smith,, L. C. (2008). RivWidth: A software tool for the calculation of river widths from remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters, 5(1), 70–73. https://doi.org/10.1109/LGRS.2007.908305
Pearson,, E., Smith,, M. W., Klaar,, M. J., & Brown,, L. E. (2017). Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers? Geomorphology, 293, 143–155. https://doi.org/10.1016/j.geomorph.2017.05.015
Phillips,, J. D. (2007). The perfect landscape. Geomorphology, 84(3–4), 159–169. https://doi.org/10.1016/j.geomorph.2006.01.039
Piégay,, H., Darby,, S. E., Mosselman,, E., & Surian,, N. (2005). A review of techniques available for delimiting the erodible corridor: A sustainable approach to managing bank erosion. River Research Applications, 21, 773–789. https://doi.org/10.1002/rra.881
Reid,, H. E., Williams,, R. D., Brierley,, G. J., Coleman,, S. E., Lamb,, R., Rennie,, C. D., & Tancock,, M. J. (2019). Geomorphological effectiveness of floods to reworkgravel bars: Insight from hyperscale topography and hydraulic modelling. Earth Surface Processes and Landforms, 44: 595–613. https://doi.org/10.1002/esp.4521
Rinaldi,, M., Belletti,, B., Bussettini,, M., Comiti,, F., Golfieri,, B., Lastoria,, B., … Surian,, N. (2017). New tools for the hydromorphological assessment and monitoring of European streams. Journal of Environmental Management, 202, 363–378. https://doi.org/10.1016/j.jenvman.2016.11.036
Rinaldi,, M., Surian,, N., Comiti,, F., & Bussettini,, M. (2015). A methodological framework for hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology, 251, 122–136. https://doi.org/10.1016/j.geomorph.2015.05.010
Rivas Casado,, M., González,, R., Ortega,, J., Leinster,, P., & Wright,, R. (2017). Towards a transferable UAV‐based framework for river hydromorphological characterization. Sensors, 17(10), 2210. https://doi.org/10.3390/s17102210
Roux,, C., Alber,, A., Bertrand,, M., Vaudor,, L., & Piégay,, H. (2015). “FluvialCorridor”: A new ArcGIS toolbox package for multiscale riverscape exploration. Geomorphology, 242, 29–37. https://doi.org/10.1016/j.geomorph.2014.04.018
Rowland,, J. C., Shelef,, E., Pope,, P. A., Muss,, J., Gangodagamage,, C., Brumby,, S. P., & Wilson,, C. J. (2016). A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sensing of Environment, 184, 212–228. https://doi.org/10.1016/j.rse.2016.07.005
Rubin,, D. M. (2004). A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1), 160–165. https://doi.org/10.1306/052203740160
Schaffrath,, K. R., Belmont,, P., & Wheaton,, J. M. (2015). Landscape‐scale geomorphic change detection: Quantifying spatially variable uncertainty and circumventing legacy data issues. Geomorphology, 250, 334–348. https://doi.org/10.1016/j.geomorph.2015.09.020
Schmitt,, R. J., Bizzi,, S., & Castelletti,, A. (2016). Tracking multiple sediment cascades at the river network scale identifies controls and emerging patterns of sediment connectivity. Water Resources Research, 52(5), 3941–3965. https://doi.org/10.1002/2015WR018097
Schmitt,, R. J., Bizzi,, S., Castelletti,, A. F., & Kondolf,, G. M. (2018a). Stochastic modeling of sediment connectivity for reconstructing sand fluxes and origins in the unmonitored se Kong, se san, and Sre Pok tributaries of the Mekong River. Journal of Geophysical Research: Earth Surface, 123(1), 2–25. https://doi.org/10.1002/2016JF004105
Schmitt,, R. J. P., Bizzi,, S., Castelletti,, A., & Kondolf,, G. M. (2018b). Improved trade‐offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nature Sustainability, 1(2), 96–104. https://doi.org/10.1038/s41893-018-0022-3
Schmitt,, R. J. P., Rubin,, Z., & Kondolf,, G. M. (2017). Losing ground‐scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta. Geomorphology, 294, 58–69. https://doi.org/10.1016/j.geomorph.2017.04.029
Schumm,, S. A. (1977). The fluvial system. New York, NY: John Wiley and Sons.
Schwenk,, J., Khandelwal,, A., Fratkin,, M., Kumar,, V., & Foufoula‐Georgiou,, E. (2017). High spatiotemporal resolution of river planform dynamics from Landsat: The RivMAP toolbox and results from the Ucayali River. Earth and Space Science, 4(2), 46–75. https://doi.org/10.1002/2016EA000196
Shean,, D. E., Alexandrov,, O., Moratto,, Z. M., Smith,, B. E., Joughin,, I. R., Porter,, C., & Morin,, P. (2016). An automated, open‐source pipeline for mass production of digital elevation models (DEMs) from very‐high‐resolution commercial stereo satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 101–117. https://doi.org/10.1016/j.isprsjprs.2016.03.012
Sinha,, R., Mohanta,, H. A. R. I. D. A. S., Jain,, V., & Tandon,, S. K. (2017). Geomorphic diversity as a river management tool and its application to the Ganga River, India. River and Research Applications, 33, 1157–1176.
Smith,, L. C., & Pavelsky,, T. M. (2008). Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia. Water Resources Research, 44(3), W03427. https://doi.org/10.1029/2007WR006133
Spiekermann,, R., Betts,, H., Dymond,, J., & Basher,, L. (2017). Volumetric measurement of river bank erosion from sequential historical aerial photography. Geomorphology, 296, 193–208. https://doi.org/10.1016/j.geomorph.2017.08.047
Stout,, J. C., & Belmont,, P. (2014). TerEx toolbox for semi‐automated selection of fluvial terrace and floodplain features from lidar. Earth Surface Processes and Landforms, 39(5), 569–580. https://doi.org/10.1002/esp.3464
Stout,, J. C., Belmont,, P., Schottler,, S. P., & Willenbring,, J. K. (2014). Identifying sediment sources and sinks in the root river, southeastern Minnesota. Annals of the Association of American Geographers, 104(1), 20–39. https://doi.org/10.1080/00045608.2013.843434
Suizu,, T. M., & Nanson,, G. C. (2018). Temporal and spatial adjustments of channel migration and planform geometry: Responses to ENSO driven climate anomalies on the tropical freely‐meandering Aguapeí River, São Paulo, Brazil. Earth Surface Processes and Landforms, 43(8), 1636–1647. https://doi.org/10.1002/esp.4343
Tooth,, S. (2006). Virtual globes: A catalyst for the re‐enchantment of geomorphology? Earth Surface Processes and Landforms, 31(9), 1192–1194. https://doi.org/10.1002/esp.1383
Tunnicliffe,, J., Brierley,, G., Fuller,, I. C., Leenman,, A., Marden,, M., & Peacock,, D. (2018). Reaction and relaxation in a coarse‐grained fluvial system following catchment‐wide disturbance. Geomorphology, 307, 50–64. https://doi.org/10.1016/j.geomorph.2017.11.006
Vaughan,, A. A., Belmont,, P., Hawkins,, C. P., & Wilcock,, P. (2017). Near‐channel versus watershed controls on sediment rating curves. Journal of Geophysical Research: Earth Surface, 122(10), 1901–1923. https://doi.org/10.1002/2016JF004180
Verdú,, J. M., Batalla,, R. J., & Martínez‐Casasnovas,, J. A. (2005). High‐resolution grain‐size characterisation of gravel bars using imagery analysis and geo‐statistics. Geomorphology, 72(1–4), 73–93. https://doi.org/10.1016/j.geomorph.2005.04.015
Weber,, C., Aberg,, U., Buijse,, A. D., Hughes,, F. M., McKie,, B. G., Piégay,, H., … Haertel‐Borer,, S. (2018). Goals and principles for programmatic river restoration monitoring and evaluation: Collaborative learning across multiple projects. WIREsWater, 2(1), e1257. https://doi.org/10.1002/wat2.1257
Wheaton,, J. M., Bennett,, S., Shahverdian,, S., & Maestas,, J. D. (Eds.). (2019). Low‐tech process‐based restoration of riverscapes: Design manual—Version 1.0. Logan, UT: Utah State University, Wheaton Ecogeomorphology and Topographic Analysis Lab. https://doi.org/10.13140/RG.2.2.15815.75680
Wheaton,, J. M., Bouwes,, N., McHugh,, P., Saunders,, W. C., Bangen,, S. G., Bailey,, P. E., & Jordan,, C. (2017). Upscaling site‐scale Ecohydraulic models to inform salmonid population‐level life cycle Modelling and restoration actions—Lessons from the Columbia River basin. Earth Surface Processes and Landforms, 43, 21–44. https://doi.org/10.1002/esp.4137
Wheaton,, J. M., Brasington,, J., Darby,, S. E., Kasprak,, A., Sear,, D., & Vericat,, D. (2013). Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel‐bed river. Journal of Geophysical Research: Earth Surface, 118(2), 759–779. https://doi.org/10.1002/jgrf.20060
Wheaton,, J. M., Brasington,, J., Darby,, S. E., & Sear,, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 35(2), 136–156. https://doi.org/10.1002/esp.1886
Wheaton,, J. M., Fryirs,, K. A., Brierley,, G., Bangen,, S. G., Bouwes,, N., & O`Brien,, G. (2015). Geomorphic mapping and taxonomy of fluvial landforms. Geomorphology, 248, 273–295. https://doi.org/10.1016/j.geomorph.2015.07.010
Wiens,, J. A. (2002). Riverine landscapes: Taking landscape ecology into the water. Freshwater Biology, 47(4), 501–515. https://doi.org/10.1046/j.1365-2427.2002.00887.x
Williams,, R. D., Brasington,, J., Vericat,, D., & Hicks,, D. M. (2014). Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surface Processes and Landforms, 39(2), 167–183. https://doi.org/10.1002/esp.3437
Williams,, R. D., Measures,, R., Hicks,, D. M., & Brasington,, J. (2016). Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river. Water Resources Research, 52, 6621–6642. https://doi.org/10.1002/2015WR018491
Williams,, R. D., Rennie,, C. D., Brasington,, J., Hicks,, D. M., & Vericat,, D. (2015). Linking the spatial distribution of bed load transport to morphological change during high‐flow events in a shallow braided river. Journal of Geophysical Research: Earth Surface, 120(3), 604–622. https://doi.org/10.1002/2014JF003346
Wohl,, E., Lane,, S. N., & Wilcox,, A. C. (2015). The science and practice of river restoration. Water Resources Research, 51(8), 5974–5997. https://doi.org/10.1002/2014wr016874
Woodget,, A. S., Austrums,, R., Maddock,, I. P., & Habit,, E. (2017). Drones and digital photogrammetry: From classifications to continuums for monitoring river habitat and hydromorphology. Wiley Interdisciplinary Reviews: Water, 4(4), e1222. https://doi.org/10.1002/wat2.1222
Woodget,, A. S., Carbonneau,, P. E., Visser,, F., & Maddock,, I. P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms, 40(1), 47–64. https://doi.org/10.1002/esp.3613
Wyrick,, J. R., & Pasternack,, G. B. (2016). Revealing the natural complexity of topographic change processes through repeat surveys and decision‐tree classification. Earth Surface Processes and Landforms, 41(6), 723–737. https://doi.org/10.1002/esp.3854
Wyrick,, J. R., Senter,, A. E., & Pasternack,, G. B. (2014). Revealing the natural complexity of fluvial morphology through 2D hydrodynamic delineation of river landforms. Geomorphology, 210, 14–22. https://doi.org/10.1016/j.geomorph.2013.12.013