Abbas,, H., Nasr,, R., & Seif,, H. (2006). Study of waste stabilization pond geometry for the wastewater treatment efficiency. Ecological Engineering, 28(1), 25–34. https://doi.org/10.1016/j.ecoleng.2006.03.008
Alvarado,, A., Sanchez,, E., Durazno,, G., Vesvikar,, M., & Nopens,, I. (2012). CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond. Water Science and Technology, 66(11), 2370–2377. https://doi.org/10.2166/wst.2012.450
Alvarado,, A., Vesvikar,, M., Cisneros,, J. F., Maere,, T., Goethals,, P., & Nopens,, I. (2013). CFD study to determine the optimal configuration of aerators in a full‐scale waste stabilization pond. Water Research, 47(13), 4528–4537. https://doi.org/10.1016/j.watres.2013.05.016
Alvarez‐Gaitan,, J. P., Short,, M. D., Lundie,, S., & Stuetz,, R. (2016). Towards a comprehensive greenhouse gas emissions inventory for biosolids. Water Research, 96, 299–307. https://doi.org/10.1016/j.watres.2016.03.059
Appels,, L., Baeyens,, J., Degreve,, J., & Dewil,, R. (2008). Principles and potential of the anaerobic digestion of waste‐activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002
Australian Bureau of Statistics (ABS). (2013). 3222.0 ‐ Population Projections, Australia, 2012 (base) to 2101. Retrieved November 15, 2016, from Australian Bureau of Statistics. Retrieved from http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/3222.0main+features32012%20(base)%20to%202101
Babica,, P., Hilscherova,, K., Bartova,, K., Blaha,, L., & Marsalek,, B. (2007). Effects of dissolved microcystins on growth of planktonic photoautotrophs. Phycologia, 46(2), 137–142.
Baily,, R. E. (2009). Sludge: Types, treatmrent processes and disposal. Hauppauge, New York: Nova Science Publishers.
Barrington,, D. J., Ghadouani,, A., Sinang,, S. C., & Ivey,, G. N. (2014). Development of a new risk‐based framework to guide investment in water quality monitoring. Environmental Monitoring and Assessment, 186(4), 2455–2464. https://doi.org/10.1007/s10661-013-3552-1
Barrington,, D. J., Reichwaldt,, E. S., & Ghadouani,, A. (2013). The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecological Engineering, 50, 86–94. https://doi.org/10.1016/j.ecoleng.2012.04.024
Bartosiewicz,, M., Glaz,, P., Bourget,, S., Cortés,, A., Reichwaldt,, E. S., MacIntyre,, S., … Laurion,, I. (in preparation). The role of hydrodynamics and phytoplankton in controlling greenhouse fluxes from waste stabilization ponds. Environmental Science %26 Technology.
Ben Said,, S., & Or,, D. (2017). Synthetic microbial ecology: Engineering habitats for modular consortia. Frontiers in Microbiology, 8, 20. https://doi.org/10.3389/fmicb.2017.01125
Berney,, M., Vital,, M., Hulshoff,, I., Weilenmann,, H. U., Egli,, T., & Hammes,, F. (2008). Rapid, cultivation‐independent assessment of microbial viability in drinking water. Water Research, 42(14), 4010–4018. https://doi.org/10.1016/j.watres.2008.07.017
Brands,, E. (2014). Prospects and challenges for sustainable sanitation in developed nations: A critical review. Environmental Reviews, 22(4), 346–363. https://doi.org/10.1139/er-2013-0082
Brookes,, J. D., & Ganf,, G. G. (2001). Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. Journal of Plankton Research, 23(12), 1399–1411.
Brown,, S., Beecher,, N., & Carpenter,, A. (2010). Calculator tool for determining greenhouse gas emissions for biosolids processing and end use. Environmental Science %26 Technology, 44(24), 9509–9515. https://doi.org/10.1021/es101210k
Carmichael,, W. W. (2001). Health effects of toxin‐producing cyanobacteria: “the CyanoHABs”. Human and Ecological Risk Assessment, 7(5), 1393–1407.
Casanova,, M. T., Burch,, M. D., Brock,, M. A., & Bond,, P. M. (1999). Does toxic Microcystis aeruginosa affect aquatic plant establishment? Environmental Toxicology, 14(1), 97–109.
Christoffersen,, K. (1996). Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia, 35(6), 42–50.
Codispoti,, L. A., & Christensen,, J. P. (1985). Nitrification, denitrification and nitrous‐oxide cycling in the eastern tropical south‐pacific ocean. Marine Chemistry, 16(4), 277–300. https://doi.org/10.1016/0304-4203(85)90051-9
Coggins,, L., Sounness,, J., Zheng,, L., Ghisalberti,, M., & Ghadouani,, A. (2018). Impact of hydrodynamic reconfiguration with baffles on treatment performance in waste stabilisation ponds: A full‐scale experiment. Water, 10(2), 109. https://doi.org/10.3390/w10020109
Coggins,, L. X., Ghisalberti,, M., & Ghadouani,, A. (2017). Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds. Water Research, 110, 354–365. https://doi.org/10.1016/j.watres.2016.11.031
Curtis,, T. P., & Sloan,, W. T. (2006). Towards the design of diversity: Stochastic models for community assembly in wastewater treatment plants. Water Science and Technology, 54(1), 227–236. https://doi.org/10.2166/wst.2006.391
Daelman,, M. R. J., van Voorthuizen,, E. M., van Dongen,, U., Volcke,, E. I. P., & van Loosdrecht,, M. C. M. (2012). Methane emission during municipal wastewater treatment. Water Research, 46(11), 3657–3670. https://doi.org/10.1016/j.watres.2012.04.024
Dahl,, N. W., Woodfield,, P. L., Lemckert,, C. J., Stratton,, H., & Roiko,, A. (2017). A practical model for sunlight disinfection of a subtropical maturation pond. Water Research, 108, 151–159. https://doi.org/10.1016/j.watres.2016.10.072
Daigger,, G. T. (2011). A practitioner`s perspective on the uses and future developments for wastewater treatment modelling. Water Science and Technology, 63(3), 516–526. https://doi.org/10.2166/wst.2011.252
Daims,, H., Taylor,, M. W., & Wagner,, M. (2006). Wastewater treatment: A model system for microbial ecology. Trends in Biotechnology, 24(11), 483–489. https://doi.org/10.1016/j.tibtech.2006.09.002
Dawson,, R. M. (1998). The toxicology of microcystins. Toxicon, 36(7), 953–962.
de Figueiredo,, D. R., Azeiteiro,, U. M., Esteves,, S. M., Goncalves,, F. J. M., & Pereira,, M. J. (2004). Microcystin‐producing blooms – a serious global public health issue. Ecotoxicology and Environmental Safety, 59(2), 151–163.
Delre,, A., Monster,, J., & Scheutz,, C. (2017). Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method. Science of the Total Environment, 605, 258–268. https://doi.org/10.1016/j.scitotenv.2017.06.177
Detweiler,, A. M., Bebout,, B. B., Frisbee,, A. E., Kelley,, C. A., Chanton,, J. P., & Prufert‐Bebout,, L. E. (2014). Characterization of methane flux from photosynthetic oxidation ponds in a wastewater treatment plant. Water Science and Technology, 70(6), 980–989. https://doi.org/10.2166/wst.2014.317
Downing,, J. A., Prairie,, Y. T., Cole,, J. J., Duarte,, C. M., Tranvik,, L. J., Striegl,, R. G., … Middelburg,, J. J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388
Elimelech,, M., & Phillip,, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043), 712–717. https://doi.org/10.1126/science.1200488
Faleschini,, M., Esteves,, J. L., & Valero,, M. A. C. (2012). The effects of hydraulic and organic loadings on the performance of a full‐scale facultative pond in a temperate climate region (argentine Patagonia). Water Air and Soil Pollution, 223(5), 2483–2493. https://doi.org/10.1007/s11270-011-1041-0
Farjood,, A., Melville,, B. W., Shamseldin,, A. Y., Adams,, K. N., & Khan,, S. (2015). Evaluation of hydraulic performance indices for retention ponds. Water Science and Technology, 72(1), 10–21. https://doi.org/10.2166/wst.2015.178
Ferguson,, R. M. W., Coulon,, F., & Villa,, R. (2018). Understanding microbial ecology can help improve biogas production in AD. Science of the Total Environment, 642, 754–763. https://doi.org/10.1016/j.scitotenv.2018.06.007
Foladori,, P., Bruni,, L., Tamburini,, S., & Ziglio,, G. (2010). Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Research, 44(13), 3807–3818. https://doi.org/10.1016/j.watres.2010.04.027
Funari,, E., & Testai,, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125. https://doi.org/10.1080/10408440701749454
Furtado,, A., Calijuri,, M. D., Lorenzi,, A. S., Honda,, R. Y., Genuario,, D. B., & Fiore,, M. F. (2009). Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia, 627(1), 195–209. https://doi.org/10.1007/s10750-009-9728-6
Ghadouani,, A., & Coggins,, L. X. (2011). Science, technology and policy for water pollution control at the watershed scale: Current issues and future challenges. Physics and Chemistry of the Earth, Parts A/B/C, 36(9–11), 335–341. https://doi.org/10.1016/j.pce.2011.05.011
GHD. (2015). Infrastructure maintenance – A report for Infrastructure Australia. Sydney, Australia: GHD Group Pty Ltd.
Glaz,, P., Bartosiewicz,, M., Laurion,, I., Reichwaldt,, E. S., Maranger,, R., & Ghadouani,, A. (2016). Greenhouse gas emissions from waste stabilisation ponds in Western Australia and Quebec (Canada). Water Research, 101, 64–74. https://doi.org/10.1016/j.watres.2016.05.060
Gopalakrishnan,, V., Grubb,, G. F., & Bakshi,, B. R. (2017). Biosolids management with net‐zero CO2 emissions: A techno‐ecological synergy design. Clean Technologies and Environmental Policy, 19(8), 2099–2111. https://doi.org/10.1007/s10098-017-1398-x
Grant,, S. B., Saphores,, J.‐D., Feldman,, D. L., Hamilton,, A. J., Fletcher,, T. D., Cook,, P. L. M., … Marusic,, I. (2012). Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science, 337(6095), 681–686. https://doi.org/10.1126/science.1216852
Hammes,, F., Berney,, M., Wang,, Y. Y., Vital,, M., Koster,, O., & Egli,, T. (2008). Flow‐cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research, 42(1‐2), 269–277. https://doi.org/10.1016/j.watres.2007.07.009
Harris,, J. A., Baptista,, J. D. C., Curtis,, T. P., Nelson,, A. K., Pawlett,, M., Ritz,, K., & Tyrrel,, S. F. (2012). Engineering difference: Matrix design determines community composition in wastewater treatment systems. Ecological Engineering, 40, 183–188. https://doi.org/10.1016/j.ecoleng.2011.12.016
Hering,, J. G., Waite,, T. D., Luthy,, R. G., Drewes,, J. E., & Sedlak,, D. L. (2013). A changing framework for urban water systems. Environmental Science %26 Technology, 47(19), 10721–10726. https://doi.org/10.1021/es4007096
Hernandez‐Paniagua,, I. Y., Ramirez‐Vargas,, R., Ramos‐Gomez,, M. S., Dendooven,, L., Avelar‐Gonzalez,, F. J., & Thalasso,, F. (2014). Greenhouse gas emissions from stabilization ponds in subtropical climate. Environmental Technology, 35(6), 727–734. https://doi.org/10.1080/09593330.2013.848910
Hill,, R., Carter,, L., & Kay,, R. (2012). Wastewater Treatment Facilities (National Wastewater Treatment Facilities Database) (Publication no. 74625). Retrieved July 12, 2018, from Geoscience Australia. https://doi.org/10.4225/25/543B53F92E643
Holgerson,, M. A., & Raymond,, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222–226. https://doi.org/10.1038/ngeo2654
Horan,, E., Rouch,, D., & Hutton,, B. (2011). Calculating the cost of gas emissions from wastewater: Calculating carbon tax liabilities from wastewater treatment and biosolids stockpiling. Water, 38(6), 60–64.
Huisman,, J., Codd,, G. A., Paerl,, H. W., Ibelings,, B. W., Verspagen,, J. M. H., & Visser,, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471–483. https://doi.org/10.1038/s41579-018-0040-1
Ishii,, S. I., Suzuki,, S., Norden‐Krichmar,, T. M., Wu,, A., Yamanaka,, Y., Nealson,, K. H., & Bretschger,, O. (2013). Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells. Water Research, 47(19), 7120–7130. https://doi.org/10.1016/j.watres.2013.07.048
Kampschreur,, M. J., Temmink,, H., Kleerebezem,, R., Jetten,, M. S. M., & van Loosdrecht,, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093–4103. https://doi.org/10.1016/j.watres.2009.03.001
Kortelainen,, P., Rantakari,, M., Huttunen Jari,, T., Mattsson,, T., Alm,, J., Juutinen,, S., … Martikainen Pertti,, J. (2006). Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology, 12(8), 1554–1567. https://doi.org/10.1111/j.1365-2486.2006.01167.x
Kotut,, K., Ballot,, A., Wiegand,, C., & Krienitz,, L. (2010). Toxic cyanobacteria at Nakuru sewage oxidation ponds – a potential threat to wildlife. Limnologica, 40(1), 47–53. https://doi.org/10.1016/j.limno.2009.01.003
Landsberg,, J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2), 113–390.
Majumder,, R., Livesley,, S. J., Gregory,, D., & Arndt,, S. K. (2015). Storage management influences greenhouse gas emissions from biosolids. Journal of Environmental Management, 151, 361–368. https://doi.org/10.1016/j.jenvman.2015.01.007
Mara,, D. (2004). Domestic wastewater treatment in developing countries. London, England: Earthscan.
Mara,, D. (2013). Pits, pipes, ponds – and me. Water Research, 47(7), 2105–2117. https://doi.org/10.1016/j.watres.2013.01.051
Margot,, J., Rossi,, L., Barry,, D. A., & Holliger,, C. (2015). A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdisciplinary Reviews‐Water, 2(5), 457–487. https://doi.org/10.1002/wat2.1090
Martin,, J., Santos,, J. L., Aparicio,, I., & Alonso,, E. (2015). Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting. Science of the Total Environment, 503, 97–104. https://doi.org/10.1016/j.scitotenv.2014.05.089
Martins,, J., Peixe,, L., & Vasconcelos,, V. (2010). Cyanobacteria and bacteria co‐occurrence in a wastewater treatment plant: Absence of allelopathic effects. Water Science and Technology, 62(8), 1954–1962. https://doi.org/10.2166/wst.2010.551
Martins,, J. C., Peixe,, L., & Vasconcelos,, V. M. (2011). Unraveling cyanobacteria ecology in wastewater treatment plants (WWTP). Microbial Ecology, 62(2), 241–256.
McMahon,, K. D., Martin,, H. G., & Hugenholtz,, P. (2007). Integrating ecology into biotechnology. Current Opinion in Biotechnology, 18(3), 287–292. https://doi.org/10.1016/j.copbio.2007.04.007
Mengis,, M., Gachter,, R., & Wehrli,, B. (1997). Sources and sinks of nitrous oxide (N2O) in deep lakes. Biogeochemistry, 38(3), 281–301. https://doi.org/10.1023/a:1005814020322
Narayanasamy,, S., Muller,, E. E. L., Sheik,, A. R., & Wilmes,, P. (2015). Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities. Microbial Biotechnology, 8(3), 363–368. https://doi.org/10.1111/1751-7915.12255
Nelson,, K. L., Cisneros,, B. J., Tchobanoglous,, G., & Darby,, J. L. (2004). Sludge accumulation, characteristics, and pathogen inactivation in four primary waste stabilization ponds in Central Mexico. Water Research, 38(1), 111–127. https://doi.org/10.1016/j.watres.2003.09.013
Nielsen,, P. H. (2017). Microbial biotechnology and circular economy in wastewater treatment. Microbial Biotechnology, 10(5), 1102–1105. https://doi.org/10.1111/1751-7915.12821
Olukanni,, D. O., & Ducoste,, J. J. (2011). Optimization of waste stabilization pond design for developing nations using computational fluid dynamics. Ecological Engineering, 37(11), 1878–1888. https://doi.org/10.1016/j.ecoleng.2011.06.003
Oudra,, B., Loudiki,, M., Vasconcelos,, V., Sabour,, B., Sbiyyaa,, B., Oufdou,, K., & Mezrioui,, N. (2002). Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in Morocco. Environmental Toxicology, 17(1), 32–39.
Ouedraogo,, F. R., Zhang,, J., Cornejo,, P. K., Zhang,, Q., Mihelcic,, J. R., & Tejada‐Martinez,, A. E. (2016). Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond. Water Research, 99, 253–262. https://doi.org/10.1016/j.watres.2016.05.011
Oufdou,, K., Mezrioui,, N., Oudra,, B., Barakate,, M., Loudiki,, M., & Alla,, A. A. (2000). Relationships between bacteria and cyanobacteria in the Marrakech waste stabilisation ponds. Water Science and Technology, 42(10–11), 171–178.
Paerl,, H. W. (1988). Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography, 33(4), 823–847.
Park,, J. B. K., Craggs,, R. J., & Shilton,, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35–42. https://doi.org/10.1016/j.biortech.2010.06.158
Passos,, R. G., Dias,, D. F. C., & von Sperling,, M. (2016). Review of practical aspects for modelling of stabilization ponds using computational fluid dynamics. Environmental Technology Reviews, 5(1), 78–102. https://doi.org/10.1080/21622515.2016.1251499
Passos,, R. G., Ferreira,, V. V. M., & von Sperling,, M. (2019). A dynamic and unified model of hydrodynamics in waste stabilization ponds. Chemical Engineering Research %26 Design, 144, 434–443. https://doi.org/10.1016/j.cherd.2019.02.025
Pearson,, H. W. (2003). Microbial interactions in facultative and maturation ponds. In D. Mara, & N. J. Horan, (Eds.), Handbook of water and wastewater microbiology. London, England: Academic Press.
Peña,, M. R., Mara,, D. D., & Sanchez,, A. (2000). Dispersion studies in anaerobic ponds: Implications for design and operation. Water Science and Technology, 42(10–11), 273–282.
Peña Varón,, M., & Mara,, D. (2004). Waste stabilisation ponds. IRC International Water and Sanitation Centre. Retrieved from: http://www.bvsde.paho.org/bvsacd/cd27/ponds.pdf
Persson,, J. (2000). The hydraulic performance of ponds of various layouts. Urban Water, 2(3), 243–250. https://doi.org/10.1016/S1462-0758(00)00059-5
Persson,, J., Somes,, N. L. G., & Wong,, T. H. F. (1999). Hydraulics efficiency of constructed wetlands and ponds. Water Science and Technology, 40(3), 291–300.
Persson,, J., & Wittgren,, H. B. (2003). How hydrological and hydraulic conditions affect performance of ponds. Ecological Engineering, 21(4–5), 259–269.
Pollution Solutions %26 Designs Pty Ltd. (2012). Biosolids Snapshot. Department of Sustainability, Environment, Water, Population and Communities, Australian Government. Retrieved from https://www.environment.gov.au/system/files/resources/2e8c76c3-0688-47ef-a425-5c89dffc9e04/files/biosolids-snapshot.pdf
Prest,, E. I., Weissbrodt,, D. G., Hammes,, F., van Loosdrecht,, M. C. M., & Vrouwenvelder,, J. S. (2016). Long‐term bacterial dynamics in a full‐scale drinking water distribution system. PLoS One, 11(10), 20. https://doi.org/10.1371/journal.pone.0164445
Raes,, J., & Bork,, P. (2008). Molecular eco‐systems biology: Towards an understanding of community function. Nature Reviews Microbiology, 6(9), 693–699. https://doi.org/10.1038/nrmicro1935
Reichwaldt,, E. S., & Ghadouani,, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research, 46(5), 1372–1393. https://doi.org/10.1016/j.watres.2011.11.052
Reichwaldt,, E. S., Ho,, W. Y., Zhou,, W., & Ghadouani,, A. (2017). Sterols indicate water quality and wastewater treatment efficiency. Water Research, 108, 401–411. https://doi.org/10.1016/j.watres.2016.11.029
Reichwaldt,, E. S., Stone,, D., Barrington,, D. J., Sinang,, S. C., & Ghadouani,, A. (2016). Development of toxicological risk assessment models for acute and chronic exposure to pollutants. Toxins, 8(9), 17. https://doi.org/10.3390/toxins8090251
Rey,, A., Mulligan,, R. P., Boegman,, L., Filion,, Y., da Silva,, A. M., & Champagne,, P. (2018). Impact of control structures on hydraulic retention time in wastewater stabilization ponds. Paper presented at the Water Distribution Systems Analysis/Computing and Control for the Water Industry (WDSA/CCWI) Joint Conference 2018, Kingston, Ontario, Canada.
Rodriguez,, D. J., van den Berg,, C., & McMahon,, A. (2012). Investing in water infrastructure: Capital, operations and maintenance. Washington, DC: World Bank. Retrieved from: http://documents.worldbank.org/curated/en/411931468150572307/Investing-in-water-infrastructure-capital-operations-and-maintenance
Rodriguez,, E., Garcia‐Encina,, P. A., Stams,, A. J. M., Maphosa,, F., & Sousa,, D. Z. (2015). Meta‐omics approaches to understand and improve wastewater treatment systems. Reviews in Environmental Science and Bio‐Technology, 14(3), 385–406. https://doi.org/10.1007/s11157-015-9370-x
Sah,, L., Rousseau,, D. P. L., & Hooijmans,, C. M. (2012). Numerical modelling of waste stabilization ponds: Where do we stand? Water Air and Soil Pollution, 223(6), 3155–3171. https://doi.org/10.1007/s11270-012-1098-4
Scheffer,, M., Rinaldi,, S., Gragnani,, A., Mur,, L. R., & van Nes,, E. H. (1997). On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology, 78(1), 272–282.
Shannon,, M. A., Bohn,, P. W., Elimelech,, M., Georgiadis,, J. G., Marinas,, B. J., & Mayes,, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310. https://doi.org/10.1038/nature06599
Sheludchenko,, M., Padovan,, A., Katouli,, M., & Stratton,, H. (2016). Removal of Fecal indicators, pathogenic bacteria, adenovirus, cryptosporidium and giardia (oo)cysts in waste stabilization ponds in northern and eastern Australia. International Journal of Environmental Research and Public Health, 13(1), 96. https://doi.org/10.3390/ijerph13010096
Silva,, J. P., Lasso,, A., Lubberding,, H. J., Pena,, M. R., & Gijzen,, H. J. (2015). Biases in greenhouse gases static chambers measurements in stabilization ponds: Comparison of flux estimation using linear and non‐linear models. Atmospheric Environment, 109, 130–138. https://doi.org/10.1016/j.atmosenv.2015.02.068
Silva,, J. P., Ruiz,, J. L., Pena,, M. R., Lubberding,, H., & Gijzen,, H. (2012). Influence of photoperiod on carbon dioxide and methane emissions from two pilot‐scale stabilization ponds. Water Science and Technology, 66(9), 1930–1940. https://doi.org/10.2166/wst.2012.396
Silverman,, A. I., Sedlak,, D. L., & Nelson,, K. L. (2019). Simplified process to determine rate constants for sunlight‐mediated removal of trace organic and microbial contaminants in unit process open‐water treatment wetlands. Environmental Engineering Science, 36(1), 43–59. https://doi.org/10.1089/ees.2018.0177
Skelton,, D. M., Ekman,, D. R., Martinovic‐Weigelt,, D., Ankley,, G. T., Villeneuve,, D. L., Teng,, Q., & Collette,, T. W. (2014). Metabolomics for in situ environmental monitoring of surface waters impacted by contaminants from both point and nonpoint sources. Environmental Science %26 Technology, 48(4), 2395–2403. https://doi.org/10.1021/es404021f
Speth,, D. R., in ‘t Zandt,, M. H., Guerrero‐Cruz,, S., Dutilh,, B. E., & Jetten,, M. S. M. (2016). Genome‐based microbial ecology of anammox granules in a full‐scale wastewater treatment system. Nature Communications, 7(1), 11172. https://doi.org/10.1038/ncomms11172
Staley,, J. T., & Konopka,, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology, 39, 321–346. https://doi.org/10.1146/annurev.mi.39.100185.001541
United Nations Development Programme (UNDP). (2006). Human Development Report 2006 – Beyond scarcity: Power, poverty and the global water crisis. New York, NY.
UN‐Water, %26 Food and Agriculture Organisation (FAO). (2007). Coping with water scarcity: Challenge of the twenty‐first century. Retrieved from: http://www.fao.org/3/a-aq444e.pdf
Van Loosdrecht,, M. C. M., & Brdjanovic,, D. (2014). Anticipating the next century of wastewater treatment. Science, 344(6191), 1452–1453. https://doi.org/10.1126/science.1255183
Van Nevel,, S., Koetzsch,, S., Proctor,, C. R., Besmer,, M. D., Prest,, E. I., Vrouwenvelder,, J. S., … Hammes,, F. (2017). Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113, 191–206. https://doi.org/10.1016/j.watres.2017.01.065
Vasconcelos,, V. M., & Pereira,, E. (2001). Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Research, 35(5), 1354–1357. https://doi.org/10.1016/s0043-1354(00)00512-1
Verbyla,, M. E., von Sperling,, M., & Maiga,, Y. (2017). Waste Stabilization Ponds. In J. R. Mihelcic, & M. E. Verbyla, (Eds.), Part 4 Management of Risk from Excreta and Wastewater. In J. B. Rose %26 B. Jimenez‐Cisneros (Series Eds.), Global Water Pathogen Project: Michigan State University. E. Lansing, MI: UNESCO. https://doi.org/10.14321/waterpathogens.65
von Sperling,, M. (2007). Waste stabilization ponds. London: IWA Publishing.
Wang,, L. K., Shammas,, N. K., & Hung,, Y.‐T. (Eds.). (2007). Biosolids treatment processes. New Jersey, USA: Humana Press Inc.
Water Services Association of Australia (WSAA), %26 Infrastructure Partnerships Australia (IPA). (2015). Doing the important as well as the urgent: Reforming the urban water sector. Sydney, Australia: WSAA %26 IPA. Retrieved from: https://www.wsaa.asn.au/publication/doing-important-well-urgent-reforming-urban-water-sector
Wiegand,, C., & Pflugmacher,, S. (2005). Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology, 203(3), 201–218.
World Health Organisation (WHO). (2003). Guidelines for safe recreational water environments. Geneva, Switzerland: World Health Organisation. Retrieved from: https://www.who.int/water_sanitation_health/publications/srwe1/en/
Zamyadi,, A., Romanis,, C., Mills,, T., Neilan,, B., Choo,, F., Coral,, L. A., … Henderson,, R. K. (2019). Diagnosing water treatment critical control points for cyanobacterial removal: Exploring benefits of combined microscopy, next‐generation sequencing, and cell integrity methods. Water Research, 152, 96–105. https://doi.org/10.1016/j.watres.2019.01.002
Zhang,, K. F., Randelovic,, A., Page,, D., McCarthy,, D. T., & Deletic,, A. (2014). The validation of stormwater biofilters for micropollutant removal using in situ challenge tests. Ecological Engineering, 67, 1–10. https://doi.org/10.1016/j.ecoleng.2014.03.004