Alley,, R. B., Cuffey,, K. M., Evenson,, E. B., Strasser,, J. C., Lawson,, D. E., & Larson,, G. J. (1997). How glaciers entrain and transport basal sediment: Physical constraints. Quaternary Science Reviews, 16(9), 1017–1038. https://doi.org/10.1016/S0277-3791(97)00034-6
Amos,, C. L., Bergamasco,, A., Umgiesser,, G., Cappucci,, S., Cloutier,, D., DeNat,, L., … Cristante,, S. (2004). The stability of tidal flats in Venice Lagoon—The results of in‐situ measurements using two benthic, annular flumes. Journal of Marine Systems, 51(1), 211–241. https://doi.org/10.1016/j.jmarsys.2004.05.013
An,, C., Parker,, G., Hassan,, M. A., & Fu,, X. (2019). Can magic sand cause massive degradation of a gravel‐bed river at the decadal scale? Shi‐Ting River, China. Geomorphology, 327, 147–158. https://doi.org/10.1016/j.geomorph.2018.10.026
Ashworth,, P. J., & Ferguson,, R. I. (1986). Interrelationships of channel processes, changes and sediments in a proglacial braided river. Geografiska Annaler: Series A, Physical Geography, 68(4), 361–371. https://doi.org/10.1080/04353676.1986.11880186
Aufdenkampe,, A. K., Mayorga,, E., Raymond,, P. A., Melack,, J. M., Doney,, S. C., Alin,, S. R., … Yoo,, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53–60. https://doi.org/10.1890/100014
Bakker,, M., Antoniazza,, G., Odermatt,, E., & Lane,, S. N. (2019). Morphological response of an alpine braided reach to sediment‐laden flow events. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2018JF004811
Bardgett,, R. D., & Walker,, L. R. (2004). Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biology and Biochemistry, 36(3), 555–559. https://doi.org/10.1016/j.soilbio.2003.11.002
Bardgett,, R. D., Richter,, A., Bol,, R., Garnett,, M. H., Bäumler,, R., Xu,, X., … Wanek,, W. (2007). Heterotrophic microbial communities use ancient carbon following glacial retreat. Biology Letters, 3(5), 487–490. https://doi.org/10.1098/rsbl.2007.0242
Battin,, T. J., Besemer,, K., Bengtsson,, M. M., Romani,, A. M., & Packmann,, A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4), 251–263. https://doi.org/10.1038/nrmicro.2016.15
Battin,, T. J., Kaplan,, L. A., Denis Newbold,, J., & Hansen,, C. M. E. (2003). Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426(6965), 439–442. https://doi.org/10.1038/nature02152
Bätz,, N., Verrecchia,, E. P., & Lane,, S. N. (2015). Organic matter processing and soil evolution in a braided river system. CATENA, 126, 86–97. https://doi.org/10.1016/j.catena.2014.10.013
Bengtsson,, M. M., Wagner,, K., Schwab,, C., Urich,, T., & Battin,, T. J. (2018). Light availability impacts structure and function of phototrophic stream biofilms across domains and trophic levels. Molecular Ecology, 27(14), 2913–2925. https://doi.org/10.1111/mec.14696
Beylich,, A. A., Laute,, K., Liermann,, S., Hansen,, L., Burki,, V., Vatne,, G., … Berthling,, I. (2009). Subrecent sediment dynamics and sediment budget of the braided Sandur system at Sandane, Erdalen (Nordfjord, Western Norway). Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 63(2), 123–131. https://doi.org/10.1080/00291950902907934
Bogen,, J., Xu,, M., & Kennie,, P. (2015). The impact of pro‐glacial lakes on downstream sediment delivery in Norway: The impact of pro‐glacial lakes. Earth Surface Processes and Landforms, 40(7), 942–952. https://doi.org/10.1002/esp.3669
Boogert,, N. J., Paterson,, D. M., & Laland,, K. N. (2006). The implications of and ecosystem engineering for conservation biology. Bioscience, 56(7), 570–578. https://doi.org/10.1641/0006-3568(2006)56[570:TIONCA]2.0.CO;2
Brown,, L. E., Milner,, A. M., & Hannah,, D. M. (2007). Groundwater influence on alpine stream ecosystems. Freshwater Biology, 52(5), 878–890. https://doi.org/10.1111/j.1365-2427.2007.01739.x
Burga,, C. A., Krüsi,, B., Egli,, M., Wernli,, M., Elsener,, S., Ziefle,, M., … Mavris,, C. (2010). Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora – Morphology, Distribution, Functional Ecology of Plants, 205(9), 561–576. https://doi.org/10.1016/j.flora.2009.10.001
Burgherr,, P., Ward,, J. V., & Robinson,, C. T. (2002). Seasonal variation in zoobenthos across habitat gradients in an alpine glacial floodplain (Val Roseg, Swiss Alps). Journal of the North American Benthological Society, 21(4), 561–575. https://doi.org/10.2307/1468430
Cardinale,, B. J., Gelmann,, E. R., & Palmer,, M. A. (2004). Net spinning caddisflies as stream ecosystem engineers: The influence of Hydropsyche on benthic substrate stability. Functional Ecology, 18(3), 381–387. https://doi.org/10.1111/j.0269-8463.2004.00865.x
Carter,, N. (1932). A comparative study of the alga flora of two salt marshes. Part I. Journal of Ecology, 20(2), 341–370. https://doi.org/10.2307/2256083
Carter,, N. (1933a). A comparative study of the alga flora of two salt marshes. Part II. Journal of Ecology, 21(1), 128–208. https://doi.org/10.2307/2255878
Carter,, N. (1933b). A comparative study of the alga flora of two salt marshes. Part III. Journal of Ecology, 21(2), 385–403. https://doi.org/10.2307/2256588
Chen,, X., Zhang,, C., Paterson,, D. M., Townend,, I. H., Jin,, C., Zhou,, Z., … Feng,, Q. (2019). The effect of cyclic variation of shear stress on non‐cohesive sediment stabilization by microbial biofilms: The role of ‘biofilm precursors’. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.4573
Chen,, X. D., Zhang,, C. K., Zhou,, Z., Gong,, Z., Zhou,, J. J., Tao,, J. F., … Feng,, Q. (2017). Stabilizing effects of bacterial biofilms: EPS penetration and redistribution of bed stability down the sediment profile: EPS penetration down sediment profile. Journal of Geophysical Research: Biogeosciences, 122(12), 3113–3125. https://doi.org/10.1002/2017JG004050
Ciccazzo,, S., Esposito,, A., Borruso,, L., & Brusetti,, L. (2016). Microbial communities and primary succession in high altitude mountain environments. Annals of Microbiology, 66(1), 43–60. https://doi.org/10.1007/s13213-015-1130-1
Clifford,, N. J., Richards,, K. S., Brown,, R. A., & Lane,, S. N. (1995). Scales of variation of suspended sediment concentration and turbidity in a glacial meltwater stream. Geografiska Annaler: Series A, Physical Geography, 77(1–2), 45–65. https://doi.org/10.1080/04353676.1995.11880428
Cordier,, S., Adamson,, K., Delmas,, M., Calvet,, M., & Harmand,, D. (2017). Of ice and water: Quaternary fluvial response to glacial forcing. Quaternary Science Reviews, 166, 57–73. https://doi.org/10.1016/j.quascirev.2017.02.006
Crisp,, D. T., & Carling,, P. A. (1989). Observations on siting, dimensions and structure of salmonid redds. Journal of Fish Biology, 34(1), 119–134. https://doi.org/10.1111/j.1095-8649.1989.tb02962.x
Cullis,, J. D. S., Stanish,, L. F., & McKnight,, D. M. (2014). Diel flow pulses drive particulate organic matter transport from microbial mats in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resources Research, 50(1), 86–97. https://doi.org/10.1002/2013WR014061
Curran,, J. H., Loso,, M. G., & Williams,, H. B. (2017). Glacial conditioning of stream position and flooding in the braid plain of the Exit Glacier foreland, Alaska. Geomorphology, 293, 272–288. https://doi.org/10.1016/j.geomorph.2017.06.004
Dade,, W. B., Davis,, J. D., Nichols,, P. D., Nowell,, A. R. M., Thistle,, D., Trexler,, M. B., & White,, D. C. (1990). Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiology Journal, 8(1), 1–16. https://doi.org/10.1080/01490459009377874
Dawkins,, R. (1982). The extended phenotype. Oxford, England: Oxford University Press.
de Boer,, P. L. (1981). Mechanical effects of micro‐organisms on intertidal bedform migration. Sedimentology, 28(1), 129–132. https://doi.org/10.1111/j.1365-3091.1981.tb01670.x
de Winter,, I. L., Storms,, J. E. A., & Overeem,, I. (2012). Numerical modeling of glacial sediment production and transport during deglaciation. Geomorphology, 167–168, 102–114. https://doi.org/10.1016/j.geomorph.2012.05.023
Demars,, B. O. (2018). Hydrological pulses and burning of dissolved organic carbon by stream respiration. Limnology and Oceanography, 64(1), 406–421. https://doi.org/10.1002/lno.11048
Fang,, H., Shang,, Q., Chen,, M., & He,, G. (2014). Changes in the critical erosion velocity for sediment colonized by biofilm. Sedimentology, 61(3), 648–659. https://doi.org/10.1111/sed.12065
Finn,, D. S., Räsänen,, K., & Robinson,, C. T. (2010). Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession: Smaller glaciers, longer streams. Global Change Biology, 16(12), 3314–3326. https://doi.org/10.1111/j.1365-2486.2009.02160.x
Flemming,, B. W. (2002). Chapter six geographic distribution of muddy coasts. In T. Healy,, Y. Wang,, & J.‐A. Healy, (Eds.), Proceedings in marine science (pp. 99–201). Amsterdam: Elsevier. https://doi.org/10.1016/S1568-2692(02)80080-8
Flemming,, H., Neu,, T. R., & Wozniak,, D. J. (2007). The EPS matrix: The “house of biofilm cells”. Journal of Bacteriology, 189(22), 7945–7947. https://doi.org/10.1128/jb.00858-07
Flemming,, H., & Wingender,, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. https://doi.org/10.1038/nrmicro2415
Flemming,, H.‐C., Strathmann,, M., & Morales,, C. F. L. (2007). Microbial effects. In B. Westrich, & U. Förstner, (Eds.), Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach (pp. 343–378). Berlin Heidelberg: Springer‐Verlag. https://doi.org/10.1007/978-3-540-34785-9_9
Flemming,, H. C., Wingender,, J., Szewzyk,, U., Steinberg,, P., Rice,, S. A., & Kjelleberg,, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563. https://doi.org/10.1038/nrmicro.2016.94
Flemming,, H. C., & Würtz,, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 17(4), 247–260. https://doi.org/10.1038/s41579-019-0158-9
Fountain,, A. G. (1996). Effect of snow and firn hydrology on the physical and chemical characteristics of glacial runoff. Hydrological Processes, 10(4), 509–521. https://doi.org/10.1002/(SICI)1099-1085(199604)10:4%3C509::AID-HYP389%3E3.0.CO;2-3
Freeman,, C., & Lock,, M. A. (1995). The biofilm polysaccharide matrix: A buffer against changing organic substrate supply? Limnology and Oceanography, 40(2), 273–278. https://doi.org/10.4319/lo.1995.40.2.0273
Frey,, B., Bühler,, L., Schmutz,, S., Zumsteg,, A., & Furrer,, G. (2013). Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. Environmental Research Letters, 8(1), 015033. https://doi.org/10.1088/1748-9326/8/1/015033
Füreder,, L. (1999). High alpine streams: Cold habitats for insect larvae. In R. Margesin, & F. Schinner, (Eds.), Cold‐adapted organisms (pp. 181–196). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-06285-2_10
Gabbud,, C., Robinson,, C. T., & Lane,, S. N. (2019). Summer is in winter: Disturbance‐driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Science of the Total Environment, 650, 2164–2180. https://doi.org/10.1016/j.scitotenv.2018.09.180
Gerbersdorf,, S. U., Bittner,, R., Lubarsky,, H., Manz,, W., & Paterson,, D. M. (2009). Microbial assemblages as ecosystem engineers of sediment stability. Journal of Soils and Sediments, 9(6), 640–652. https://doi.org/10.1007/s11368-009-0142-5
Gerbersdorf,, S. U., Jancke,, T., Westrich,, B., & Paterson,, D. M. (2008). Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6(1), 57–69. https://doi.org/10.1111/j.1472-4669.2007.00120.x
Gerbersdorf,, S. U., Manz,, W., & Paterson,, D. M. (2008). The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments. FEMS Microbiology Ecology, 66(2), 282–294. https://doi.org/10.1111/j.1574-6941.2008.00586.x
Gerbersdorf,, S. U., & Wieprecht,, S. (2015). Biostabilization of cohesive sediments: Revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology, 13(1), 68–97. https://doi.org/10.1111/gbi.12115
Germanoski,, D., & Schumm,, S. A. (1993). Changes in braided river morphology resulting from aggradation and degradation. The Journal of Geology, 101(4), 451–466. https://doi.org/10.1086/648239
Gimbert,, F., Tsai,, V. C., Amundson,, J. M., Bartholomaus,, T. C., & Walter,, J. I. (2016). Subseasonal changes observed in subglacial channel pressure, size, and sediment transport: Subglacial hydrology from seismic noise. Geophysical Research Letters, 43(8), 3786–3794. https://doi.org/10.1002/2016GL068337
Grant,, J., & Gust,, G. (1987). Prediction of coastal sediment stability from photopigment content of mats of purple Sulphur bacteria. Nature, 330(6145), 244–246. https://doi.org/10.1038/330244a0
Gurnell,, A. (2014). Plants as river system engineers. Earth Surface Processes and Landforms, 39(1), 4–25. https://doi.org/10.1002/esp.3397
Gurnell,, A. M. (1987). Fluvial sediment yield from alpine, glacierized catchments. In A. M. Gurnell, & M. J. Clark, (Eds.), Glacio‐Fluvial Sediment Transfer: An Alpine Perspective (pp. 415–420). New York: John Wiley and Sons.
Gurnell,, A. M., & Petts,, G. E. (2002). Island‐dominated landscapes of large floodplain rivers, a European perspective. Freshwater Biology, 47(4), 581–600. https://doi.org/10.1046/j.1365-2427.2002.00923.x
Hall,, E. K., Maixner,, F., Franklin,, O., Daims,, H., Richter,, A., & Battin,, T. (2011). Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches. Ecosystems, 14(2), 261–273. https://doi.org/10.1007/s10021-010-9408-4
Hastings,, A., Byers,, J. E., Crooks,, J. A., Cuddington,, K., Jones,, C. G., Lambrinos,, J. G., … Wilson,, W. G. (2007). Ecosystem engineering in space and time. Ecology Letters, 10(2), 153–164. https://doi.org/10.1111/j.1461-0248.2006.00997.x
Heckmann,, T., McColl,, S., & Morche,, D. (2016). Retreating ice: Research in pro‐glacial areas matters. Earth Surface Processes and Landforms, 41(2), 271–276. https://doi.org/10.1002/esp.3858
Hodgkins,, R. (1996). Seasonal trend in suspended‐sediment transport from an Arctic glacier, and implications for drainage‐system structure. Annals of Glaciology, 22, 147–151. https://doi.org/10.3189/1996AoG22-1-147-151
Holland,, A. F., Zingmark,, R. G., & Dean,, J. M. (1974). Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. Marine Biology, 27(3), 191–196. https://doi.org/10.1007/BF00391943
Hotaling,, S., Finn,, D. S., Joseph Giersch,, J., Weisrock,, D. W., & Jacobsen,, D. (2017). Climate change and alpine stream biology: Progress, challenges, and opportunities for the future: Climate change and alpine stream biology. Biological Reviews, 92(4), 2024–2045. https://doi.org/10.1111/brv.12319
House,, R. A., & Boehne,, P. L. (1986). Effects of instream structures on salmonid habitat and populations in Tobe Creek, Oregon. North American Journal of Fisheries Management, 6(1), 38–46. https://doi.org/10.1577/1548-8659(1986)6%3C38:EOISOS%3E2.0.CO;2
Jackson,, E. L., Rowden,, A. A., Attrill,, M. J., Bossey,, S. J., & Jones,, M. B. (2001). The importance of seagrass beds as a habitat for fishery species. Oceanography and Marine Biology, 39, 269–304.
Johnson,, M. F., Reid,, I., Rice,, S. P., & Wood,, P. J. (2009). Stabilization of fine gravels by net‐spinning caddisfly larvae. Earth Surface Processes and Landforms, 34(3), 413–423. https://doi.org/10.1002/esp.1750
Jones,, C. G., Lawton,, J. H., & Shachak,, M. (1994). Organisms as ecosystem engineers. Oikos, 69(3), 373–386. https://doi.org/10.2307/3545850
Jones,, C. G., Lawton,, J. H., & Shachak,, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78(7), 1946–1957. https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
Kaštovská,, K., Elster,, J., Stibal,, M., & Šantrůčková,, H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecology, 50(3), 396–407. https://doi.org/10.1007/s00248-005-0246-4
Kulessa,, B., Booth,, A. D., Hobbs,, A., & Hubbard,, A. L. (2008). Automated monitoring of subglacial hydrological processes with ground‐penetrating radar (GPR) at high temporal resolution: Scope and potential pitfalls. Geophysical Research Letters, 35(24). https://doi.org/10.1029/2008GL035855
Lane,, S. N., Bakker,, M., Gabbud,, C., Micheletti,, N., & Saugy,, J.‐N. (2017). Sediment export, transient landscape response and catchment‐scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 277, 210–227. https://doi.org/10.1016/j.geomorph.2016.02.015
Lane,, S. N., & Nienow,, P. W. (2019). Decadal‐scale climate forcing of Alpine glacial hydrological systems. Water Resources Research. https://doi.org/10.1029/2018WR024206
Lane,, S. N., Richards,, K. S., & Chandler,, J. H. (1996). Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel. Geomorphology, 15(1), 1–15. https://doi.org/10.1016/0169-555X(95)00113-J
Lavandier,, P., & Décamps,, H. (1984). Estaragne. In B. A. Whitton (Ed.) Ecology of Europeanrivers (pp. 237–264). Oxford: Blackwell Scientific Publications.
Lawton,, J. H., & Jones,, C. G. (1993). Linking species and ecosystem perspectives. Trends in Ecology %26 Evolution, 8(9), 311–313. https://doi.org/10.1016/0169-5347(93)90236-I
Le Hir,, P., Monbet,, Y., & Orvain,, F. (2007). Sediment erodability in sediment transport modelling: Can we account for biota effects? Continental Shelf Research, 27(8), 1116–1142. https://doi.org/10.1016/j.csr.2005.11.016
Leopold,, L. B., Wolman,, M. G., & Miller,, J. P. (1964). Fluvial processes in geomorphology. Retrieved from https://pubs.er.usgs.gov/publication/70185663
Mair,, D., Nienow,, P., Sharp,, M. J., Wohlleben,, T., & Willis,, I. (2002). Influence of subglacial drainage system evolution on glacier surface motion: Haut Glacier d`Arolla, Switzerland. Journal of Geophysical Research, 107(B8). https://doi.org/10.1029/2001JB000514
Maizels,, J. (2002). 9 – Sediments and landforms of modern proglacial terrestrial environments. In J. Menzies, (Ed.), Modern and past glacial environments (pp. 279–316). Oxford: Butterworth‐Heinemann. https://doi.org/10.1016/B978-075064226-2/50012-X
Malard,, F., Tockner,, K., & Ward,, J. V. (1999). Shifting dominance of subcatchment water sources and flow paths in a glacial floodplain, Val Roseg, Switzerland. Arctic, Antarctic, and Alpine Research, 31(2), 135–150. https://doi.org/10.1080/15230430.1999.12003291
Mao,, L., & Carrillo,, R. (2017). Temporal dynamics of suspended sediment transport in a glacierized Andean basin. Geomorphology, 287, 116–125. https://doi.org/10.1016/j.geomorph.2016.02.003
Mao,, L., Comiti,, F., Carrillo,, R., & Penna,, D. (2019). Sediment transport in proglacial rivers. In T. Heckmann, & D. Morche, (Eds.), Geomorphology of proglacial systems (pp. 199–217). Cham: Springer. https://doi.org/10.1007/978-3-319-94184-4_12
Mariotti,, G., & Fagherazzi,, S. (2012). Modeling the effect of tides and waves on benthic biofilms. Journal of Geophysical Research: Biogeosciences, 117(G4). https://doi.org/10.1029/2012JG002064
Marren,, P. M. (2002). Glacier margin fluctuations, Skaftafellsjökull, Iceland: Implications for Sandur evolution. Boreas, 31(1), 75–81. https://doi.org/10.1111/j.1502-3885.2002.tb01057.x
Marren,, P. M. (2005). Magnitude and frequency in proglacial rivers: A geomorphological and sedimentological perspective. Earth‐Science Reviews, 70(3), 203–251. https://doi.org/10.1016/j.earscirev.2004.12.002
Marren,, P. M., & Toomath,, S. C. (2013). Fluvial adjustments in response to glacier retreat: Skaftafellsjökull, Iceland. Boreas, 42(1), 57–70. https://doi.org/10.1111/j.1502-3885.2012.00275.x
Marren,, P. M., & Toomath,, S. C. (2014). Channel pattern of proglacial rivers: Topographic forcing due to glacier retreat. Earth Surface Processes and Landforms, 39(7), 943–951. https://doi.org/10.1002/esp.3545
Miller,, H. R., & Lane,, S. N. (2019). Biogeomorphic feedbacks and the ecosystem engineering of recently deglaciated terrain. Progress in Physical Geography: Earth and Environment, 43(1), 24–45. https://doi.org/10.1177/0309133318816536
Milner,, A. M., & Petts,, G. E. (1994). Glacial rivers: Physical habitat and ecology. Freshwater Biology, 32(2), 295–307. https://doi.org/10.1111/j.1365-2427.1994.tb01127.x
Montgomery,, D. R., Buffington,, J. M., Peterson,, N. P., Schuett‐Hames,, D., & Quinn,, T. P. (1996). Stream‐bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility and embryo survival. Canadian Journal of Fisheries and Aquatic Sciences, 53(5), 1061–1070. https://doi.org/10.1139/f96-028
Moore,, J. W. (2006). Animal ecosystem engineers in streams. Bioscience, 56(3), 237–246. https://doi.org/10.1641/0006-3568(2006)056[0237:AEEIS]2.0.CO;2
Neumann,, A. C., Gebelein,, C. D., & Scoffin,, T. P. (1970). The composition, structure and erodability of subtidal mats, Abaco, Bahamas. Journal of Sedimentary Research, 40(1).
Neumeier,, U., Lucas,, C. H., & Collins,, M. (2006). Erodibility and erosion patterns of mudflat sediments investigated using an annular flume. Aquatic Ecology, 40(4), 543–554. https://doi.org/10.1007/s10452-004-0189-8
Niederdorfer,, R., Peter,, H., & Battin,, T. J. (2016). Attached biofilms and suspended aggregates are distinct microbial lifestyles emanating from differing hydraulics. Nature Microbiology, 1(12). https://doi.org/10.1038/nmicrobiol.2016.178
Nienow,, P., Sharp,, M., & Willis,, I. (1998). Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d`Arolla, Switzerland. Earth Surface Processes and Landforms, 23(9), 825–843. https://doi.org/10.1002/(SICI)1096-9837(199809)23:9%3C825::AID-ESP893%3E3.0.CO;2-2
Paterson,, D. M. (1989). Short‐term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnology and Oceanography, 34(1), 223–234. https://doi.org/10.4319/lo.1989.34.1.0223
Paterson,, D. M. (1994). Microbiological mediation of sediment structure and behaviour. In L. J. Stal, & P. Caumette, (Eds.), Microbial mats (pp. 97–109). Berlin Heidelberg: Springer.
Paterson,, D. M., & Daborn,, G. R. (1991). Sediment stabilisation by biological action: Significance for coastal engineering. Developments in Coastal Engineering, 111–119.
Perolo,, P., Bakker,, M., Gabbud,, C., Moradi,, G., Rennie,, C., & Lane,, S. N. (2019). Subglacial sediment production and snout marginal ice uplift during the late ablation season of a temperate valley glacier. Earth Surface Processes and Landforms, 44(5), 1117–1136. https://doi.org/10.1002/esp.4562
Pivato,, M., Carniello,, L., Moro,, I., & D`Odorico,, P. (2019). On the feedback between water turbidity and microphytobenthos growth in shallow tidal environments. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.4567
Polvi,, L. E., & Sarneel,, J. M. (2018). Ecosystem engineers in rivers: An introduction to how and where organisms create positive biogeomorphic feedbacks. WIREs Water, 5(2), e1271. https://doi.org/10.1002/wat2.1271
Raab,, T., Krümmelbein,, J., Schneider,, A., Gerwin,, W., Maurer,, T., & Naeth,, M. A. (2012). Initial ecosystem processes as key factors of landscape development—A review. Physical Geography, 33(4), 305–343. https://doi.org/10.2747/0272-3646.33.4.305
Reichman,, O. J., & Seabloom,, E. W. (2002a). Ecosystem engineering: A trivialized concept?: Response from Reichman and Seabloom. Trends in Ecology %26 Evolution, 17(7), 308. https://doi.org/10.1016/S0169-5347(02)02512-0
Reichman,, O. J., & Seabloom,, E. W. (2002b). The role of pocket gophers as subterranean ecosystem engineers. Trends in Ecology %26 Evolution, 17(1), 44–49. https://doi.org/10.1016/S0169-5347(01)02329-1
Richards,, K. S. (1982). Rivers: Form and process in alluvial channels. Retrieved from https://trove.nla.gov.au/version/31361403
Riihimaki,, C. A., MacGregor,, K. R., Anderson,, R. S., Anderson,, S. P., & Loso,, M. G. (2005). Sediment evacuation and glacial erosion rates at a small alpine glacier. Journal of Geophysical Research, 110(F3). https://doi.org/10.1029/2004JF000189
Rothman,, D. H., & Forney,, D. C. (2008). Response to comment on “physical model for the decay and preservation of marine organic carbon”. Science, 319(5870), 1616–1616. https://doi.org/10.1126/science.1148678
Roussel,, E., Marren,, P. M., Cossart,, E., Toumazet,, J.‐P., Chenet,, M., Grancher,, D., & Jomelli,, V. (2018). Incision and aggradation in proglacial rivers: Post‐little ice age long‐profile adjustments of southern Iceland outwash plains. Land Degradation %26 Development, 29(10), 3753–3771. https://doi.org/10.1002/ldr.3127
Rydgren,, K., Halvorsen,, R., Töpper,, J. P., & Njøs,, J. M. (2014). Glacier foreland succession and the fading effect of terrain age. Journal of Vegetation Science, 25(6), 1367–1380. https://doi.org/10.1111/jvs.12184
Schmidt,, H., Thom,, M., King,, L., Wieprecht,, S., & Gerbersdorf,, S. U. (2016). The effect of seasonality upon the development of lotic biofilms and microbial biostabilisation. Freshwater Biology, 61(6), 963–978. https://doi.org/10.1111/fwb.12760
Schmidt,, S. K., Reed,, S. C., Nemergut,, D. R., Stuart Grandy,, A., Cleveland,, C. C., Weintraub,, M. N., … Martin,, A. M. (2008). The earliest stages of ecosystem succession in high‐elevation (5000 metres above sea level), recently deglaciated soils. Proceedings of the Royal Society B: Biological Sciences, 275(1653), 2793–2802. https://doi.org/10.1098/rspb.2008.0808
Schulz,, S., Brankatschk,, R., Dümig,, A., Kögel‐Knabner,, I., Schloter,, M., & Zeyer,, J. (2013). The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, 10(6), 3983–3996. https://doi.org/10.5194/bg-10-3983-2013
Schumm,, S. A., & Lichty,, R. W. (1965). Time, space, and causality in geomorphology. American Journal of Science, 263(2), 110–119. https://doi.org/10.2475/ajs.263.2.110
Scoffin,, T. P. (1970). The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini lagoon, Bahamas. Journal of Sedimentary Research, 40(1).
Shields,, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung.
Simon,, A., & Collison,, A. J. C. (2002). Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms, 27(5), 527–546. https://doi.org/10.1002/esp.325
Singer,, G., Besemer,, K., Schmitt‐Kopplin,, P., Hödl,, I., & Battin,, T. J. (2010). Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms. PLoS One, 5(4), e9988. https://doi.org/10.1371/journal.pone.0009988
Soluk,, D. A., & Richardson,, J. S. (1997). The role of stoneflies in enhancing growth of trout: A test of the importance of predator–predator facilitation within a stream community. Oikos, 80(2), 214–219. https://doi.org/10.2307/3546588
Spears,, B. M., Saunders,, J. E., Davidson,, I., & Paterson,, D. M. (2008). Microalgal sediment biostabilisation along a salinity gradient in the Eden estuary, Scotland: Unravelling a paradox. Marine and Freshwater Research, 59(4), 313–321. https://doi.org/10.1071/MF07164
Stal,, L. J. (2003). Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiology Journal, 20(5), 463–478. https://doi.org/10.1080/713851126
Statzner,, B., Arens,, M.‐F., Champagne,, J.‐Y., Morel,, R., & Herouin,, E. (1999). Silk‐producing stream insects and gravel erosion: Significant biological effects on critical shear stress. Water Resources Research, 35(11), 3495–3506. https://doi.org/10.1029/1999WR900196
Stoodley,, P., Sauer,, K., Davies,, D. G., & Costerton,, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56(1), 187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705
Stott,, T., Nuttall,, A.‐M., & Biggs,, E. (2014). Observed run‐off and suspended sediment dynamics from a minor glacierized basin in south‐West Greenland. Geografisk Tidsskrift‐Danish Journal of Geography, 114(2), 93–108. https://doi.org/10.1080/00167223.2013.862911
Swift,, D. A., Nienow,, P. W., Hoey,, T. B., & Mair,, D. W. F. (2005). Seasonal evolution of runoff from Haut Glacier d`Arolla, Switzerland and implications for glacial geomorphic processes. Journal of Hydrology, 309(1), 133–148. https://doi.org/10.1016/j.jhydrol.2004.11.016
Swift,, D. A., Nienow,, P. W., Spedding,, N., & Hoey,, T. B. (2002). Geomorphic implications of subglacial drainage configuration: Rates of basal sediment evacuation controlled by seasonal drainage system evolution. Sedimentary Geology, 149(1–3), 5–19. https://doi.org/10.1016/S0037-0738(01)00241-X
Thom,, M., Schmidt,, H., Gerbersdorf,, S. U., & Wieprecht,, S. (2015). Seasonal biostabilization and erosion behavior of fluvial biofilms under different hydrodynamic and light conditions. International Journal of Sediment Research, 30(4), 273–284. https://doi.org/10.1016/j.ijsrc.2015.03.015
Thompson,, A. (1988). Historical development of the proglacial landforms of Svinafellsjokull and Skaftafellsjokull, southeast Iceland. Jökull, 38, 17–30.
Thompson,, A., & Jones,, A. (1986). Rates and causes of proglacial river terrace formation in Southeast Iceland: An application of lichenometric dating techniques. Boreas, 15(3), 231–246. https://doi.org/10.1111/j.1502-3885.1986.tb00928.x
Tolhurst,, T. J., Gust,, G., & Paterson,, D. M. (2002). The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability. In J. C. Winterwerp, & C. Kranenburg, (Eds.), Proceedings in marine science (pp. 409–425). Amsterdam: Elsavier https://doi.org/10.1016/S1568-2692(02)80030-4
Uehlinger,, U., Malard,, F., & Ward,, J. V. (2003). Thermal patterns in the surface waters of a glacial river corridor (Val Roseg, Switzerland). Freshwater Biology, 48(2), 284–300. https://doi.org/10.1046/j.1365-2427.2003.01000.x
Valentine,, K., Mariotti,, G., & Fagherazzi,, S. (2014). Repeated erosion of cohesive sediments with biofilms. Advances in Geosciences, 39, 9–14. https://doi.org/10.5194/adgeo-39-9-2014
Van Rijn,, L. C. (2007). Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed‐load transport. Journal of Hydraulic Engineering, 133(6), 649–667. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649)
Vignaga,, E. (2012). The effect of biofilm colonization on the stability of non‐cohesive sediments. (Doctoral dissertation). University of Glasgow.
Ward,, J. V. (1994). Ecology of alpine streams. Freshwater Biology, 32(2), 277–294. https://doi.org/10.1111/j.1365-2427.1994.tb01126.x
Ward,, J. V., Malard,, F., Tockner,, K., & Uehlinger,, U. (1999). Influence of ground water on surface water conditions in a glacial flood plain of the Swiss Alps. Hydrological Processes, 13(3), 277–293. https://doi.org/10.1002/(SICI)1099-1085(19990228)13:3%3C277::AID-HYP738%3E3.0.CO;2-N
Widdows,, J., Brinsley,, M. D., Salkeld,, P. N., & Lucas,, C. H. (2000). Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Marine Ecology Progress Series, 194, 23–37. https://doi.org/10.3354/meps194023
Wilcock,, P. R., Kenworthy,, S. T., & Crowe,, J. C. (2001). Experimental study of the transport of mixed sand and gravel. Water Resources Research, 37(12), 3349–3358. https://doi.org/10.1029/2001WR000683
Wright,, J. P., & Jones,, C. G. (2004). Predicting effects of ecosystem engineers on patch‐scale species richness from primary productivity. Ecology, 85(8), 2071–2081. https://doi.org/10.1890/02-8018
Yallop,, M. L., de Winder,, B., Paterson,, D. M., & Stal,, L. J. (1994). Comparative structure, primary production and biogenic stabilization of cohesive and non‐cohesive marine sediments inhabited by microphytobenthos. Estuarine, Coastal and Shelf Science, 39(6), 565–582. https://doi.org/10.1016/S0272-7714(06)80010-7
Zika,, U., & Peter,, A. (2002). The introduction of woody debris into a channelized stream: Effect on trout populations and habitat. River Research and Applications, 18(4), 355–366. https://doi.org/10.1002/rra.677
Zumsteg,, A., Luster,, J., Göransson,, H., Smittenberg,, R. H., Brunner,, I., Bernasconi,, S. M., … Frey,, B. (2012). Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microbial Ecology, 63(3), 552–564. https://doi.org/10.1007/s00248-011-9991-8