Agam,, N., & Berliner,, P. R. (2006). Dew formation and water vapor adsorption in semi‐arid environments—A review. Journal of Arid Environments, 65(4), 572–590. https://doi.org/10.1016/j.jaridenv.2005.09.004
Barradas,, V. L., & Glez‐Medellín,, M. G. (1999). Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico. International Journal of Biometeorology, 43(1), 1–7. https://doi.org/10.1007/s004840050109
Belnap,, J., Büdel,, B., & Lange,, O. L. (2003). Biological soil crusts: Characteristics and distribution. In J. Belnap, & O. L. Lange, (Eds.), Biological soil crusts: Structure, function, and management (pp. 3–30). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ben‐Asher,, J., Alpert,, P., & Ben‐Zvi,, A. (2010). Dew is a major factor affecting vegetation water use efficiency rather than a source of water in the eastern Mediterranean area. Water Resources Research, 46, W10532. https://doi.org/10.1029/2008WR007484
Berdahl,, P., & Fromberg,, R. (1982). The thermal radiance of clear skies. Solar Energy, 29(4), 299–314. https://doi.org/10.1016/0038-092X(82)90245-6
Berger,, X., Bathiebo,, J., Kieno,, F., & Awanou,, C. N. (1992). Clear sky radiation as a function of altitude. Renewable Energy, 2(2), 139–157. https://doi.org/10.1016/0960-1481(92)90100-H
Beysens,, D. (1995). The formation of dew. Atmospheric Research, 39(1), 215–237. https://doi.org/10.1016/0169-8095(95)00015-J
Beysens,, D. (2006). Dew nucleation and growth. Comptes Rendus Physique, 7(9), 1082–1100. https://doi.org/10.1016/j.crhy.2006.10.020
Beysens,, D. (2016). Estimating dew yield worldwide from a few meteo data. Atmospheric Research, 167, 146–155. https://doi.org/10.1016/j.atmosres.2015.07.018
Beysens,, D., Muselli,, M., Nikolayev,, V., Narhe,, R., & Milimouk,, I. (2005). Measurement and modelling of dew in Island, coastal and alpine areas. Atmospheric Research, 73(1), 1–22. https://doi.org/10.1016/j.atmosres.2004.05.003
Bliss,, R. W. (1961). Atmospheric radiation near the surface of the ground: A summary for engineers. Solar Energy, 5(3), 103–120. https://doi.org/10.1016/0038-092X(61)90053-6
Cable,, J. M., Ogle,, K., Lucas,, R. W., Huxman,, T. E., Loik,, M. E., Smith,, S. D., … van Gestel,, N. C. (2011). The temperature responses of soil respiration in deserts: A seven desert synthesis. Biogeochemistry, 103(1), 71–90. https://doi.org/10.1007/s10533-010-9448-z
Crowe,, M. J., Melugin Coakley,, S., & Emge,, R. G. (1978). Forecasting dew duration at Pendleton, Oregon, using simple weather observations. Journal of Applied Meteorology, 17(10), 1482–1487. https://doi.org/10.1175/1520-0450(1978)017%3C1482:FDDAPO%3E2.0.CO;2
Daamen,, C. C., Simmonds,, L. P., Wallace,, J. S., Laryea,, K. B., & Sivakumar,, M. V. K. (1993). Use of microlysimeters to measure evaporation from sandy soils. Agricultural and Forest Meteorology, 65(3), 159–173. https://doi.org/10.1016/0168-1923(93)90002-Y
Dalla Marta,, A., Magarey,, R. D., Martinelli,, L., & Orlandini,, S. (2007). Leaf wetness duration in sunflower (Helianthus annuus): Analysis of observations, measurements and simulations. European Journal of Agronomy, 26(3), 310–316. https://doi.org/10.1016/j.eja.2006.11.002
Danin,, A., & Garty,, J. (1983). Distribution of cyanobacteria and lichens on hillsides of the Negev highlands and their impact on biogenic weathering. Zeitschrift für Geomorphologie, 27(4), 423–444.
Dawson,, T. E., & Goldsmith,, G. R. (2018). The value of wet leaves. New Phytologist, 219(4), 1156–1169. http://doi.org/10.1111/nph.15307
Duvdevani,, S. (1947). An optical method of dew estimation. Quarterly Journal of the Royal Meteorological Society, 73(317–318), 282–296. https://doi.org/10.1002/qj.49707331705
Eriksson,, P. G., Nixon,, N., Snyman,, C. P., & Bothma,, J.d. (1989). Ellipsoidal parabolic dune patches in the southern Kalahari Desert. Journal of Arid Environments, 16(2), 111–124. https://doi.org/10.1016/S0140-1963(18)31019-X
Fang,, J. (2013). An overview on eco‐hydrological effects of condensation water. Journal of Desert Research, 32(2), 583–589.
Fischer,, T., Veste,, M., Bens,, O., & Hüttl,, R. F. (2012). Dew formation on the surface of biological soil crusts in central European sand ecosystems. Biogeosciences, 9(11), 4621–4628. https://doi.org/10.5194/bg-9-4621-2012
Francl,, L. J., & Panigrahi,, S. (1997). Artificial neural network models of wheat leaf wetness. Agricultural and Forest Meteorology, 88(1), 57–65. https://doi.org/10.1016/S0168-1923(97)00051-8
Gandhidasan,, P., & Abualhamayel,, H. I. (2005). Modeling and testing of a dew collection system. Desalination, 180(1), 47–51. https://doi.org/10.1016/j.desal.2004.11.085
Garratt,, J. R., & Segal,, M. (1988). On the contribution of atmospheric moisture to dew formation. Boundary‐Layer Meteorology, 45(3), 209–236. https://doi.org/10.1007/BF01066671
Gerlein‐Safdi,, C., Koohafkan,, M. C., Chung,, M., Rockwell,, F. E., Thompson,, S., & Caylor,, K. K. (2018). Dew deposition suppresses transpiration and carbon uptake in leaves. Agricultural and Forest Meteorology, 259, 305–316. https://doi.org/10.1016/j.agrformet.2018.05.015
Giorgi,, F., Coppola,, E., & Raffaele,, F. (2014). A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations. Journal of Geophysical Research: Atmospheres, 119(20), 11695–11708. https://doi.org/10.1002/2014JD022238
Giorgi,, F., Coppola,, E., Raffaele,, F., Diro,, G. T., Fuentes‐Franco,, R., Giuliani,, G., … Torma,, C. (2014). Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Climatic Change, 125(1), 39–51. https://doi.org/10.1007/s10584-014-1117-0
Giorgi,, F., Raffaele,, F., & Coppola,, E. (2019). The response of precipitation characteristics to global warming from climate projections. Earth System Dynamic, 10(1), 73–89. https://doi.org/10.5194/esd-10-73-2019
Gleason,, M., Taylor,, S., Loughin,, T., & Koehler,, K. (1994). Development and validation of an empirical model to estimate the duration of dew periods. Plant Disease (USA), 78(10), 1011–1016.
Golubic,, S., Friedmann,, E. I., & Schneider,, J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Research, 51(2), 475–478. https://doi.org/10.1306/212F7CB6-2B24-11D7-8648000102C1865D
Guo,, X. N., Zha,, T. S., Jia,, X., Wu,, B., Feng,, W., Xie,, J., … Peltola,, H. (2016). Dynamics of dew in a cold desert‐shrub ecosystem and its abiotic controls. Atmosphere, 7(3), 32. https://doi.org/10.3390/atmos7030032
Hanks,, R. J., & Woodruff,, N. P. (1958). Influence of wind on water vapor transfer through soil, gravel, and straw mulches. Soil Science, 86(3), 160–164. http://doi.org/10.1097/00010694-195809000-00010
Hao,, X. M., Li,, C., Guo,, B., Ma,, J. X., Ayup,, M., & Chen,, Z. S. (2012). Dew formation and its long‐term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China. Journal of Hydrology, 472‐473, 90–98. https://doi.org/10.1016/j.jhydrol.2012.09.015
Henderson‐Sellers,, A. (1992). Continental cloudiness changes this century. GeoJournal, 27(3), 255–262. https://doi.org/10.1007/BF02482666
Henschel,, J. R., & Seely,, M. K. (2008). Ecophysiology of atmospheric moisture in the Namib Desert. Atmospheric Research, 87(3), 362–368. https://doi.org/10.1016/j.atmosres.2007.11.015
Hill,, A. J., Dawson,, T. E., Shelef,, O., & Rachmilevitch,, S. (2015). The role of dew in Negev Desert plants. Oecologia, 178(2), 317–327. https://doi.org/10.1007/s00442-015-3287-5
HMSO. (1991). Meteorological glossary. Meteorological Office (p. 335). London: HMSO.
Iziomon,, M. G., Mayer,, H., & Matzarakis,, A. (2003). Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. Journal of Atmospheric and Solar‐Terrestrial Physics, 65(10), 1107–1116. https://doi.org/10.1016/j.jastp.2003.07.007
Jacobs,, A. F. G., Heusinkveld,, B. G., & Berkowicz,, S. M. (1999). Dew deposition and drying in a desert system: A simple simulation model. Journal of Arid Environments, 42(3), 211–222. https://doi.org/10.1006/jare.1999.0523
Jacobs,, A. F. G., Heusinkveld,, B. G., & Berkowicz,, S. M. (2000). Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. International Journal of Biometeorology, 43(4), 184–190. https://doi.org/10.1007/s004840050007
Jansen,, A. J. M., Eysink,, F. T. W., & Maas,, C. (2001). Hydrological processes in a Cirsio‐Molinietum fen meadow: Implications for restoration. Ecological Engineering, 17(1), 3–20. https://doi.org/10.1016/S0925-8574(00)00129-4
Jia,, R. L., Li,, X. R., Liu,, L. C., Pan,, Y. X., Gao,, Y. H., & Wei,, Y. P. (2014). Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China. Journal of Hydrology, 519, 2341–2349. https://doi.org/10.1016/j.jhydrol.2014.10.031
Jia,, Z., Zhao,, Z., Zhang,, Q., & Wu,, W. (2019). Dew yield and its influencing factors at the western edge of Gurbantunggut Desert, China. Water, 11(4), 733. https://doi.org/10.3390/w11040733
Jones,, P. A., & Henderson‐Sellers,, A. (1992). Historical records of cloudiness and sunshine in Australia. Journal of Climate, 5(3), 260–267. https://doi.org/10.1175/1520-0442(1992)005%3C0260:HROCAS%3E2.0.CO;2
Kappen,, L., Lange,, O., Schulze,, E., Buschbom,, U., & Evenari,, M. (1980). Ecophysiological investigations on lichens of the Negev Desert. VII. The influence of the habitat exposure on dew imbibition and photosynthetic productivity. Flora; Morphologie, Geobotanik, Oekophysiologie, 169(2/3), 216–229.
Kaseke,, K. F., Mills,, A. J., Esler,, K., Henschel,, J., Seely,, M. K., & Brown,, R. (2012). Spatial variation of “non‐rainfall” water input and the effect of mechanical soil crusts on input and evaporation. Pure and Applied Geophysics, 169(12), 2217–2229. https://doi.org/10.1007/s00024-012-0469-5
Kaseke,, K. F., Wang,, L., & Seely,, M. K. (2017). Nonrainfall water origins and formation mechanisms. Science Advances, 3(3), e1603131. https://doi.org/10.1126/sciadv.1603131
Kidron,, G. J. (1998). A simple weighing method for dew and fog measurements. Weather, 53(12), 428–433. https://doi.org/10.1002/j.1477-8696.1998.tb06362.x
Kidron,, G. J. (1999). Altitude dependent dew and fog in the Negev Desert, Israel. Agricultural and Forest Meteorology, 96, 1), 1–1), 8. https://doi.org/10.1016/S0168-1923(99)00043-X
Kidron,, G. J. (2000a). Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev highlands, Israel. Atmospheric Research, 55(3), 257–270. https://doi.org/10.1016/S0169-8095(00)00063-6
Kidron,, G. J. (2000b). Dew moisture regime of endolithic and epilithic lichens inhabiting limestone cobbles and rock outcrops, Negev highlands, Israel. Flora, 195(2), 146–153. https://doi.org/10.1016/S0367-2530(17)30962-3
Kidron,, G. J. (2005). Angle and aspect dependent dew and fog precipitation in the Negev Desert. Journal of Hydrology, 301(1), 66–74. https://doi.org/10.1016/j.jhydrol.2004.06.029
Kidron,, G. J. (2010). The effect of substrate properties, size, position, sheltering and shading on dew: An experimental approach in the Negev Desert. Atmospheric Research, 98(2), 378–386. https://doi.org/10.1016/j.atmosres.2010.07.015
Kidron,, G. J. (2019a). Biocrust research: A critical view on eight common hydrological‐related paradigms and dubious theses. Ecohydrology, 12(2), e2061. https://doi.org/10.1002/eco.2061
Kidron,, G. J. (2019b). The dual effect of sand‐covered biocrusts on annual plants: Increasing cover but reducing individual plant biomass and fecundity. Catena, 182, 104120. https://doi.org/10.1016/j.catena.2019.104120
Kidron,, G. J., Barzilay,, E., & Sachs,, E. (2000). Microclimate control upon sand microbiotic crusts, western Negev Desert, Israel. Geomorphology, 36(1), 1–18. https://doi.org/10.1016/S0169-555X(00)00043-X
Kidron,, G. J., Herrnstadt,, I., & Barzilay,, E. (2002). The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. Journal of Arid Environments, 52(4), 517–533. https://doi.org/10.1006/jare.2002.1014
Kidron,, G. J., & Kronenfeld,, R. (2017). Assessing the effect of micro‐lysimeters on NRWI: Do micro‐lysimeters adequately represent the water input of natural soil? Journal of Hydrology, 548, 382–390. https://doi.org/10.1016/j.jhydrol.2017.03.005
Kidron,, G. J., & Starinsky,, A. (2019). Measurements and ecological implications of non‐rainfall water in desert ecosystems—A review. Ecohydrology, 12(6), e2121. https://doi.org/10.1002/eco.2121
Kidron,, G. J., Starinsky,, A., & Yaalon,, D. H. (2014). Cyanobacteria are confined to dewless habitats within a dew desert: Implications for past and future climate change for lithic microorganisms. Journal of Hydrology, 519, 3606–3614. https://doi.org/10.1016/j.jhydrol.2014.11.010
Kidron,, G. J., & Temina,, M. (2013). The effect of dew and fog on lithic lichens along an altitudinal gradient in the Negev Desert. Geomicrobiology Journal, 30(4), 281–290. https://doi.org/10.1080/01490451.2012.672542
Kidron,, G. J., Temina,, M., & Starinsky,, A. (2011). An investigation of the role of water (rain and dew) in controlling the growth form of lichens on cobbles in the Negev Desert. Geomicrobiology Journal, 28(4), 335–346. https://doi.org/10.1080/01490451.2010.501707
Lange,, O. L., Geiger,, I. L., & Schulze,, E. D. (1977). Ecophysiological investigations on lichens of the Negev Desert. Oecologia, 28(3), 247–259. https://doi.org/10.1007/BF00751603
Lange,, O. L., Kidron,, G. J., Budel,, B., Meyer,, A., Kilian,, E., & Abeliovich,, A. (1992). Taxonomic composition and photosynthetic characteristics of the biological soil crusts` covering sand dunes in the western Negev Desert. Functional Ecology, 6(5), 519–527. http://doi.org/10.2307/2390048
Lekouch,, I., Lekouch,, K., Muselli,, M., Mongruel,, A., Kabbachi,, B., & Beysens,, D. (2012). Rooftop dew, fog and rain collection in Southwest Morocco and predictive dew modeling using neural networks. Journal of Hydrology, 448‐449, 60–72. https://doi.org/10.1016/j.jhydrol.2012.04.004
Lhomme,, J.‐P., & Francisco Jimenez,, O. (1992). Estimating dew duration on banana and plantain leaves from standard meteorological observations. Agricultural and Forest Meteorology, 62(3), 263–274. https://doi.org/10.1016/0168-1923(92)90018-Y
Li,, X. Y. (2002). Effects of gravel and sand mulches on dew deposition in the semiarid region of China. Journal of Hydrology, 260(1), 151–160. https://doi.org/10.1016/S0022-1694(01)00605-9
Madeira,, A. C., Kim,, K. S., Taylor,, S. E., & Gleason,, M. L. (2002). A simple cloud‐based energy balance model to estimate dew. Agricultural and Forest Meteorology, 111(1), 55–63. https://doi.org/10.1016/S0168-1923(02)00004-7
Maestre‐Valero,, J. F., Martínez‐Alvarez,, V., Baille,, A., Martín‐Górriz,, B., & Gallego‐Elvira,, B. (2011). Comparative analysis of two polyethylene foil materials for dew harvesting in a semi‐arid climate. Journal of Hydrology, 410(1), 84–91. https://doi.org/10.1016/j.jhydrol.2011.09.012
Maphangwa,, K. W., Musil,, C. F., Raitt,, L., & Zedda,, L. (2012). Differential interception and evaporation of fog, dew and water vapour and elemental accumulation by lichens explain their relative abundance in a coastal desert. Journal of Arid Environments, 82, 71–80. https://doi.org/10.1016/j.jaridenv.2012.02.003
Matimati,, I., Musil,, C. F., Raitt,, L., & February,, E. (2013). Non rainfall moisture interception by dwarf succulents and their relative abundance in an inland arid South African ecosystem. Ecohydrology, 6(5), 818–825. https://doi.org/10.1002/eco.1304
Morin,, L., Auld,, B. A., & Brown,, J. F. (1993). Host range of Puccinia xanthii and postpenetration development on Xanthium occidentale. Canadian Journal of Botany, 71(7), 959–965. https://doi.org/10.1139/b93-108
MunnÉ‐Bosch,, S., NoguÉS,, S., & Alegre,, L. (1999). Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions. New Phytologist, 144(1), 109–119. https://doi.org/10.1046/j.1469-8137.1999.00490.x
Muselli,, M., Beysens,, D., Marcillat,, J., Milimouk,, I., Nilsson,, T., & Louche,, A. (2002). Dew water collector for potable water in Ajaccio (Corsica Island, France). Atmospheric Research, 64(1), 297–312. https://doi.org/10.1016/S0169-8095(02)00100-X
Nikolayev,, V. S., Beysens,, D., Gioda,, A., Milimouka,, I., Katiushin,, E., & Morel,, J. P. (1996). Water recovery from dew. Journal of Hydrology, 182(1), 19–35. https://doi.org/10.1016/0022-1694(95)02939-7
Nilsson,, T. M. J., Vargas,, W. E., Niklasson,, G. A., & Granqvist,, C. G. (1994). Condensation of water by radiative cooling. Renewable Energy, 5(1), 310–317. https://doi.org/10.1016/0960-1481(94)90388-3
Ninari,, N., & Berliner,, P. R. (2002). The role of dew in the water and heat balance of bare loess soil in the Negev Desert: Quantifying the actual dew deposition on the soil surface. Atmospheric Research, 64(1–4), 323–334. https://doi.org/10.1016/S0169-8095(02)00102-3
Oke,, T. R. (2002). Boundary layer climates (Second edition), Oxford: . Taylor %26 Francis.
Pan,, Y. X., Wang,, X. P., & Zhang,, Y. F. (2010). Dew formation characteristics in a revegetation‐stabilized desert ecosystem in Shapotou area, Northern China. Journal of Hydrology, 387(3), 265–272. https://doi.org/10.1016/j.jhydrol.2010.04.016
Pan,, Y. X., Wang,, X. P., Zhang,, Y. F., & Hu,, R. (2018). Dew formation characteristics at annual and daily scale in xerophyte shrub plantations at southeast margin of Tengger Desert, Northern China. Ecohydrology, 11(5), e1968. https://doi.org/10.1002/eco.1968
Pedro,, M. J., & Gillespie,, T. J. (1981a). Estimating dew duration. I. Utilizing micrometeorological data. Agricultural Meteorology, 25, 283–296. https://doi.org/10.1016/0002-1571(81)90081-9
Pedro,, M. J., & Gillespie,, T. J. (1981b). Estimating dew duration. II. Utilizing standard weather station data. Agricultural Meteorology, 25, 297–310. https://doi.org/10.1016/0002-1571(81)90082-0
Prado,, R. d., & Sancho,, L. G. (2007). Dew as a key factor for the distribution pattern of the lichen species Teloschistes lacunosus in the Tabernas Desert (Spain). Flora – Morphology, Distribution, Functional Ecology of Plants, 202(5), 417–428. https://doi.org/10.1016/j.flora.2006.07.007
Prata,, A. J. (1996). A new long‐wave formula for estimating downward clear‐sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society, 122(533), 1127–1151. https://doi.org/10.1002/qj.49712253306
Rao,, B. Q., Liu,, Y. D., Wang,, W. B., Hu,, C. X., Li,, D. H., & Lan,, S. B. (2009). Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, Northwest China. Soil Biology and Biochemistry, 41(12), 2387–2393. https://doi.org/10.1016/j.soilbio.2009.06.005
Richards,, K. (2009). Adaptation of a leaf wetness model to estimate dewfall amount on a roof surface. Agricultural and Forest Meteorology, 149(8), 1377–1383. https://doi.org/10.1016/j.agrformet.2009.02.014
Ritter,, F., Berkelhammer,, M., & Beysens,, D. (2019). Dew frequency across the US from a network of in situ radiometers. Hydrology and Earth System Sciences, 23(2), 1179–1197. https://doi.org/10.5194/hess-23-1179-2019
Rogers,, R. W. (1977). Lichens in hot arid and semi‐arid lands (pp. 211–252). England: Academic Press.
Sanchez‐Lorenzo,, A., & Calbó,, J. (2012). Increasing cloud cover in the 20th century: Review and new findings in Spain. Climate of the Past, 8, 1212. https://doi.org/10.3929/ethz-b-000055609
Seely,, M., Henschel,, J., & Robertson,, M. (1998). The ecology of fog in Namib Desert dunes. Paper presented at the Proceedings of the First International Conference on Fog and Fog Collection.
Shaw,, A. J., & Goffinet,, B. (2000). Bryophyte biology, Cambridge, CA: . Cambridge University Press.
Sillmann,, J., Kharin,, V. V., Zhang,, X., Zwiers,, F. W., & Bronaugh,, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research: Atmospheres, 118(4), 1716–1733. https://doi.org/10.1002/jgrd.50203
Steinberger,, Y., Loboda,, I., & Garner,, W. (1989). The influence of autumn dewfall on spatial and temporal distribution of nematodes in the desert ecosystem. Journal of Arid Environments, 16(2), 177–183. https://doi.org/10.1016/S0140-1963(18)31024-3
Stewart,, J. B. (1977). Evaporation from the wet canopy of a pine forest. Water Resources Research, 13(6), 915–921. https://doi.org/10.1029/WR013i006p00915
Subramaniam,, A. R., & Kesava Rao,, A. V. R. (1983). Dew fall in sand dune areas of India. International Journal of Biometeorology, 27(3), 271–280. https://doi.org/10.1007/BF02184242
Sun,, Y. L., Li,, X. Y., Xu,, H. Y., Yang,, Z. P., Tang,, J., & Zhang,, X. Y. (2008). Effect of soil crust on evaporation and dew deposition in mu us sandy land, China. Frontiers of Environmental Science %26 Engineering in China, 2(4), 480–486. https://doi.org/10.1007/s11783-008-0034-8
Takenaka,, N., Soda,, H., Sato,, K., Terada,, H., Suzue,, T., Bandow,, H., & Maeda,, Y. (2003). Difference in amounts and composition of dew from different types of dew collectors. Water, Air, and Soil Pollution, 147(1), 51–60. https://doi.org/10.1023/A:1024573405792
Tao,, Y., & Zhang,, Y. M. (2012). Effects of leaf hair points of a desert moss on water retention and dew formation: Implications for desiccation tolerance. Journal of Plant Research, 125(3), 351–360. https://doi.org/10.1007/s10265-011-0449-3
Temina,, M., & Kidron,, G. J. (2011). Lichens as biomarkers for dew amount and duration in the Negev Desert. Flora – Morphology, Distribution, Functional Ecology of Plants, 206(7), 646–652. https://doi.org/10.1016/j.flora.2010.11.014
Temina,, M., & Kidron,, G. J. (2015). The effect of dew on flint and limestone lichen communities in the Negev Desert. Flora – Morphology, Distribution, Functional Ecology of Plants, 213, 77–84. https://doi.org/10.1016/j.flora.2015.04.005
Tomaszkiewicz,, M., Abou Najm,, M., Beysens,, D., Alameddine,, I., & El‐Fadel,, M. (2015). Dew as a sustainable non‐conventional water resource: A critical review. Environmental Reviews, 23(4), 425–442. https://doi.org/10.1139/er-2015-0035
Trenberth,, K. E. (1999). Conceptual framework for changes of extremes of the hydrological cycle with climate change. In T. R. Karl,, N. Nicholls,, & A. Ghazi, (Eds.), Weather and climate extremes: Changes, variations and a perspective from the insurance industry (pp. 327–339). Dordrecht, Netherlands: Springer Netherlands.
Trenberth,, K. E., Dai,, A., Rasmussen,, R. M., & Parsons,, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84(9), 1205–1218. https://doi.org/10.1175/BAMS-84-9-1205
Tretiach,, M. (1995). Ecophysiology of calcicolous endolithic lichens: Progress and problems. Giornale Botanico Italiano, 129(1), 159–184. https://doi.org/10.1080/11263509509436118
Tuba,, Z., Csintalan,, Z., & Proctor,, M. C. F. (1996). Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: A baseline study at present‐day CO2 concentration. New Phytologist, 133(2), 353–361. https://doi.org/10.1111/j.1469-8137.1996.tb01902.x
Uclés,, O., Villagarcía,, L., Cantón,, Y., Lázaro,, R., & Domingo,, F. (2015). Non‐rainfall water inputs are controlled by aspect in a semiarid ecosystem. Journal of Arid Environments, 113, 43–50. https://doi.org/10.1016/j.jaridenv.2014.09.009
Varma,, S., Shah,, V., Banerjee,, B., & Buddhiraju,, K. M. (2014). Change detection of desert sand dunes: A remote sensing approach. Advances in Remote Sensing, 03, 10–22. http://doi.org/10.4236/ars.2014.31002
Vuollekoski,, H., Vogt,, M., Sinclair,, V. A., Duplissy,, J., Järvinen,, H., Kyrö,, E. M., … Kulmala,, M. (2015). Estimates of global dew collection potential on artificial surfaces. Hydrology and Earth System Sciences, 19(1), 601–613. http://doi.org/10.5194/hess-19-601-2015
Wang,, L., Kaseke,, K. F., Ravi,, S., Jiao,, W., Mushi,, R., Shuuya,, T., & Maggs‐Kölling,, G. (2019). Convergent vegetation fog and dew water use in the Namib Desert. Ecohydrology, 12(7), e2130. https://doi.org/10.1002/eco.2130
Warren,, S. G., Eastman,, R. M., & Hahn,, C. J. (2007). A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. Journal of Climate, 20(4), 717–738. https://doi.org/10.1175/JCLI4031.1
Wichink Kruit,, R. J., Jacobs,, A. F. G., & Holtslag,, A. A. M. (2008). Measurements and estimates of leaf wetness over agricultural grassland for dry deposition modeling of trace gases. Atmospheric Environment, 42(21), 5304–5316. https://doi.org/10.1016/j.atmosenv.2008.02.061
Wild,, M. (2009). How well do IPCC‐AR4/CMIP3 climate models simulate global dimming/brightening and twentieth‐century daytime and nighttime warming. Journal of Geophysical Research: Atmospheres, 114(D10), 114. https://doi.org/10.1029/2008JD011372
WMO. (1966). International meteorological vocabulary (p. 276). Geneva, Switzerland: World Meteorological Organization.
Yang,, X. D., Lv,, G. H., Ali,, A., Ran,, Q. Y., Gong,, X. W., Wang,, F., … Liu,, W. G. (2017). Experimental variations in functional and demographic traits of Lappula semiglabra among dew amount treatments in an arid region. Ecohydrology, 10(6), e1858. https://doi.org/10.1002/eco.1858
Yao,, X., Xiao,, B., Kidron,, G. J., & Hu,, K. (2019). Respiration rate of moss‐dominated biocrusts and their relationships with temperature and moisture in a semiarid ecosystem. Catena, 183, 104195. https://doi.org/10.1016/j.catena.2019.104195
Ye,, Y., & Peng,, S. (2011). Review of dew action effect on plants. Shengtai Xuebao/Acta Ecologica Sinica, 31(11), 3190–3196.
Zangvil,, A. (1996). Six years of dew observations in the Negev Desert, Israel. Journal of Arid Environments, 32(4), 361–371. https://doi.org/10.1006/jare.1996.0030
Zhang,, J., Zhang,, Y. M., Downing,, A., Cheng,, J. H., Zhou,, X. B., & Zhang,, B. C. (2009). The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China. Journal of Hydrology, 379(3), 220–228. https://doi.org/10.1016/j.jhydrol.2009.09.053
Zhuang,, Y., & Zhao,, W. (2016). The ecological role of dew in assisting seed germination of the annual desert plant species in a desert environment, Northwestern China. Journal of Arid Land, 8(2), 264–271. https://doi.org/10.1007/s40333-015-0014-3
Zhuang,, Y. L., & Ratcliffe,, S. (2012). Relationship between dew presence and Bassia dasyphylla plant growth. Journal of Arid Land, 4(1), 11–18. https://doi.org/10.3724/SP.J.1227.2012.00011
Zhuang,, Y. L., & Zhao,, W. Z. (2008). Advances in the condensation water of arid regions. Advances in Earth Science, 25(2), 196–206.
Zhuang,, Y. L., & Zhao,, W. Z. (2014). Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, Northwestern China. Hydrological Processes, 28(3), 1399–1408. https://doi.org/10.1002/hyp.9675