Acworth,, R. I., Halloran,, H. J. S., Rau,, G. C., Cuthbert,, M. O., & Bernardi,, T. L. (2016). An objective frequency domain method for quantifying confined aquifer compressible storage using earth and atmospheric tides. Geophysical Research Letters, 43, 11671–11678. https://doi.org/10.1002/2016GL071328

Asadi‐Aghbolaghi,, M., Chuang,, M. H., & Yeh,, H. D. (2014). Groundwater response to tidal fluctuation in an inhomogeneous coastal aquifer‐aquitard system. Water Resources Management, 28, 3591–3617. https://doi.org/10.1007/s11269-014-0689-9

Astrom,, K. J., & Eykhoff,, P. (1971). System identification: A survey. Automation, 7(2), 123–162. https://doi.org/10.1016/0005-1098(71)90059-8

Befus,, K. M., Kroeger,, K. D., Smith,, C. G., & Swarzenski,, P. W. (2017). The magnitude and origin of groundwater discharge to Eastern U.S. and Gulf of Mexico coastal waters. Geophysical Research Letters, 44(20), 10396–10406. https://doi.org/10.1002/2017GL075238

Butikow,, E. I. (2000). A dynamical picture of the oceanic tides. American Journal of Physics, 70, 1001–1011. https://doi.org/10.1119/1.1498858

Cardiff,, M., Barrash,, W., & Kitanidis,, P. K. (2013). Hydraulic conductivity imaging from 3‐D transient hydraulic tomography at several pumping/observation. Water Resource Research, 49(11), 7311–7326. https://doi.org/10.1002/wrcr.20519

Carr,, P. A. (1969). Salt water intrusion in Prince Edward Island. Canadian Journal of Earth Sciences, 6(1), 63–74. https://doi.org/10.1139/e69-007

Carr,, P. A., & Van Der Kamp,, G. S. (1969). Determining aquifer characteristics by the tidal methods. Water Resources Research, 5(5), 1023–1031. https://doi.org/10.1029/WR005i005p01023

Chan,, S. Y., & Mohsen,, M. F. N. (1992). Simulation of tidal effects on contaminant transport in porous media. Groundwater, 39(1), 78–86. https://doi.org/10.1111/j.1745-6584.1992.tb00814.x

Esaki,, T., Zhang,, M., Takeshita,, A., & Mitani,, Y. (1996). Rigorous theoretical analysis of a flow pump permeability test. Geotechnical Testing Journal, 19(3), 241–246. https://doi.org/10.1520/GTJ10349J

Farrell,, E. R. (1994). Analysis of groundwater flow through leaky marine retaining structures. Geotechnique, 44(2), 255–263. https://doi.org/10.1680/geot.1994.44.2.255

Ferris,, J. G. (1951). Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. International Association of Scientific Hydrology, 33, 148–155. https://doi.org/10.3133/70133368

Gallagher,, D. L., Dietrich,, A. M., Reay,, W. G., Hayes,, M. C., & Simmons,, G. M., Jr. (1996). Ground water discharge of agricultural pesticides and nutrients to estuarine surface water. Groundwater Monitoring and Remediation, 16(1), 118–129. https://doi.org/10.1111/j.1745-6592.1996.tb00579.x

Geng,, X. L., Li,, H. L., Boufadel,, M. C., & Liu,, S. (2009). Tide‐induced head fluctuations in a coastal aquifer: Effects of the elastic storage and leakage of the submarine outlet‐capping. Hydrogeology Journal, 17, 1289–1296. https://doi.org/10.1007/s10040-009-0439-x

Guo,, H. P., Jiao,, J. J., & Li,, H. L. (2010). Groundwater response to tidal fluctuation in a two‐zone aquifer. Journal of Hydrology, 381, 364–371. https://doi.org/10.1016/j.jhydrol.2009.12.009

Huang,, C. S., Yeh,, H. D., & Chang,, C. H. (2012). A general analytical solution for groundwater fluctuations due to dual tide in long but narrow islands. Water Resources Research, 48(5), W05508. https://doi.org/10.1029/2011WR011211

Huang,, F. K., Chuang,, M. H., Wang,, G. S., & Yeh,, H. D. (2015). Tide‐induced groundwater level fluctuation in a U‐shaped coastal aquifer. Journal of Hydrology, 530, 291–305. https://doi.org/10.1016/j.jhydrol.2015.09.032

Jacob,, C. E. (1950). Flow of groundwater. In H. Rouse, (Ed.), Engineering hydraulics (pp. 321–386). New York: John Wiley.

Jha,, M. K., Namgial,, D., & Kamii,, Y. (2008). Hydraulic parameters of coastal aquifer systems by direct methods and an extended tide‐aquifer interaction technique. Water Resources Management, 22, 1899–1923. https://doi.org/10.1007/s11269-008-9259-3

Jiao,, J. J., & Tang,, Z. H. (1999). An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resources Research, 35(3), 747–751. http://doi.org/10.1029/1998WR900075

Koizumi,, N. (1998). Volcanic gas concentration and aquifer permeability estimated from tidal fluctuations in groundwater level: Case of Koshimuzu Well in Izu‐Oshima, Japan. Geophysical Research Letters, 25(12), 2237–2240. https://doi.org/10.1029/98GL01409.

Kolda,, T. G., Lewis,, R. M., & Torczon,, V. (2003). Optimization by direct search: New perspectives on some classical and modern methods. Society for Industrial and Applied Mathematics Review, 45(3), 385–482. https://doi.org/10.1137/S0036144502428893

Kuan,, W. K., Jin,, G. Q., Xin,, P., Robinson,, C., Gibbes,, B., & Li,, L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48, W02502. https://doi.org/10.1029/2011WR010678

Lanyon,, J. A., Eliot,, I. G., & Clarke,, D. J. (1982). Groundwater level variation during semi‐diurnal spring tidal cycles on a sandy beach. Australian Journal of Marine and Freshwater Research, 33(3), 377–400. https://doi.org/10.1071/MF9820377

Li,, H. L., & Jiao,, J. J. (2001). Analytical studies of groundwater‐head fluctuation in a coastal confined aquifer overlain by a semi‐permeable layer with storage. Advances in Water Resources, 24, 565–573. https://doi.org/10.1016/S0309-1708(00)00074-9

Li,, H. L., & Jiao,, J. J. (2002a). Analytical solutions of tidal groundwater flow in coastal two‐aquifer system. Advances in Water Resources, 25, 417–426. https://doi.org/10.1016/S0309-1708(02)00004-0

Li,, H. L., & Jiao,, J. J. (2002b). Tidal groundwater level fluctuations in L‐shaped leaky coastal aquifer system. Journal of Hydrology, 268, 234–243. https://doi.org/10.1016/S0022-1694(02)00177-4

Li,, H. L., Jiao,, J. J., Luk,, M., & Cheung,, K. Y. (2002). Tide‐induced groundwater level fluctuation in coastal aquifers bounded by L‐shaped coastlines. Water Resources Research, 38(3), 6‐1–6‐8. https://doi.org/10.1029/2001WR000556

Li,, L., Barry,, D. A., Cunningham,, C., Stagnitti,, F., & Parlange,, J. Y. (2000). A two‐dimensional analytical solution of groundwater response to tidal loading in an estuary and ocean. Advances in Water Resources, 23(8), 825–833. http://doi.org/10.1016/S0309-1708(00)00016-6

Liao,, X., & Wang,, C. Y. (2018). Seasonal permeability changes of the shallow crust inferred from deep well monitoring. Geophysical Research Letters, 45(11), 11130–11136. https://doi.org/10.1029/2018GL080161

Millham,, N. P., & Howes,, B. L. (1995). A comparison of methods to determine K in a shallow coastal aquifer. Groundwater, 33(1), 49–57. https://doi.org/10.1111/j.1745-6584.1995.tb00262.x

Monachesi,, L. B., & Guarracino,, L. (2011). Exact and approximate analytical solutions of groundwater response to tidal fluctuations in a theoretical inhomogeneous coastal confined aquifer. Hydrogeology Journal, 19(7), 1443–1449. https://doi.org/10.1007/s10040-011-0761-y

Moore,, W. S. (1996). Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380, 612–612, 614. https://doi.org/10.1038/380612a0

Pister,, K. S. (1974). Constitutive modeling and numerical solution of field problems. Nonlinear Engineering and Design, 28, 137–180.

Prieto,, C., & Destouni,, G. (2011). Is submarine groundwater discharge predictable? Geophysical Research Letters, 38, L01402. https://doi.org/10.1029/2010GL045621

Rotzoll,, K., EI‐Dadi,, A. I., & Gingerich,, S. B. (2008). Analysis of an unconfined aquifer subject to asynchronous dual‐tide propagation. Groundwater, 46(2), 239–250. https://doi.org/10.1111/j.1745-6584.2007.00412.x

Rotzoll,, K., & EI‐Kadi,, A. I. (2008). Estimating hydraulic properties of coastal aquifers using wave setup. Journal of Hydrology, 353(1–2), 201–213. https://doi.org/10.1016/j.jhydrol.2008.02.005

Sakurai,, S., & Takeuchi,, K. (1983). Back analysis of measured displacements of tunnels. Rock Mechanics and Rock Engineering, 16(3), 173–180. https://doi.org/10.1007/BF01033278

Serfes,, M. E. (1991). Determining the mean hydraulic gradient of ground water affected by tidal fluctuations. Groundwater, 29(4), 549–555. https://doi.org/10.1111/j.1745-6584.1991.tb00546.x

Singaraja,, C., Chidambaram,, S., & Jacob,, N. (2018). A study on the influence of tides on the water table conditions of the shallow coastal aquifers. Applied Water Science, 8(11), 1–13. https://doi.org/10.1007/s13201-018-0654-5

Sun,, H. B. (1997). A two‐dimensional analytical solution of groundwater response to tidal loading in an estuary. Water Resources Research, 33(6), 1429–1435. https://doi.org/10.1029/97WR00482

Sun,, P. P., Li,, H. L., Boufadel,, M. C., Geng,, X. L., & Chen,, S. (2008). An analytical solution and case study of groundwater head response to dual tide in an Island leaky confined aquifer. Water Resources Research, 44, W12501. https://doi.org/10.1029/2008WR006893

Taniguchi,, M. (2002). Tidal effects on submarine groundwater discharge into the ocean. Geophysical Research Letters, 29(12), 1–3. https://doi.org/10.1029/2002GL014987

Trefry,, M. G., & Bekele,, E. (2004). Structural characterization of an Island aquifer via tidal methods. Water Resources Research, 40, W01505. https://doi.org/10.1029/2003WR002003

Trefry,, M. G., & Johnston,, C. D. (1998). Pumping test analysis for a tidally forced aquifer. Ground Water, 36(3), 427–433. https://doi.org/10.1111/j.1745-6584.1998.tb02813.x.

Uchiyama,, Y., Nadaoka,, K., Roelke,, P., Adachi,, K., & Yagi,, H. (2000). Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach. Water Resources Research, 36(6), 1467–1479. https://doi.org/10.1029/2000WR900029

Wang,, C. Y., Doan,, M. L., Xue,, L., & Barbour,, A. J. (2018). Tidal response of groundwater in a leaky aquifer—Application to Oklahoma. Water Resources Research, 54, 8019–8033. https://doi.org/10.1029/2018WR022793

Wang,, S., Chen,, C. T. A., Huang,, T. H., Tseng,, H. C., Lui,, H. K., Peng,, T. R., … Lin,, Y. J. (2018). Submarine groundwater discharge helps making nearshore waters heterotrophic. Scientific Reports, 8, 11650. https://doi.org/10.1038/s41598-018-30056-x

Werner,, A. D., Bakker,, M., Post,, V. E. A., Vandenbohede,, A., Lu,, C., Ataie‐Ashtiani,, B., … Barry,, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51, 3–26. https://doi.org/10.1016/j.advwatres.2012.03.004

Yeh,, H. D., Huang,, C. S., Chang,, Y. C., & Jeng,, D. S. (2010). An analytical solution for tidal fluctuations in unconfined aquifer with a vertical beach. Water Resources Research, 46, W10535. https://doi.org/10.1029/2009WR008746

Yeh,, T. C., & Liu,, S. Y. (2000). Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 2095–2105. https://doi.org/10.1029/2000WR900114

Zhang,, M., Esaki,, T., Olsen,, H. W., & Mitani,, Y. (1997). Integrated shear and flow parameter measurement. Geotechnical Testing Journal, 20(3), 296–303. https://doi.org/10.1520/GTJ19970005

Zhang,, M., Takahashi,, M., Morin,, R. H., & Esaki,, T. (2000). Evaluation and application of the transient‐pulse technique for determining the hydraulic properties of low‐permeability rocks—Part 2: Experimental application. Geotechnical Testing Journal, 23(1), 91–99. https://doi.org/10.1520/GTJ11127J

Zhao,, Z. X., Wang,, X. G., Hao,, Y. H., Wang,, T. K., Jardani,, A., Jourde,, H., … Zhang,, M. (2019). Groundwater response to tidal fluctuations in a leaky confined coastal aquifer with a finite length. Hydrological Processes, 33(19), 2551–2560. https://doi.org/10.1002/hyp.13529

Zhu,, J. F., & Yeh,, T. C. (2005). Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resources Research, 41, W07028. https://doi.org/10.1029/2004WR003790