Acreman,, M. (2016). Environmental flows—Basics for novices. WIREs: Water, 3, 622–628.
Addor,, N., Nearing,, G., Prieto,, C., Newman,, A. J., Le Vine,, N., & Clark,, M. P. (2018). A ranking of hydrological signatures based on their predictability in space. Water Resources Research, 54, 8792–8812.
Ali,, G., Tetzlaff,, D., Soulsby,, C., McDonnell,, J. J., & Capell,, R. (2012). A comparison of similarity indices for catchment classification using a cross‐regional dataset. Advances in Water Resources, 40, 11–22. https://doi.org/10.1016/j.advwatres.2012.01.008
Almeida,, S., Vine,, N. L., McIntyre,, N., Wagener,, T., & Buytaert,, W. (2016). Accounting for dependencies in regionalized signatures for predictions in ungauged catchments. Hydrology and Earth System Sciences, 20, 887–901. https://doi.org/10.5194/hess-20-887-2016
Archer,, D., & Newson,, M. (2002). The use of indices of flow variability in assessing the hydrological and instream habitat impacts of upland afforestation and drainage. Journal of Hydrology, 268, 244–258.
Archfield,, S. A., Kennen,, J. G., Carlisle,, D. M., & Wolock,, D. M. (2014). An objective and parsimonious approach for classifying natural flow regimes at a continental scale. River Research and Applications, 30, 1166–1183. https://doi.org/10.1002/rra.2710
Beck,, H. E., De Roo,, A., & van Dijk,, A. I. (2015). Global maps of streamflow characteristics based on observations from several thousand catchments. Journal of Hydrometeorology, 16, 1478–1501.
Beck,, H. E., van Dijk,, A. I., de Roo,, A., Dutra,, E., Fink,, G., Orth,, R., & Schellekens,, J. (2017). Global evaluation of runoff from ten state‐of‐the‐art hydrological models. Hydrology and Earth System Sciences, 21, 2881–2903.
Beck,, H. E., van Dijk,, A. I., Miralles,, D. G., de Jeu,, R. A., Bruijnzeel,, L. S., McVicar,, T. R., & Schellekens,, J. (2013). Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resources Research, 49, 7843–7863.
Berghuijs,, W. R., Sivapalan,, M., Woods,, R. A., & Savenije,, H. H. (2014). Patterns of similarity of seasonal water balances: A window into streamflow variability over a range of time scales. Water Resources Research, 50, 5638–5661.
Beven,, K., & Freer,, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249, 11–29. https://doi.org/10.1016/S0022-1694(01)00421-8
Beven,, K., & Westerberg,, I. (2011). On red herrings and real herrings: Disinformation and information in hydrological inference. Hydrological Processes, 25, 1676–1680.
Biggs,, B. J. F., Nikora,, V. I., & Snelder,, T. H. (2005). Linking scales of flow variability to lotic ecosystem structure and function. River Research and Applications, 21, 283–298. https://doi.org/10.1002/rra.847
Blazkova,, S., & Beven,, K. (2009). A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resources Research, 45, W00B16.
Blöschl,, G. (2001). Scaling in hydrology. Hydrological Processes, 15, 709–711.
Bondi,, C. A., Yarnell,, S. M., Lind,, A. J., & Lind,, A. (2013). Transferability of habitat suitability criteria for a stream breeding frog (Rana boylii) in the Sierra Nevada, California. Herpetological Conservation Biology, 8, 88–103.
Boyle,, D. P., Gupta,, H. V., & Sorooshian,, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36, 3663–3674.
Branger,, F., & McMillan,, H. K. (2019). Deriving hydrological signatures from soil moisture data. Hydrological Processes, 34, 1410–1427.
Bulygina,, N., Ballard,, C., McIntyre,, N., O`Donnell,, G., & Wheater,, H. (2012). Integrating different types of information into hydrological model parameter estimation: Application to ungauged catchments and land use scenario analysis. Water Resources Research, 48, W06519. https://doi.org/10.1029/2011WR011207
Bunn,, S. E., & Arthington,, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492–507. https://doi.org/10.1007/s00267-002-2737-0
Carlisle,, D. M., Grantham,, T. E., Eng,, K., & Wolock,, D. M. (2017). Biological relevance of streamflow metrics: Regional and national perspectives. Freshwater Science, 36, 927–940.
Ceola,, S., Bertuzzo,, E., Singer,, G., Battin,, T. J., Montanari,, A., & Rinaldo,, A. (2014). Hydrologic controls on basin‐scale distribution of benthic invertebrates. Water Resources Research, 50, 2903–2920. https://doi.org/10.1002/2013WR015112
Clark,, M. P., McMillan,, H. K., Collins,, D. B., Kavetski,, D., & Woods,, R. A. (2011). Hydrological field data from a modeller`s perspective: Part 2: Process‐based evaluation of model hypotheses. Hydrological Processes, 25, 523–543.
Clark,, M. P., Rupp,, D. E., Woods,, R. A., Tromp‐van Meerveld,, H. J., Peters,, N. E., & Freer,, J. E. (2009). Consistency between hydrological models and field observations: Linking processes at the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes, 23, 311–319.
Clark,, M. P., Slater,, A. G., Rupp,, D. E., Woods,, R. A., Vrugt,, J. A., Gupta,, H. V., … Hay,, L. E. (2008). Framework for understanding structural errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resources Research, 44, W00B02.
Clausen,, B., & Biggs,, B. (1997). Relationships between benthic biota and hydrological indices in New Zealand streams. Freshwater Biology, 38, 327–342. https://doi.org/10.1046/j.1365-2427.1997.00230.x
Clausen,, B., & Biggs,, B. J. F. (2000). Flow variables for ecological studies in temperate streams: Groupings based on covariance. Journal of Hydrology, 237, 184–197.
Comola,, F., Schaefli,, B., Ronco,, P. D., Botter,, G., Bavay,, M., Rinaldo,, A., & Lehning,, M. (2015). Scale‐dependent effects of solar radiation patterns on the snow‐dominated hydrologic response. Geophysical Research Letters, 42, 3895–3902. https://doi.org/10.1002/2015GL064075
Coopersmith,, E., Yaeger,, M. A., Ye,, S., Cheng,, L., & Sivapalan,, M. (2012). Exploring the physical controls of regional patterns of flow duration curves – Part 3: A catchment classification system based on regime curve indicators. Hydrology and Earth System Sciences, 16, 4467–4482. https://doi.org/10.5194/hess-16-4467-2012
Coxon,, G., Addor,, N., Bloomfield,, J. P., Freer,, J., Fry,, M., Hannaford,, J., … Wagener,, T. (2020). CAMELS‐GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth System Science Data, 12(4), 2459–2483.
Coxon,, G., Freer,, J., Wagener,, T., Odoni,, N. A., & Clark,, M. (2014). Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits‐of‐acceptability framework for 24 UK catchments. Hydrological Processes, 28, 6135–6150. https://doi.org/10.1002/hyp.10096
Coxon,, G., Freer,, J., Westerberg,, I. K., Wagener,, T., Woods,, R., & Smith,, P. J. (2015). A novel framework for discharge uncertainty quantification applied to 500 UKgauging stations. Water Resources Research, 51(7), 5531–5546.
Danesh‐Yazdi,, M., Botter,, G., & Foufoula‐Georgiou,, E. (2017). Time‐variant Lagrangian transport formulation reduces aggregation bias of water and solute mean travel time in heterogeneous catchments. Geophysical Research Letters, 44, 4880–4888.
de Boer‐Euser,, T., McMillan,, H. K., Hrachowitz,, M., Winsemius,, H. C., & Savenije,, H. H. G. (2016). Influence of soil and climate on root zone storage capacity. Water Resources Research, 52, 2009–2024. https://doi.org/10.1002/2015WR018115
Dewson,, Z. S., James,, A. B., & Death,, R. G. (2007). A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society, 26, 401–415.
Doxaran,, D., Froidefond,, J.‐M., Lavender,, S., & Castaing,, P. (2002). Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Environment, 81, 149–161.
Dozier,, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 28, 9–22.
Dralle,, D. N., Karst,, N. J., Charalampous,, K., Veenstra,, A., & Thompson,, S. E. (2017). Event‐scale power law recession analysis: Quantifying methodological uncertainty. Hydrology and Earth System Sciences, 21, 65–81.
Eng,, K., Grantham,, T. E., Carlisle,, D. M., & Wolock,, D. M. (2017). Predictability and selection of hydrologic metrics in riverine ecohydrology. Freshwater Science, 36, 915–926.
Euser,, T., Winsemius,, H. C., Hrachowitz,, M., Fenicia,, F., Uhlenbrook,, S., & Savenije,, H. H. G. (2013). A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences, 17, 1893–1912.
Fang,, K., & Shen,, C. (2017). Full‐flow‐regime storage‐streamflow correlation patterns provide insights into hydrologic functioning over the continental US. Water Resources Research, 53, 8064–8083. https://doi.org/10.1002/2016WR020283
Farmer,, D., Sivapalan,, M., & Jothityangkoon,, C. (2003). Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis. Water Resources Research, 39, 1035.
Fenicia,, F., Kavetski,, D., Reichert,, P., & Albert,, C. (2018). Signature‐domain calibration of hydrological models using approximate Bayesian computation: Empirical analysis of fundamental properties. Water Resources Research, 54, 3958–3987.
Fenicia,, F., Kavetski,, D., & Savenije,, H. H. (2011). Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resources Research, 47, W11510.
Fenicia,, F., Kavetski,, D., Savenije,, H. H. G., & Pfister,, L. (2016). From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions. Water Resources Research, 52, 954–989. https://doi.org/10.1002/2015WR017398
Gnann,, S., McMillan,, H., Woods,, R., & Howden,, N. (2020). Including regional knowledge improves baseflow signature predictions in large sample hydrology. Water Resources Research (in press). e2020WR028354.
Gnann,, S. J., Howden,, N. J. K., & Woods,, R. A. (2020). Hydrological signatures describing the translation of climate seasonality into streamflow seasonality. Hydrology and Earth System Sciences, 24, 561–580. https://doi.org/10.5194/hess-24-561-2020
Gordon,, N. D. (Ed.). (2004). Stream hydrology: An introduction for ecologists (2nd ed.). Chichester, England: Wiley.
Gudmundsson,, L., Do,, H., Leonard,, M., & Westra,, S. (2018). The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time‐series indices and homogeneity assessment. Earth System Science Data, 10, 787–804.
Gunkel,, A., Shadeed,, S., Hartmann,, A., Wagener,, T., & Lange,, J. (2015). Model signatures and aridity indices enhance the accuracy of water balance estimations in a data‐scarce Eastern Mediterranean catchment. Journal of Hydrology: Regional Studies, 4, 487–501.
Gupta,, H. V., Sorooshian,, S., & Yapo,, P. O. (1998). Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resources Research, 34, 751–763.
Gupta,, H. V., Wagener,, T., & Liu,, Y. (2008). Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrological Processes, 22, 3802–3813.
Guse,, B., Pfannerstill,, M., Gafurov,, A., Kiesel,, J., Lehr,, C., & Fohrer,, N. (2017). Identifying the connective strength between model parameters and performance criteria. Hydrology and Earth System Sciences, 21, 5663–5679.
Harman,, C. J., Sivapalan,, M., & Kumar,, P. (2009). Power law catchment‐scale recessions arising from heterogeneous linear small‐scale dynamics. Water Resources Research, 45, W09404.
Hart,, D. D., & Finelli,, C. M. (1999). Physical‐biological coupling in streams: The pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics, 30, 363–395.
Hartmann,, A., Wagener,, T., Rimmer,, A., Lange,, J., Brielmann,, H., & Weiler,, M. (2013). Testing the realism of model structures to identify karst system processes using water quality and quantity signatures. Water Resources Research, 49, 3345–3358.
Hartmann,, A., Weiler,, M., Wagener,, T., Lange,, J., Kralik,, M., Humer,, F., … Andreo,, B. (2013). Process‐based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties. Hydrology and Earth System Sciences, 17, 3305–3321.
Hay,, L. E., Leavesley,, G. H., Clark,, M. P., Markstrom,, S. L., Viger,, R. J., & Umemoto,, M. (2006). Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin. Journal of the American Water Resources Association, 42, 877–890. https://doi.org/10.1111/j.1752-1688.2006.tb04501.x
Hayhoe,, K., Wake,, C. P., Huntington,, T. G., Luo,, L., Schwartz,, M. D., Sheffield,, J., … DeGaetano,, A. (2007). Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics, 28, 381–407.
He,, Z., Vorogushyn,, S., Unger‐Shayesteh,, K., Gafurov,, A., Kalashnikova,, O., Omorova,, E., & Merz,, B. (2018). The value of hydrograph partitioning curves for calibrating hydrological models in glacierized basins. Water Resources Research, 54, 2336–2361.
Heudorfer,, B., Haaf,, E., Stahl,, K., & Barthel,, R. (2019). Index‐based characterization and quantification of groundwater dynamics. Water Resources Research, 55, 5575–5592.
Hingray,, B., Schaefli,, B., Mezghani,, A., & Hamdi,, Y. (2010). Signature‐based model calibration for hydrological prediction in mesoscale Alpine catchments. Hydrological Sciences Journal, 55, 1002–1016.
Hogue,, T. S., Sorooshian,, S., Gupta,, H., Holz,, A., & Braatz,, D. (2000). A multistep automatic calibration scheme for river forecasting models. Journal of Hydrometeorology, 1, 524–542.
Horner,, I. (2020). Design and evaluation of hydrological signatures for the diagnosis and improvement of a process‐based distributed hydrological model (Ph.D. thesis). University of Grenoble Alpes, France. 306 pp.
Horner,, I., Branger,, F., McMillan,, H. K., Vannier,, O., & Braud,, I. (2020). Information content of snow hydrological signatures based on streamflow, precipitation and air temperature. Hydrological Processes, 34, 2763–2779.
Hrachowitz,, M., Fovet,, O., Ruiz,, L., Euser,, T., Gharari,, S., Nijzink,, R., … Gascuel‐Odoux,, C. (2014). Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 50, 7445–7469.
Hrachowitz,, M., Savenije,, H. H. G., Blöschl,, G., McDonnell,, J. J., Sivapalan,, M., Pomeroy,, J. W., … Ehret,, U. (2013). A decade of predictions in ungauged basins (PUB)—A review. Hydrological Sciences Journal, 58, 1198–1255.
Hrachowitz,, M., Soulsby,, C., Tetzlaff,, D., & Speed,, M. (2010). Catchment transit times and landscape controls—Does scale matter? Hydrological Processes, 24, 117–125.
Huh,, S., Dickey,, D. A., Meador,, M. R., & Ruhl,, K. E. (2005). Temporal analysis of the frequency and duration of low and high streamflow: Years of record needed to characterize streamflow variability. Journal of Hydrology, 310, 78–94.
Hynek,, B. M., Beach,, M., & Hoke,, M. R. T. (2010). Updated global map of Martian valley networks and implications for climate and hydrologic processes. Journal of Geophysical Research, Planets, 115, E09008. https://doi.org/10.1029/2009JE003548
Jain,, A. K., Murty,, M. N., & Flynn,, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31, 264–323.
Jayathilake,, D. I., & Smith,, T. (2019). Predicting the temporal transferability of model parameters through a hydrological signature analysis. Frontiers in Earth Science, 14, 110–123.
Jehn,, F. U., Bestian,, K., Breuer,, L., Kraft,, P., & Houska,, T. (2020). Using hydrological and climatic catchment clusters to explore drivers of catchment behavior. Hydrology and Earth System Sciences, 24, 1081–1100. https://doi.org/10.5194/hess-24-1081-2020
Jothityangkoon,, C., Sivapalan,, M., & Farmer,, D. L. (2001). Process controls of water balance variability in a large semi‐arid catchment: Downward approach to hydrological model development. Journal of Hydrology, 254, 174–198.
Jowett,, I. G., & Duncan,, M. J. (1990). Flow variability in New Zealand rivers and its relationship to in‐stream habitat and biota. New Zealand Journal of Marine and Freshwater Research, 24, 305–317.
Juston,, J., Jansson,, P.‐E., & Gustafsson,, D. (2014). Rating curve uncertainty and change detection in discharge time series: Case study with 44‐year historic data from the Nyangores River, Kenya. Hydrological Processes, 28, 2509–2523.
Juston,, J. M., Kauffeldt,, A., Quesada Montano,, B., Seibert,, J., Beven,, K. J., & Westerberg,, I. K. (2012). Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling. Hydrological Processes, 27, 1117–1122.
Kapangaziwiri,, E., Hughes,, D. A., & Wagener,, T. (2012). Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern Africa. Hydrological Sciences Journal, 57, 1000–1019.
Kauffeldt,, A., Halldin,, S., Rodhe,, A., Xu,, C.‐Y., & Westerberg,, I. K. (2013). Disinformative data in large‐scale hydrological modelling. Hydrology and Earth System Sciences, 17, 2845–2857.
Kavetski,, D., & Fenicia,, F. (2011). Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights. Water Resources Research, 47, W11511. https://doi.org/10.1029/2011WR010748
Kavetski,, D., Fenicia,, F., Reichert,, P., & Albert,, C. (2018). Signature‐domain calibration of hydrological models using approximate Bayesian computation: Theory and comparison to existing applications. Water Resources Research, 54, 4059–4083.
Kelleher,, C., McGlynn,, B., & Wagener,, T. (2017). Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrology and Earth System Sciences, 21, 3325–3352.
Kennard,, M. J., Mackay,, S. J., Pusey,, B. J., Olden,, J. D., & Marsh,, N. (2010). Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies. River Research and Applications, 26, 137–156.
Kennard,, M. J., Pusey,, B. J., Olden,, J. D., Mackay,, S. J., Stein,, J. L., & Marsh,, N. (2010). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 55, 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x
Kiang,, J. E., Gazoorian,, C., McMillan,, H., Coxon,, G., Le Coz,, J., Westerberg,, I. K., … Petersen‐Øverleir,, A. (2018). A comparison of methods for streamflow uncertainty estimation. Water Resources Research, 54, 7149–7176.
Kirchner,, J. W. (2016). Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrology and Earth System Sciences, 20, 279–297.
Klaus,, J., & McDonnell,, J. J. (2013). Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology, 505, 47–64. https://doi.org/10.1016/j.jhydrol.2013.09.006
Klemeš,, V. (1983). Conceptualization and scale in hydrology. Journal of Hydrology, 65, 1–23.
Knoben,, W. J., Woods,, R. A., & Freer,, J. E. (2018). A quantitative hydrological climate classification evaluated with independent streamflow data. Water Resources Research, 54, 5088–5109.
Konrad,, C. P., Brasher,, A. M. D., & May,, J. T. (2008). Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States. Freshwater Biology, 53, 1983–1998.
Kratzert,, F., Klotz,, D., Shalev,, G., Klambauer,, G., Hochreiter,, S., & Nearing,, G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large‐sample datasets. Hydrology %26 Earth System Sciences, 23(12).
Kunkle,, G. R. (1962). The baseflow‐duration curve: A technique for the study of groundwater discharge from a drainage basin. Journal of Geophysical Research, 1896–1977(67), 1543–1554. https://doi.org/10.1029/JZ067i004p01543
Lane,, B. A., Sandoval‐Solis,, S., Stein,, E. D., Yarnell,, S. M., Pasternack,, G. B., & Dahlke,, H. E. (2018). Beyond metrics? The role of hydrologic baseline archetypes in environmental water management. Environmental Management, 62, 678–693.
Lane,, R. A., Coxon,, G., Freer,, J. E., Wagener,, T., Johnes,, P. J., Bloomfield,, J. P., … Reaney,, S. M. (2019). Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain. Hydrology and Earth System Sciences, 23, 4011–4032.
Lowe,, W. H., Swartz,, L. K., Addis,, B. R., & Likens,, G. E. (2019). Hydrologic variability contributes to reduced survival through metamorphosis in a stream salamander. Proceedings of the National Academy of Sciences, 116(39), 19563–19570.
Lundquist,, J. D., & Cayan,, D. R. (2002). Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States. Journal of Hydrometeorology, 3, 591–603.
Mackay,, J. D., Barrand,, N. E., Hannah,, D. M., Krause,, S., Jackson,, C. R., Everest,, J., & Aðalgeirsdóttir,, G. (2018). Glacio‐hydrological melt and run‐off modelling: Application of a limits of acceptability framework for model comparison and selection. The Cryosphere, 12, 2175–2210. https://doi.org/10.5194/tc-12-2175-2018
Mahe,, G., Lienou,, G., Descroix,, L., Bamba,, F., Paturel,, J. E., Laraque,, A., … Khomsi,, K. (2013). The rivers of Africa: Witness of climate change and human impact on the environment. Hydrological Processes, 27, 2105–2114. https://doi.org/10.1002/hyp.9813
Maina,, F. Z., Siirila‐Woodburn,, E. R., & Vahmani,, P. (2020). Sensitivity of meteorological‐forcing resolution on hydrologic variables. Hydrology and Earth System Sciences Discussions, 24, 3451–3474. https://doi.org/10.5194/hess-24-3451-2020.
Martinez,, G. F., & Gupta,, H. V. (2011). Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States. Water Resources Research, 47, W12540.
McDonnell,, J. J., Sivapalan,, M., Vaché,, K., Dunn,, S., Grant,, G., Haggerty,, R., … Roderick,, M. L. (2007). Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resources Research, 43, W07301.
McMahon,, T. A., Vogel,, R. M., Peel,, M. C., & Pegram,, G. G. (2007). Global streamflows – Part 1: Characteristics of annual streamflows. Journal of Hydrology, 347, 243–259.
McMillan,, H. (2020). Linking hydrologic signatures to hydrologic processes: A review. Hydrological Process, 34, 1393–1409. https://doi.org/10.1002/hyp.13632
McMillan,, H., Gueguen,, M., Grimon,, E., Woods,, R., Clark,, M., & Rupp,, D. E. (2014). Spatial variability of hydrological processes and model structure diagnostics in a 50 km2 catchment. Hydrological Processes, 28, 4896–4913.
McMillan,, H., Krueger,, T., & Freer,, J. (2012). Benchmarking observational uncertainties for hydrology: Rainfall, river discharge and water quality. Hydrological Processes, 26(26), 4078–4111.
McMillan,, H., Seibert,, J., Petersen‐Overleir,, A., Lang,, M., White,, P., Snelder,, T., … Kiang,, J. (2017). How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications. Water Resources Research, 53, 5220–5228.
McMillan,, H., Westerberg,, I., & Branger,, F. (2016). Five guidelines for selecting hydrological signatures. Hydrological Processes, 31, 4757–4761.
McMillan,, H. K. (2012). Effect of spatial variability and seasonality in soil moisture on drainage thresholds and fluxes in a conceptual hydrological model. Hydrological Processes, 26, 2838–2844.
McMillan,, H. K., Booker,, D. J., & Cattoën,, C. (2016). Validation of a national hydrological model. Journal of Hydrology, 541, 800–815.
McMillan,, H. K., Clark,, M. P., Bowden,, W. B., Duncan,, M., & Woods,, R. A. (2011). Hydrological field data from a modeller`s perspective: Part 1. Diagnostic tests for model structure. Hydrological Processes, 25, 511–522.
McMillan,, H. K., & Srinivasan,, M. S. (2015). Characteristics and controls of variability in soil moisture and groundwater in a headwater catchment. Hydrology and Earth System Sciences, 19, 1767–1786.
McMillan,, H. K., Westerberg,, I. K., & Krueger,, T. (2018). Hydrological data uncertainty and its implications. WIREs: Water, 5, e1319.
Mendoza,, P. A., Mizukami,, N., Ikeda,, K., Clark,, M. P., Gutmann,, E. D., Arnold,, J. R., … Rajagopalan,, B. (2016). Effects of different regional climate model resolution and forcing scales on projected hydrologic changes. Journal of Hydrology, 541, 1003–1019. https://doi.org/10.1016/j.jhydrol.2016.08.010
Merz,, R., & Blöschl,, G. (2009). A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research, 45, W01405.
Millot,, C. (1999). Circulation in the western Mediterranean Sea. Journal of Marine Systems, 20, 423–442.
Mitsch,, W. J., & Gosselink,, J. G. (1986). Wetlands. New York, NY: Van Nostrand Reinhold Company.
Mizukami,, N., Rakovec,, O., Newman,, A. J., Clark,, M. P., Wood,, A. W., Gupta,, H. V., & Kumar,, R. (2019). On the choice of calibration metrics for “high‐flow” estimation using hydrologic models. Hydrology and Earth System Sciences, 23, 2601–2614.
Montanari,, A., & Toth,, E. (2007). Calibration of hydrological models in the spectral domain: An opportunity for scarcely gauged basins? Water Resources Research, 43, W05434.
Nash,, J. E., & Sutcliffe,, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10, 282–290.
Ndzabandzaba,, C., & Hughes,, D. A. (2017). Regional water resources assessments using an uncertain modelling approach: The example of Swaziland. Journal of Hydrology: Regional Studies, 10, 47–60. https://doi.org/10.1016/j.ejrh.2017.01.002
Olden,, J. D., & Poff,, N. L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19, 101–121.
Oppel,, H., & Schumann,, A. H. (2020). Machine learning based identification of dominant controls on runoff dynamics. Hydrological Processes, 34, 2450–2465. https://doi.org/10.1002/hyp.13740
Oudin,, L., Andréassian,, V., Perrin,, C., Michel,, C., & Le Moine,, N. (2008). Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research, 44, W03413.
Parde,, M. (1933). Fleuves et Rivieres. Armand Colin n°155.
Patterson,, N. K., Lane,, B. A., Sandoval‐Solis,, S., Pasternack,, G. B., Yarnell,, S. M., & Qiu,, Y. (2020). A hydrologic feature detection algorithm to quantify seasonal components of flow regimes. Journal of Hydrology, 585, 124787.
Pechlivanidis,, I. G., Jackson,, B., McMillan,, H., & Gupta,, H. (2014). Use of an entropy‐based metric in multiobjective calibration to improve model performance. Water Resources Research, 50, 8066–8083.
Pfannerstill,, M., Guse,, B., & Fohrer,, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447–458. https://doi.org/10.1016/j.jhydrol.2013.12.044
Poff,, N. (1996). A hydrogeography of unregulated streams in the United States and an examination of scale‐dependence in some hydrological descriptors. Freshwater Biology, 36, 71–79. https://doi.org/10.1046/j.1365-2427.1996.00073.x
Poff,, N. L., Allan,, J. D., Bain,, M. B., Karr,, J. R., Prestegaard,, K. L., Richter,, B. D., … Stromberg,, J. C. (1997). The natural flow regime. Bioscience, 47, 769–784.
Poff,, N. L., Richter,, B. D., Arthington,, A. H., Bunn,, S. E., Naiman,, R. J., Kendy,, E., … Freeman,, M. C. (2010). The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshwater Biology, 55, 147–170.
Poff,, N. L., & Ward,, J. V. (1989). Implications of streamflow variability and predictability for lotic community structure: A regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1805–1818.
Poff,, N. L., & Zimmerman,, J. K. (2010). Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshwater Biology, 55, 194–205.
Pokhrel,, P., Yilmaz,, K. K., & Gupta,, H. V. (2012). Multiple‐criteria calibration of a distributed watershed model using spatial regularization and response signatures. Journal of Hydrology, 418, 49–60.
Pool,, S., Vis,, M. J., Knight,, R. R., & Seibert,, J. (2017). Streamflow characteristics from modeled runoff time series importance of calibration criteria selection. Hydrology and Earth System Sciences, 21(11), 5443–5457.
Prieto,, C., Vine,, N. L., Kavetski,, D., García,, E., & Medina,, R. (2019). Flow prediction in ungauged catchments using probabilistic random forests regionalization and new statistical adequacy tests. Water Resources Research, 55, 4364–4392. https://doi.org/10.1029/2018WR023254
Refsgaard,, J. C., & Knudsen,, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32, 2189–2202.
Renard,, B., Kavetski,, D., Kuczera,, G., Thyer,, M., & Franks,, S. W. (2010). Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resources Research, 46, W05521. https://doi.org/10.1029/2009WR008328
Richter,, B. D., Baumgartner,, J. V., Powell,, J., & Braun,, D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10, 1163–1174.
Sahraei,, S., Asadzadeh,, M., & Unduche,, F. (2020). Signature‐based multi‐modelling and multi‐objective calibration of hydrologic models: Application in flood forecasting for Canadian Prairies. Journal of Hydrology, 588, 125095.
Sawicz,, K., Wagener,, T., Sivapalan,, M., Troch,, P. A., & Carrillo,, G. (2011). Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 15, 2895–2911.
Sawicz,, K. A., Kelleher,, C., Wagener,, T., Troch,, P., Sivapalan,, M., & Carrillo,, G. (2014). Characterizing hydrologic change through catchment classification. Hydrology and Earth System Sciences, 18, 273–285.
Schaefli,, B. (2016). Snow hydrology signatures for model identification within a limits‐of‐acceptability approach. Hydrological Processes, 30, 4019–4035.
Searcy,, J. K. (1959). Flow‐duration curves, Washington, U.S.: US Government Printing Office.
Shafii,, M., Basu,, N., Craig,, J. R., Schiff,, S. L., & Cappellen,, P. V. (2017). A diagnostic approach to constraining flow partitioning in hydrologic models using a multiobjective optimization framework. Water Resources Research, 53, 3279–3301. https://doi.org/10.1002/2016WR019736
Shafii,, M., & Tolson,, B. A. (2015). Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resources Research, 51, 3796–3814.
Shamir,, E., Imam,, B., Gupta,, H. V., & Sorooshian,, S. (2005). Application of temporal streamflow descriptors in hydrologic model parameter estimation. Water Resources Research, 41, W06021. https://doi.org/10.1029/2004WR003409
Shamir,, E., Imam,, B., Morin,, E., Gupta,, H. V., & Sorooshian,, S. (2005). The role of hydrograph indices in parameter estimation of rainfall–runoff models. Hydrological Processes, 19, 2187–2207.
Sivapalan,, M., Yaeger,, M. A., Harman,, C. J., Xu,, X., & Troch,, P. A. (2011). Functional model of water balance variability at the catchment scale: 1. Evidence of hydrologic similarity and space‐time symmetry. Water Resources Research, 47, W02522.
Sprenger,, M., Stumpp,, C., Weiler,, M., Aeschbach,, W., Allen,, S. T., Benettin,, P., … Werner,, C. (2019). The demographics of water: A review of water ages in the critical zone. Reviews of Geophysics, 57, 800–834. https://doi.org/10.1029/2018RG000633
Sugawara,, M. (1979). Automatic calibration of the tank model (L`étalonnage automatique d`un modèle à cisterne). Hydrological Sciences Bulletin, 24, 375–388. https://doi.org/10.1080/02626667909491876
Tharme,, R. E. (2003). A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19, 397–441.
Visessri,, S., & McIntyre,, N. (2016). Regionalisation of hydrological responses under land‐use change and variable data quality. Hydrological Sciences Journal, 61, 302–320. https://doi.org/10.1080/02626667.2015.1006226
Vogel,, R. M., & Fennessey,, N. M. (1994). Flow‐duration curves. I: New interpretation and confidence intervals. Journal of Water Resources Planning and Management, 120, 485–504.
Wagener,, T., & Montanari,, A. (2011). Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resources Research, 47, 47. https://doi.org/10.1029/2010WR009469
Wagener,, T., Sivapalan,, M., & McGlynn,, B. (2008). Catchment classification and services—Toward a new paradigm for catchment hydrology driven by societal needs. In M. G. Anderson, & J. J. McDonnell, (Eds.), Encyclopedia of hydrological sciences, Hoboken, NJ: Wiley.
Wagener,, T., Sivapalan,, M., Troch,, P., & Woods,, R. (2007). Catchment classification and hydrologic similarity. Geography Compass, 1, 901–931.
Westerberg,, I. K., Di Baldassarre,, G., Beven,, K. J., Coxon,, G., & Krueger,, T. (2017). Perceptual models of uncertainty for socio‐hydrological systems: A flood risk change example. Hydrological Sciences Journal, 62, 1705–1713.
Westerberg,, I. K., Guerrero,, J.‐L., Younger,, P. M., Beven,, K. J., Seibert,, J., Halldin,, S., … Xu,, C. Y. (2011). Calibration of hydrological models using flow‐duration curves. Hydrology and Earth System Sciences, 15, 2205–2227.
Westerberg,, I. K., & McMillan,, H. K. (2015). Uncertainty in hydrological signatures. Hydrology and Earth System Sciences, 19, 3951–3968.
Westerberg,, I. K., Sikorska‐Senoner,, A. E., Viviroli,, D., Vis,, M., & Seibert,, J. (2020). Hydrological model calibration with uncertain discharge data. Hydrological Sciences Journal, 65, 1–16.
Westerberg,, I. K., Wagener,, T., Coxon,, G., McMillan,, H. K., Castellarin,, A., Montanari,, A., & Freer,, J. (2016). Uncertainty in hydrological signatures for gauged and ungauged catchments. Water Resources Research, 52, 1847–1865.
Winsemius,, H. C., Schaefli,, B., Montanari,, A., & Savenije,, H. H. G. (2009). On the calibration of hydrological models in ungauged basins: A framework for integrating hard and soft hydrological information. Water Resources Research, 45, W12422.
Wondzell,, S. M., Gooseff,, M. N., & McGlynn,, B. L. (2007). Flow velocity and the hydrologic behavior of streams during baseflow. Geophysical Research Letters, 34, L24404.
Xue,, D., Botte,, J., De Baets,, B., Accoe,, F., Nestler,, A., Taylor,, P., … Boeckx,, P. (2009). Present limitations and future prospects of stable isotope methods for nitrate source identification in surface‐and groundwater. Water Research, 43, 1159–1170.
Yadav,, M., Wagener,, T., & Gupta,, H. (2007). Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources, 30, 1756–1774.
Yang,, Y., Pan,, M., Beck,, H. E., Fisher,, C. K., Beighley,, R. E., Kao,, S.‐C., … Wood,, E. F. (2019). In quest of calibration density and consistency in hydrologic modeling: Distributed parameter calibration against streamflow characteristics. Water Resources Research, 55, 7784–7803.
Yarnell,, S. M., Stein,, E. D., Webb,, J. A., Grantham,, T., Lusardi,, R. A., Zimmerman,, J., … Sandoval‐Solis,, S. (2020). A functional flows approach to selecting ecologically relevant flow metrics for environmental flow applications. River Research and Applications, 36(2), 318–324.
Yarnell,, S. M., Viers,, J. H., & Mount,, J. F. (2010). Ecology and management of the spring snowmelt recession. Bioscience, 60(2), 114–127.
Yilmaz,, K. K., Gupta,, H. V., & Wagener,, T. (2008). A process‐based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resources Research, 44, W09417.
Zhang,, Y., Chiew,, F. H., Li,, M., & Post,, D. (2018). Predicting runoff signatures using regression and hydrological modeling approaches. Water Resources Research, 54, 7859–7878.
Zhang,, Y., Vaze,, J., Chiew,, F. H. S., Teng,, J., & Li,, M. (2014). Predicting hydrological signatures in ungauged catchments using spatial interpolation, index model, and rainfall–runoff modelling. Journal of Hydrology, 517, 936–948. https://doi.org/10.1016/j.jhydrol.2014.06.032
Zhang,, Z., Wagener,, T., Reed,, P., & Bhushan,, R. (2008). Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization. Water Resources Research, 44, W00B04.