Abdulrazzak,, M. J. (1995). Losses of flood water from alluvial channels. Arid Land Research and Management, 9(1), 15–24.
Abdulrazzak,, M. J., & Sorman,, A. U. (1994). Transmission losses from ephemeral stream in arid region. Journal of Irrigation and Drainage Engineering, 120(3), 669–675.
Acuña,, V., Hunter,, M., & Ruhí,, A. (2017). Managing temporary streams and rivers as unique rather than second‐class ecosystems. Biological Conservation, 211, 12–19. https://doi.org/10.1016/j.biocon.2016.12.025
Adams,, E. A., Monroe,, S. A., Springer,, A. E., Blasch,, K. W., & Bills,, D. J. (2006). Electrical resistance sensors record spring flow timing, grand canyon, Arizona. Ground Water, 44(5), 630–641.
Allen,, D. C., Kopp,, D. A., Costigan,, K. H., Datry,, T., Hugueny,, B., Turner,, D. S., … Flood,, T. J. (2019). Citizen scientists document long‐term streamflow declines in intermittent rivers of the desert southwest, USA. Freshwater Science, 38(2), 244–256. https://doi.org/10.1086/701483
Andreadis,, K. M., Schumann,, G. J.‐P., & Pavelsky,, T. (2013). A simple global river bankfull width and depth database. Water Resources Research, 49(10), 7164–7168. https://doi.org/10.1002/wrcr.20440
Anna,, A., Yorgos,, C., Konstantinos,, P., & Maria,, L. (2009). Do intermittent and ephemeral mediterranean rivers belong to the same river type? Aquatic Ecology, 43(2), 465–476. https://doi.org/10.1007/s10452-008-9176-9
Arthington,, A. H., & Pusey,, B. J. (2003). Flow restoration and protection in Australian rivers. River Research and Applications, 19(5–6), 377–395. https://doi.org/10.1002/rra.745
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124–137. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124
Assendelft,, R., & van Meerveld,, H. J. (2019). A low‐cost, multi‐sensor system to monitor temporary stream dynamics in mountainous headwater catchments. Sensors, 19(21), 4645. https://doi.org/10.3390/s19214645
Bauer,, P., Held,, R. J., Zimmermann,, S., Linn,, F., & Kinzelbach,, W. (2006). Coupled flow and salinity transport modelling in semi‐arid environments: The Shashe River Valley, Botswana. Journal of Hydrology, 316(1–4), 163–183. https://doi.org/10.1016/j.jhydrol.2005.04.018
Bennett,, J. C., Wang,, Q. J., Robertson,, D. E., Schepen,, A., Li,, M., & Michael,, K. (2017). Assessment of an ensemble seasonal streamflow forecasting system for Australia. Hydrology and Earth System Sciences, 21(12), 6007–6030. https://doi.org/10.5194/hess-21-6007-2017
Berger,, D. L. (2000). Water budget estimates for the 14 hydrographic areas in the middle Humboldt river basin, north‐central Nevada. Department of the Interior: US Geological Survey.
Berthet,, L., Andréassian,, V., Perrin,, C., & Javelle,, P. (2009). How crucial is it to account for the Antecedent Moisture Conditions in flood forecasting? Comparison of event‐based and continuous approaches on 178 catchments. Hydrology and Earth System Sciences Discussions, 6(2), 1707–1736. https://doi.org/10.5194/hessd-6-1707-2009
Beven,, K. (2002). Runoff generation in semi‐arid areas. In L. J. Bull, & M. J. Kirkby, (Eds.), Dryland Rivers: Hydrology and geomorphology, Chicester, West Sussex, England: John Wiley %26 Sons, Ltd.
Beven,, K. (2012). Rainfall‐runoff modelling the primer (2nd ed.). Chichester, UK: John Wiley %26 Sons, Ltd. Retrieved from www.wiley.com/wiley-blackwell
Bhamjee,, R. and Lindsay,, J. B. (2011). Ephemeral stream sensor design using state loggers. Hydrol. Earth Syst. Sci., 15, 1009–1021, https://doi.org/10.5194/hess‐15‐1009‐2011
Bhamjee,, R., & Lindsay,, J. B. (2010). Ephemeral stream sensor design using state loggers. Hydrology and Earth Systems Science Discussions, 7, 6381–6405.
Bishop,, K., Buffam,, I., Erlandsson,, M., Fölster,, J., Laudon,, H., Seibert,, J., & Temnerud,, J. (2008). Aqua Incognita: The unknown headwaters. Hydrological Processes, 22(8), 1239–1242. https://doi.org/10.1002/hyp.7049
Biswal,, B., & Marani,, M. (2010). Geomorphological origin of recession curves. Geophysical research letters, 37(24). https://doi.org/10.1029/2010GL045415
Blasch,, K., Ferre,, T. P. A., Hoffmann,, J., Pool,, D., Bailey,, M., Cordova,, J., … Phillips,, F. M. (2004). Processes controlling recharge beneath ephemeral streams in southern Arizona. Groundwater recharge in a desert environment: The Southwestern United States, 9, 69–76. https://doi.org/10.1029/009WSA05
Blasch,, K. W., Constantz,, J., & Stonestrom,, D. A.. (2007). Thermal methods for investigating ground‐water recharge. In ground‐water recharge in the arid and semiarid southwestern United States. (U.S. Geological Survey Paper 1703). Reston.
Blasch,, K. W., Ferre,, T. P. A., Christensen,, A. H., & Hoffmann,, J. P. (2002). New field method to determine streamflow timing using electrical resistance sensors. Vadose Zone Journal, 1(2), 289–299. https://doi.org/10.2113/1.2.289
Blyth,, K., & Rodda,, J. C. (1973). A stream length study. Water Resources Research, 9(5), 1454–1461. https://doi.org/10.1029/WR009i005p01454
Boano,, F., Harvey,, J. W., Marion,, A., Packman,, A. I., Revelli,, R., Ridolfi,, L., Wörman,, A. (2014). Hyporheic flow and transport processes. Reviews of Geophysics, 52(4), 603–679. https://doi.org/10.1002/2012RG000417
Bogan,, M. T., Leidy,, R. A., Neuhaus,, L., Hernandez,, C. J., & Carlson,, S. M. (2019). Biodiversity value of remnant pools in an intermittent stream during the great California drought. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(6), 976–989. https://doi.org/10.1002/aqc.3109
Bogan,, M. T., & Lytle,, D. A. (2011). Severe drought drives novel community trajectories in desert stream pools. Freshwater Biology, 56(10), 2070–2081. https://doi.org/10.1111/j.1365-2427.2011.02638.x
Bogan,, M. T., Noriega‐Felix,, N., Vidal‐Aguilar,, S. L., Findley,, L. T., Lytle,, D. A., Gutiérrez‐Ruacho,, O. G., … Varela‐Romero,, A. (2014). Biogeography and conservation of aquatic fauna in spring‐fed tropical canyons of the southern Sonoran Desert, Mexico. Biodiversity and Conservation, 23(11), 2705–2748. https://doi.org/10.1007/s10531-014-0745-z
Bonacci,, O., Terzić,, J., Roje‐Bonacci,, T., & Frangen,, T. (2019). An intermittent Karst River: The case of the Čikola river (Dinaric karst, Croatia). Water, 11(11), 2415. https://doi.org/10.3390/w11112415
Bond,, N. R. (2002). A simple device for estimating rates of fine sediment transport along the bed of shallow streams. Hydrobiologia, 468(1), 155–161. https://doi.org/10.1023/A:1015270824574
Boulton,, A. J., Valett,, H. M., & Fisher,, S. (1992). Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Archiv für Hydrobiologie, 125(1), 37–61.
Bourke,, S. A., Cook,, P. G., Shanafield,, M., Dogramaci,, S., & Clark,, J. F. (2014). Characterisation of hyporheic exchange in a losing stream using radon‐222. Journal of hydrology, 519, 94–105. https://doi.org/10.1016/j.jhydrol.2014.06.057
Bourke,, S. A., Shanafield,, M., Hedley,, P., & Dogramaci,, S. (2020). A hydrological framework for persistent river pools in semi‐arid environments. Hydrology and Earth System Sciences Discussions, [preprint]. https://doi.org/10.5194/hess-2020-133
Bring,, A., Shiklomanov,, A., & Lammers,, R. B. (2017). Pan‐Arctic river discharge: Prioritizing monitoring of future climate change hot spots. Earth`s Future, 5(1), 72–92. https://doi.org/10.1002/2016EF000434@10.1002/(ISSN)2169-9291.ARCTICJOINT
Bryan,, K. (1919). Classification of springs. The Journal of Geology, 27(7), 522–561. https://doi.org/10.1086/622677
Bull,, L., & Kirkby,, M. (Eds.). (2002). Dryland Rivers: Hydrology and geomorphology of semi‐arid channels. Chichester, UK: John Wiley %26 Sons, Ltd.
Bunn,, S. E., & Arthington,, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management., 30, 492–507. https://doi.org/10.1007/s00267-002-2737-0
Busch,, M. H., Costigan,, K. H., Fritz,, K. M., Datry,, T., Krabbenhoft,, C. A., Hammond,, J. C., … Allen,, D. C. (2020). What`s in a name? Patterns and trends in the definition of non‐perennial rivers and streams. Water, 12(7), 1980. https://doi.org/10.3390/w12071980
Buttle,, J. M., Boon,, S., Peters,, D. L., Spence,, C., van Meerveld,, H. J., & Whitfield,, P. H. (2012). An overview of temporary stream hydrology in Canada. Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques, 37(4), 279–310. https://doi.org/10.4296/cwrj2011-903
Buttle,, J. M., Dillon,, P. J., & Eerkes,, G. R. (2004). Hydrologic coupling of slopes, riparian zones and streams: An example from the Canadian shield. Journal of Hydrology, 287(1–4), 161–177. https://doi.org/10.1016/j.jhydrol.2003.09.022
Buytaert,, W., Zulkafli,, Z., Grainger,, S., Acosta,, L., Alemie,, T. C., Bastiaensen,, J., … Zhumanova,, M. (2014). Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development. Frontiers in Earth Science, 2. https://www.frontiersin.org/articles/10.3389/feart.2014.00026/full
Callegary,, J. B., Leenhouts,, J. M., Paretti,, N. V., & Jones,, C. A. (2007). Rapid estimation of recharge potential in ephemeral‐stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics. Journal of Hydrology, 344(1), 17–31.
Chandesris,, A., Van Looy,, K., Diamond,, J. S., & Souchon,, Y. (2019). Small dams alter thermal regimes of downstream water. Hydrology and Earth System Sciences, 23, 4509–4525. https://doi.org/10.5194/hess-23-4509-2019
Chapin,, T. P., Todd,, A. S., & Zeigler,, M. P. (2014). Robust, low‐cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring. Water Resources Research, 50, 6542–6548. https://doi.org/10.1002/2013WR015158
Constantz,, J., Stonestorm,, D., Stewart,, A. E., Niswonger,, R., & Smith,, T. R. (2001). Analysis of streambed temperatures in ephemeral channels to determine streamflow frequency and duration. Water Resources Research, 37(2), 317–328.
Constantz,, J., & Thomas,, C. L. (1997). Stream bed temperature profiles as indicators of percolation characteristics beneath arroyos in the middle Rio Grande Basin, USA. Hydrological Processes, 11(12), 1621–1634.
Cooney,, P. B., & Kwak,, T. J. (2013). Spatial extent and dynamics of dam impacts on Tropical Island freshwater fish assemblages. Bioscience, 63(3), 176–190. https://doi.org/10.1525/bio.2013.63.3.6
Cooper,, R. J., Hiscock,, K. M., Lovett,, A. A., Dugdale,, S. J., Sünnenberg,, G., Garrard,, N. L., … Lewis,, M. A. (2018). Application of high‐resolution telemetered sensor technology to develop conceptual models of catchment hydrogeological processes. Journal of Hydrology X, 1, 100007. https://doi.org/10.1016/j.hydroa.2018.100007
Costa,, A. C., Bronstert,, A., & de Araújo,, J. C. (2012). A channel transmission losses model for different dryland rivers. Hydrology and Earth System Sciences Discussions, 8, 8903–8962.
Costelloe,, J. F., Grayson,, R. B., Argent,, R. M., & McMahon,, T. A. (2003). Modelling the flow regime of an arid zone floodplain river, Diamantina River, Australia. Environmental Modelling and Software, 18, 693–703. https://doi.org/10.1016/S1364-8152(03)00071-9
Costelloe,, J. F., Grayson,, R. B., & McMahon,, T. A. (2005). Modelling stream flow for use in ecological studies in a large, arid zone river, Central Australia. Hydrological Processes, 19(6), 1165–1183. https://doi.org/10.1002/hyp.5558
Costigan,, K. H., Daniels,, M. D., & Dodds,, W. K. (2015). Fundamental spatial and temporal disconnections in the hydrology of an intermittent prairie headwater network. Journal of Hydrology, 522, 305–316. https://doi.org/10.1016/j.jhydrol.2014.12.031
Costigan,, K. H., Jaeger,, K. L., Goss,, C. W., Fritz,, K. M., & Goebel,, P. C. (2016). Understanding controls on flow permanence in intermittent rivers to aid ecological research: Integrating meteorology, geology and land cover. Ecohydrology, 9(7), 1141–1153. https://doi.org/10.1002/eco.1712
Costigan,, K. H., Kennard,, M. J., Leigh,, C., Sauquet,, E., Datry,, T., & Boulton,, A. J. (2017). Flow regimes in intermittent Rivers and ephemeral streams. In: Intermittent Rivers and Ephemeral Streams: Ecology and Management, edited by Thibault Datry, Nuria Bonada, and Andrew Boulton. Elsevier Inc., London, UK. https://doi.org/10.1016/B978-0-12-803835-2.00003-6
Crerar,, S., Fry,, R. G., Slater,, P. M., Langenhove,, G., & Wheeler,, D. (1988). An unexpected factor affecting recharge from Ephemeral River flows in SWA/Namibia. In I. Simmers, (Ed.), Estimation of natural groundwater recharge (Vol. 222, pp. 11–28). Netherlands: Springer. https://doi.org/10.1007/978-94-015-7780-9_2
Crosbie,, R. S., Taylor,, A. R., Davis,, A. C., Lamontagne,, S., & Munday,, T. (2014). Evaluation of infiltration from losing‐disconnected rivers using a geophysical characterisation of the riverbed and a simplified infiltration model. Journal of Hydrology, 508, 102–113. https://doi.org/10.1016/j.jhydrol.2013.07.045
Cudennec,, C., Leduc,, C., & Koutsoyiannis,, D. (2007). Dryland hydrology in Mediterranean regions ‐ A review. Hydrological Sciences Journal, 52, 1077–1087. https://doi.org/10.1623/hysj.52.6.1077
Cuthbert,, M. O., Gleeson,, T., Moosdorf,, N., Befus,, K. M., Schneider,, A., Hartmann,, J., & Lehner,, B. (2019). Global patterns and dynamics of climate–groundwater interactions. Nature Climate Change, 9(2), 137–141. https://doi.org/10.1038/s41558-018-0386-4
Dahan,, O., Shani,, Y., Enzel,, Y., Yechieli,, Y., & Yakirevich,, A. (2007). Direct measurements of floodwater infiltration into shallow alluvial aquifers. Journal of Hydrology, 344(3), 157–170.
Dahan,, O., Tatarsky,, B., Enzel,, Y., Kulls,, C., Seely,, M., & Benito,, G. (2008). Dynamics of flood water infiltration and ground water recharge in hyperarid desert. Ground Water, 46(3), 450–461.
Dahlin,, T., & Owen,, R. (2005). Alluvial aquifers at geological boundaries. In Groundwater and human development (pp. 233–246). Rotterdam: AA Balkema Publishers. https://doi.org/10.1201/9781439833599.ch19
Dai,, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58. https://doi.org/10.1038/nclimate1633
Daliakopoulos,, I. N., & Tsanis,, I. K. (2016). Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow. Hydrological Sciences Journal, 61(15), 2763–2774. https://doi.org/10.1080/02626667.2016.1154151
Datry,, T., Bonada,, N., & Boulton,, A. (2017). Preface. Intermittent rivers and ephemeral streams: Ecology and management, xxiii. https://doi.org/10.1016/B978-0-12-803835-2.10000-2
Datry,, T., Boulton,, A. J., Bonada,, N., Fritz,, K., Leigh,, C., Sauquet,, E., … Dahm,, C. N. (2018). Flow intermittence and ecosystem services in rivers of the anthropocene. Journal of Applied Ecology, 55(1), 353–364. https://doi.org/10.1111/1365-2664.12941
Datry,, T., Larned,, S. T., & Tockner,, K. (2014). Intermittent Rivers: A challenge for freshwater ecology. Bioscience, 64(3), 229–235. https://doi.org/10.1093/biosci/bit027
Datry,, T., Pella,, H., Leigh,, C., Bonada,, N., & Hugueny,, B. (2016). A landscape approach to advance intermittent river ecology. Freshwater Biology, 61(8), 1200–1213. https://doi.org/10.1111/fwb.12645
Day,, D. G. (1978). Drainage density changes during rainfall. Earth Surface Processes, 3(3), 319–326. https://doi.org/10.1002/esp.3290030310
De Girolamo,, A. M., Lo Porto,, A., Pappagallo,, G., Tzoraki,, O., & Gallart,, F. (2015). The hydrological status concept: Application at a Temporary River (Candelaro, Italy). River Research and Applications, 31(7), 892–903. https://doi.org/10.1002/rra.2786
de Vries,, J. J. (1995). Seasonal expansion and contraction of stream networks in shallow groundwater systems. Journal of Hydrology, 170(1–4), 15–26. https://doi.org/10.1016/0022-1694(95)02684-H
Dean,, J. F., Camporese,, M., Webb,, J. A., Grover,, S. P., Dresel,, P. E., & Daly,, E. (2016). Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling. Water Resources Research, 52(6), 4713–4729. https://doi.org/10.1002/2016WR018663
Deemy,, J. B., & Rasmussen,, T. C. (2017). Hydrology and water quality of isolated wetlands: Stormflow changes along two episodic flowpaths. Journal of Hydrology: Regional Studies, 14, 23–36. https://doi.org/10.1016/j.ejrh.2017.10.001
Deitch,, M. J., Kondolf,, G. M., & Merenlender,, A. M. (2009). Hydrologic impacts of small‐scale instream diversions for frost and heat protection in the California wine country. River Research and Applications, 25(2), 118–134. https://doi.org/10.1002/rra.1100
Dodds,, W. K. (1997). Distribution of runoff and rivers related to vegetative characteristics, latitude, and slope: A global perspective. Journal of the North American Benthological Society, 16(1), 162–168.
Dogramaci,, S., Firmani,, G., Hedley,, P., Skrzypek,, G., & Grierson,, P. F. (2015). Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance. Journal of Hydrology, 521, 520–532. https://doi.org/10.1016/j.jhydrol.2014.12.017
Döll,, P., & Schmied,, H. M. (2012). How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global‐scale analysis. Environmental Research Letters, 7(1), 14037.
Dresel,, P. E., Dean,, J. F., Perveen,, F., Webb,, J. A., Hekmeijer,, P., Adelana,, S. M., & Daly,, E. (2018). Effect of Eucalyptus plantations, geology, and precipitation variability on water resources in upland intermittent catchments. Journal of Hydrology, 564, 723–739. https://doi.org/10.1016/j.jhydrol.2018.07.019
Dunkerley,, D. L. (1992). Channel geometry, bed material, and inferred flow conditions in ephemeral stream systems, barrier range, western N.S.W. Australia. Hydrological Processes, 6(4), 417–433. https://doi.org/10.1002/hyp.3360060404
Dunkerley,, D. L. (2008). Bank permeability in an Australian ephemeral dry‐land stream: Variation with stage resulting from mud deposition and sediment clogging. Earth Surface Processes and Landforms, 33(2), 226–243.
Dunne,, T., & Black,, R. D. (1970). An experimental investigation of runoff production in permeable soils. Water Resources Research, 6(2), 478–490. https://doi.org/10.1029/WR006i002p00478
Durighetto,, N., Vingiani,, F., Bertassello,, L. E., Camporese,, M., & Botter,, G. (2020). Intraseasonal drainage network dynamics in a headwater catchment of the Italian Alps. Water Resources Research, 56(4), e2019WR025563. https://doi.org/10.1029/2019WR025563
Ellison,, J. C., Smethurst,, P. J., Morrison,, B. M., Keast,, D., Almeida,, A., Taylor,, P., … Yu,, H. (2019). Real‐time river monitoring supports community management of low‐flow periods. Journal of Hydrology, 572, 839–850. https://doi.org/10.1016/j.jhydrol.2019.03.035
Eng,, K., Wolock,, D. M., & Dettinger,, M. D. (2016). Sensitivity of intermittent streams to climate variations in the USA. River Research and Applications, 32(5), 885–895. https://doi.org/10.1002/rra.2939
Epting,, S. M., Hosen,, J. D., Alexander,, L. C., Lang,, M. W., Armstrong,, A. W., & Palmer,, M. A. (2018). Landscape metrics as predictors of hydrologic connectivity between coastal plain forested wetlands and streams. Hydrological Processes, 32(4), 516–532. https://doi.org/10.1002/hyp.11433
Ferré,, T., Binley,, A. M., Blasch,, K., Callegary,, J. B., Crawford,, S. M., Fink,, J. B., … Scanlon,, B. R. (2007). Geophysical methods for investigating groundwater recharge. Ground‐water recharge in the arid and semiarid southwestern United States. (U.S. Geological Survey Professional Paper 1703). Reston, VA.
Foody,, G. M., Ghoneim,, E. M., & Arnell,, N. W. (2004). Predicting locations sensitive to flash flooding in an arid environment. Journal of Hydrology, 292(1–4), 48–58. https://doi.org/10.1016/j.jhydrol.2003.12.045
Forsee,, W. J., & Ahmad,, S. (2011). Evaluating urban storm‐water infrastructure design in response to projected climate change. Journal of Hydrologic Engineering, 16(11), 865–873. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000383
Four,, B., Thomas,, M., Danger,, M., Angeli,, N., Perga,, M. E., & Banas,, D. (2019). Using stable isotope approach to quantify pond dam impacts on isotopic niches and assimilation of resources by invertebrates in temporary streams: A case study. Hydrobiologia, 834(1), 163–181. https://doi.org/10.1007/s10750-019-3920-0
Freeze,, R. A. (1974). Streamflow generation. Reviews of Geophysics, 12(4), 627. https://doi.org/10.1029/RG012i004p00627
Fritz,, K. M., Johnson,, B. R., & Walters,, D. M. (2008). Physical indicators of hydrologic permanence in forested headwater streams. Journal of the North American Benthological Society, 27(3), 690–704. https://doi.org/10.1899/07-117.1
Frostick,, L. E., Reid,, I., & Layman,, J. T. (2009). Changing size distribution of suspended sediment in arid‐zone flash floods. In Modern and ancient fluvial systems (pp. 97–106). Oxford, UK: Wiley Blackwell. https://doi.org/10.1002/9781444303773.ch7
Fureder,, L., Schutz,, C., Wallinger,, M., & Burger,, R. (2001). Physico‐chemistry and aquatic insects of a glacier‐fed and a spring‐fed alpine stream. Freshwater Biology, 46(12), 1673–1690. https://doi.org/10.1046/j.1365-2427.2001.00862.x
Gamvroudis,, C., Nikolaidis,, N. P., Tzoraki,, O., Papadoulakis,, V., & Karalemas,, N. (2015). Water and sediment transport modeling of a large temporary river basin in Greece. Science of the Total Environment, 508, 354–365. https://doi.org/10.1016/j.scitotenv.2014.12.005
Gannon,, J. P., Kinner,, D., Styers,, D., & Lord,, M. (2020). Diel discharge variations in dormant and growing seasons in a headwater catchment suggest potential sources of an evapotranspiration signal. Hydrological Processes, 34(5), 1228–1236. https://doi.org/10.1002/hyp.13670
Garcia,, C., Amengual,, A., Homar,, V., & Zamora,, A. (2017). Losing water in temporary streams on a Mediterranean Island: Effects of climate and land‐cover changes. Global and Planetary Change, 148, 139–152. https://doi.org/10.1016/j.gloplacha.2016.11.010
Gianni,, G., Richon,, J., Perrochet,, P., Vogel,, A., & Brunner,, P. (2016). Rapid identification of transience in streambed conductance by inversion of floodwave responses. Water Resources Research, 52(4), 2647–2658. https://doi.org/10.1002/2015WR017154
Gleason,, C. J., Smith,, L. C., & Lee,, J. (2014). Retrieval of river discharge solely from satellite imagery and at‐many‐stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Resources Research, 50(12), 9604–9619. https://doi.org/10.1002/2014WR016109
Godsey,, S. E., & Kirchner,, J. W. (2014). Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrological Processes, 28(23), 5791–5803. https://doi.org/10.1002/hyp.10310
Gómez‐Gener,, L., Obrador,, B., von Schiller,, D., Marcé,, R., Casas‐Ruiz,, J. P., Proia,, L., … Koschorreck,, M. (2015). Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry, 125(3), 409–426. https://doi.org/10.1007/s10533-015-0139-7
Goodrich,, D. C., Kepner,, W. G., Levick,, L. R., & Wigington,, P. J. (2018). Southwestern intermittent and ephemeral stream connectivity. JAWRA Journal of the American Water Resources Association, 54(2), 400–422. https://doi.org/10.1111/1752-1688.12636
Goulsbra,, C., Evans,, M., & Lindsay,, J. (2014). Temporary streams in a peatland catchment: Pattern, timing, and controls on stream network expansion and contraction. Earth Surface Processes and Landforms, 39(6), 790–803. https://doi.org/10.1002/esp.3533
Goulsbra,, C. S., Lindsay,, J. B., & Evans,, M. G. (2009). A new approach to the application of electrical resistance sensors to measuring the onset of ephemeral streamflow in wetland environments. Water Resources Research, 45(9), W09501.
Graef,, F., & Haigis,, J. (2001). Spatial and temporal rainfall variability in the Sahel and its effects on farmers` management strategies. Journal of Arid Environments, 48(2), 221–231. https://doi.org/10.1006/jare.2000.0747
Graf,, W. L. (1983). Flood‐related channel change in an arid‐region river. Earth Surface Processes and Landforms, 8(2), 125–139. https://doi.org/10.1002/esp.3290080204
Graham,, C. B., Barnard,, H. R., Kavanagh,, K. L., & McNamara,, J. P. (2013). Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrological Processes, 27(18), 2541–2556. https://doi.org/10.1002/hyp.9334
Gregory,, K. J., & Walling,, D. E. (1968). The variation of drainage density within a catchment. Hydrological Sciences Journal, 13(2), 61–68. https://doi.org/10.1080/02626666809493583
Gungle,, B. (2006). Timing and Duration of Flow in Ephemeral Streams of the Sierra Vista Subwatershed of the Upper San Pedro Basin, Cochise County, Southeastern Arizona. Scientific Investigations Report 2005–5190. Reston, VA. Retrieved from https://pubs.er.usgs.gov/publication/sir20055190
Gutiérrez‐Jurado,, K. Y., Partington,, D., Batelaan,, O., Cook,, P., & Shanafield,, M. (2019). What triggers streamflow for intermittent Rivers and ephemeral streams in low‐gradient catchments in Mediterranean climates. Water Resources Research, 55(11), 9926–9946. https://doi.org/10.1029/2019WR025041
Hale,, R. L., & Godsey,, S. E. (2019). Dynamic stream network intermittence explains emergent dissolved organic carbon chemostasis in headwaters. Hydrological Processes, 33(13), hyp.13455. https://doi.org/10.1002/hyp.13455
Halloran,, L. J. S., Rau,, G. C., & Andersen,, M. S. (2016). Heat as a tracer to quantify processes and properties in the vadose zone: A review. Earth‐Science Reviews, 159, 358–373. https://doi.org/10.1016/j.earscirev.2016.06.009
Hamilton,, S. K., Bunn,, S. E., Thoms,, M. C., & Marshall,, J. C. (2005). Persistence of aquatic refugia between flow pulses in a dryland river system (Cooper Creek, Australia). Limnology and Oceanography, 50, 743–754. https://doi.org/10.4319/lo.2005.50.3.0743
Harjung,, A., Sabater,, F., & Butturini,, A. (2018). Hydrological connectivity drives dissolved organic matter processing in an intermittent stream. Limnologica, 68, 71–81. https://doi.org/10.1016/j.limno.2017.02.007
Harrington,, G. A., Gardner,, W. P., & Munday,, T. J. (2013). Tracking groundwater discharge to a large river using tracers and geophysics. Groundwater, 52(6), 837–852. https://doi.org/10.1111/gwat.12124
Harte,, P. T., & Kiah,, R. G. (2009). Measured river leakages using conventional streamflow techniques: The case of Souhegan River, New Hampshire, USA. Hydrogeology Journal, 17(2), 409–424.
Hay,, S. E., Jenkins,, K. M., & Kingsford,, R. T. (2018). Diverse invertebrate fauna using dry sediment as a refuge in semi‐arid and temperate Australian rivers. Hydrobiologia, 806(1), 95–109. https://doi.org/10.1007/s10750-017-3343-8
Heppner,, C. S., Loague,, K., & VanderKwaak,, J. E. (2007). Long‐term InHM simulations of hydrologic response and sediment transport for the R‐5 catchment. Earth Surface Processes and Landforms, 32(9), 1273–1292. https://doi.org/10.1002/esp.1474
Hoetzl,, H. (1996). Origin of the Danube‐Aach system. Environmental Geology, 27(2), 87–96.
Hoffmann,, J. P., Blasch,, K. W., Pool,, D. R., Bailey,, M. A., & Callegary,, J. B. (2007). Estimated infiltration, percolation, and recharge at the Rillito Creek investigation site, Southeastern Arizona. Ground‐water recharge in the arid and semiarid Southwestern United States. (U.S. Geological Survey Professional Paper 1703). Reston, VA, pp. 185–220.
Hooshyar,, M., Kim,, S., Wang,, D., & Medeiros,, S. C. (2015). Wet channel network extraction by integrating LiDAR intensity and elevation data. Water Resources Research, 51(12), 10029–10046. https://doi.org/10.1002/2015WR018021
Horton,, R. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.
Huang,, C., Chen,, Y., Zhang,, S., & Wu,, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56(2), 333–360. https://doi.org/10.1029/2018RG000598
Hughes,, D. A. (2005). Hydrological issues associated with the determination of environmental water requirements of ephemeral rivers. River Research and Applications, 21(8), 899–908. https://doi.org/10.1002/rra.857
Ivkovic,, K. M., Croke,, B. F. W., & Kelly,, R. A. (2014). Overcoming the challenges of using a rainfall‐runoff model to estimate the impacts of groundwater extraction on low flows in an ephemeral stream. Hydrology Research, 45(1), 58–72. https://doi.org/10.2166/nh.2013.204
Jackson,, C. R., & Pringle,, C. M. (2010). Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes. Bioscience, 60(1), 37–46. https://doi.org/10.1525/bio.2010.60.1.8
Jacobson,, P. J., Jacobson,, K. M., Angermeier,, P. L., & Cherry,, D. S. (2000). Hydrologic influences on soil properties along ephemeral rivers in the Namib Desert. Journal of Arid Environments, 45(1), 21–34. https://doi.org/10.1006/jare.1999.0619
Jaeger,, K. L., & Olden,, J. D. (2011). Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Research and Applications, 28(10), 1843–1852.
Jaeger,, K. L., Sando,, R., McShane,, R. R., Dunham,, J. B., Hockman‐Wert,, D. P., Kaiser,, K. E., … Blasch,, K. W. (2019). Probability of streamflow permanence model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific northwest. Journal of Hydrology X, 2, 100005. https://doi.org/10.1016/j.hydroa.2018.100005
Jaeger,, K. L., Sutfin,, N. A., Tooth,, S., Michaelides,, K., & Singer,, M. (2017). Geomorphology and Sediment Regimes of Intermittent Rivers and Ephemeral Streams. U.S. geological survey information technology report, 2002–0010. In Intermittent Rivers and Ephemeral Streams: Ecology and Management (pp. 21–49). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803835-2.00002-4
Jensen,, C. K., McGuire,, K. J., McLaughlin,, D. L., & Scott,, D. T. (2019). Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors. Environmental Monitoring and Assessment, 191(4), 1–19. https://doi.org/10.1007/s10661-019-7373-8
Kalogianni,, E., Vourka,, A., Karaouzas,, I., Vardakas,, L., Laschou,, S., & Skoulikidis,, N. T. (2017). Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river. Science of the Total Environment, 603–604, 639–650. https://doi.org/10.1016/j.scitotenv.2017.06.078
Katz,, G. L., Denslow,, M. W., & Stromberg,, J. C. (2012). The goldilocks effect: Intermittent streams sustain more plant species than those with perennial or ephemeral flow. Freshwater Biology, 57(3), 467–480. https://doi.org/10.1111/j.1365-2427.2011.02714.x
Keller,, K., Allsop,, Q., Brim Box,, J., Buckle,, D., Crook,, D. A., Douglas,, M. M., … King,, A. J. (2019). Dry season habitat use of fishes in an Australian tropical river. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-41287-x
Kennard,, M. J., Pusey,, B. J., Olden,, J. D., MacKay,, S. J., Stein,, J. L., & Marsh,, N. (2010). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 55(1), 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x
King,, T. V., Neilson,, B. T., & Rasmussen,, M. T. (2018). Estimating discharge in low‐order rivers with high‐resolution aerial imagery. Water Resources Research, 54(2), 863–878. https://doi.org/10.1002/2017WR021868
Kisi,, O., & Kerem Cigizoglu,, H. (2007). Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems, 24(3), 211–231. https://doi.org/10.1080/10286600600888565
Knoben,, W. J. M., Woods,, R. A., & Freer,, J. E. (2018). A quantitative hydrological climate classification evaluated with independent streamflow data. Water Resources Research, 54(7), 5088–5109. https://doi.org/10.1029/2018WR022913
Koppen,, W. (1923). Die klimate der erde: Grundriss der klimakunde, Berlin, Germany: De Gruyter.
Koundouri,, P., Boulton,, A. J., Datry,, T., & Souliotis,, I. (2017). Ecosystem services, values, and societal perceptions of intermittent rivers and ephemeral streams. Intermittent rivers and ephemeral streams: Ecology and management (pp. 455–476). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803835-2.00018-8
Kustu,, M. D., Fan,, Y., & Robock,, A. (2010). Large‐scale water cycle perturbation due to irrigation pumping in the US High Plains: A synthesis of observed streamflow changes. Journal of Hydrology, 390(3–4), 222–244. https://doi.org/10.1016/j.jhydrol.2010.06.045
Lamontagne,, S., Taylor,, A. R., Cook,, P. G., Crosbie,, R. S., Brownbill,, R., Williams,, R. M., & Brunner,, P. (2014). Field assessment of surface water‐groundwater connectivity in a semi‐arid river basin (Murray‐Darling, Australia). Hydrological Processes, 28(4), 1561–1572. https://doi.org/10.1002/hyp.9691
Lange,, J., C. Liebundgut,, & Asher‐P. Schick,. (2000). “The importance of single events in arid zone rainfall‐runoff modelling.” Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 25(7–8), 673‐677. https://doi.org/10.1016/S1464‐1909(00)00083‐6
Lange,, J. (2005). Dynamics of transmission losses in a large arid stream channel. Journal of Hydrology, 306(1), 112–126.
Lange,, J., & Leibundgut,, C. (2003). Surface runoff and sediment dynamics in arid and semi‐arid regions. In I. Simmers, (Ed.), Understanding water in a dry environment (pp. 131–166). Lisse, The Netherlands: Swets %26 Zeitlinger BV.
Langhammer,, J., & Vacková,, T. (2018). Detection and mapping of the geomorphic effects of flooding using UAV photogrammetry. Pure and Applied Geophysics, 175(9), 3223–3245. https://doi.org/10.1007/s00024-018-1874-1
Larned,, S. T., Gooseff,, M. N., Packman,, A. I., Rugel,, K., & Wondzell,, S. M. (2015). Groundwater‐surface‐water interactions: Current research directions. Freshwater Science, 34(1), 92–98. https://doi.org/10.1086/679491
Lehner,, B., Verdin,, K., & Jarvis,, A. (2008). New global hydrography derived from spaceborne elevation data. Eos, 89(10), 93–94. https://doi.org/10.1029/2008EO100001
Lin,, P., Pan,, M., Beck,, H. E., Yang,, Y., Yamazaki,, D., Frasson,, R., … Wood,, E. F. (2019). Global reconstruction of Naturalized River flows at 2.94 million reaches. Water Resources Research, 55(8), 6499–6516. https://doi.org/10.1029/2019WR025287
Liu,, C., Wang,, L., Xin,, Z., & Li,, Y. (2018). Comparative study of wet channel network extracted from LiDAR data under different climate conditions. Hydrology Research, 49(4), 1101–1119. https://doi.org/10.2166/nh.2017.255
Looman,, A., Maher,, D. T., Pendall,, E., Bass,, A., & Santos,, I. R. (2017). The carbon dioxide evasion cycle of an intermittent first‐order stream: Contrasting water–air and soil–air exchange. Biogeochemistry, 132(1–2), 87–102. https://doi.org/10.1007/s10533-016-0289-2
Lovill,, S. M., Hahm,, W. J., & Dietrich,, W. E. (2018). Drainage from the critical zone: Lithologic controls on the persistence and spatial extent of wetted channels during the summer dry season. Water Resources Research, 54(8), 5702–5726. https://doi.org/10.1029/2017WR021903
Lytle,, D. A., Merritt,, D. M., Tonkin,, J. D., Olden,, J. D., & Reynolds,, L. V. (2017). Linking river flow regimes to riparian plant guilds: A community‐wide modeling approach. Ecological Applications, 27(4), 1338–1350. https://doi.org/10.1002/eap.1528
Martinet,, M. C., Vivoni,, E. R., Cleverly,, J. R., Thibault,, J. R., Schuetz,, J. F., & Dahm,, C. N. (2009). On groundwater fluctuations, evapotranspiration and understory removal in riparian corridors. Water Resources Research, 45, W05425. https://doi.org/10.1029/2008WR007152
Maxwell,, R. M. (2010). Infiltration in arid environments: Spatial patterns between subsurface heterogeneity and water‐energy balances. Vadose Zone Journal, 9(4), 970–983. https://doi.org/10.2136/vzj2010.0014
Mayer,, T. D., & Naman,, S. W. (2011). Streamflow response to climate as influenced by geology and Elevation1. JAWRA Journal of the American Water Resources Association, 47(4), 724–738. https://doi.org/10.1111/j.1752-1688.2011.00537.x
McCallum,, A. M., Andersen,, M. S., Giambastiani,, B. M. S., Kelly,, B. F. J., & Ian Acworth,, R. (2013). River‐aquifer interactions in a semi‐arid environment stressed by groundwater abstraction. Hydrological Processes, 27(7), 1072–1085. https://doi.org/10.1002/hyp.9229
McDonough,, O. T., Lang,, M. W., Hosen,, J. D., & Palmer,, M. A. (2015). Surface hydrologic connectivity between Delmarva Bay wetlands and nearby streams along a gradient of agricultural alteration. Wetlands, 35, 41–53. https://doi.org/10.1007/s13157-014-0591-5
Morin,, E., Grodek,, T., Dahan,, O., Benito,, G., Kulls,, C., Jacoby,, Y., … Enzel,, Y. (2009). Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia. Journal of Hydrology, 368(1–4), 262–275. https://doi.org/10.1016/j.jhydrol.2009.02.015
Mudd,, S. M. (2006). Investigation of the hydrodynamics of flash floods in ephemeral channels: Scaling analysis and simulation using a shock‐capturing flow model incorporating the effects of transmission losses. Journal of Hydrology, 324(1), 65–79.
Nathanson,, M., Kean,, J. W., Grabs,, T. J., Seibert,, J., Laudon,, H., & Lyon,, S. W. (2012). Modelling rating curves using remotely sensed LiDAR data. Hydrological Processes, 26(9), 1427–1434. https://doi.org/10.1002/hyp.9225
Newman,, B. D., Vivoni,, E. R., & Groffman,, A. R. (2006). Surface water‐groundwater interactions in semiarid drainages of the American southwest. Hydrological Processes, 20(15), 3371–3394.
Niswonger,, R. G., Prudic,, D. E., Fogg,, G. E., Stonestrom,, D. A., & Buckland,, E. M. (2008). Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams. Water Resources Research, 44(5), W05418.
Niswonger,, R. G., Prudic,, D. E., Pohll,, G., & Constantz,, J. (2005). Incorporating seepage losses into the unsteady streamflow equations for simulating intermittent flow along mountain front streams. Water Resources Research, 41(6), W06006. https://doi.org/10.1029/2004WR003677
Noorduijn,, S. L., Shanafield,, M., Trigg,, M. A., Harrington,, G. A., Cook,, P. G., & Peeters,, L. (2014). Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data. Water Resources Research, 50(2), 1474–1489. https://doi.org/10.1002/2012WR013424
Osterkamp,, W. R., Lane,, L. J., & Menges,, C. M. (1995). Techniques of ground‐water recharge estimates in arid/semi‐arid areas, with examples from Abu Dhabi. Journal of Arid Environments, 31(3), 349–369.
Partington,, D., Brunner,, P., Frei,, S., Simmons,, C. T., Werner,, A. D., Therrien,, R., … Fleckenstein,, J. H. (2013). Interpreting streamflow generation mechanisms from integrated surface‐subsurface flow models of a riparian wetland and catchment. Water Resources Research, 49(9), 5501–5519. https://doi.org/10.1002/wrcr.20405
Peirce,, S. E., & Lindsay,, J. B. (2015). Characterizing ephemeral streams in a southern Ontario watershed using electrical resistance sensors. Hydrological Processes, 29(1), 103–111. https://doi.org/10.1002/hyp.10136
Penna,, D., Tromp‐van Meerveld,, H. J., Gobbi,, A., Borga,, M., & Dalla Fontana,, G. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15(3), 689–702. https://doi.org/10.5194/hess-15-689-2011
Perrin,, J. L., Salles,, C., Bancon‐Montigny,, C., Raïs,, N., Chahinian,, N., Dowse,, L., … Tournoud,, M. G. (2018). Comparison of index systems for rating water quality in intermittent rivers. Environmental Monitoring and Assessment, 190, 70. https://doi.org/10.1007/s10661-017-6396-2
Peters,, D. L., Boon,, S., Huxter,, E., Spence,, C., van Meerveld,, H. J. I., & Whitfield,, P. H. (2012). ZeroFlow: A PUB (prediction in ungauged basins) workshop on temporary streams ‐ Summary of workshop discussions and future directions. Canadian Water Resources Journal, 37(4), 425–431. https://doi.org/10.4296/cwrj2012-904
Petrone,, K. C., Hughes,, J. D., Van Niel,, T. G., & Silberstein,, R. P. (2010). Streamflow decline in southwestern Australia, 1950–2008. Geophysical Research Letters, 37(11), L11401. https://doi.org/10.1029/2010GL043102
Pilgrim,, D. H., Chapman,, T. G., & Doran,, D. G. (1988). Problèmes de la mise au point de modèles pluie‐écoulement dans les régions arides et semi‐arides. Hydrological Sciences Journal, 33(4), 379–400. https://doi.org/10.1080/02626668809491261
Poff,, N. L. (1996). A hydrogeography of unregulated streams in the United States and an examination of scale‐dependence in some hydrological descriptors. Freshwater Biology, 36(1), 71–79. https://doi.org/10.1046/j.1365-2427.1996.00073.x
Poff,, N. L., Allan,, J. D., Bain,, M. B., Karr,, J. R., Prestegaard,, K. L., Richter,, B. D., … Stromberg,, J. C. (1997). The natural flow regime. Bioscience, 47(11), 769–784. https://doi.org/10.2307/1313099
Pool,, D. R. (2005). Variations in climate and ephemeral channel recharge in southeastern Arizona, United States. Water Resources Research, 41(11), W11403. https://doi.org/10.1029/2004WR003255
Prancevic,, J. P., & Kirchner,, J. W. (2019). Topographic controls on the extension and retraction of flowing streams. Geophysical Research Letters, 46(4), 2084–2092. https://doi.org/10.1029/2018GL081799
Prosser,, I. P. (2011). Current water availability and use. In Water:Science and solutions for Australia (pp. 1–16). Canberra: CSIRO Retrieved from https://www.publish.csiro.au/ebook/chapter/9780643103283_Chapter_1
Prudic,, D., Niswonger,, R., Harrill,, J., & Wood,, J.. (2007). Streambed infiltration and groundwater flow from the Trout Creek drainage, an intermittent tributary to the Humboldt River, north‐Central Nevada. Ground‐water recharge in the arid and semiarid southwestern United States. (USGS Professional Paper 1703). Reston, VA.
Puckridge,, J. T., Sheldon,, F., Walker,, K. F., & Boulton,, A. J. (1998). Flow variability and the ecology of large rivers. Marine and Freshwater Research, 49(1), 55–72. https://doi.org/10.1071/MF94161
Pusey,, B. J., Kennard,, M. J., Douglas,, M., & Allsop,, Q. (2018). Fish assemblage dynamics in an intermittent river of the northern Australian wet‐dry tropics. Ecology of Freshwater Fish, 27(1), 78–88. https://doi.org/10.1111/eff.12325
Quichimbo,, E. A., Singer,, M. B., & Cuthbert,, M. O. (2020). Characterizing groundwater‐surface water interactions in idealized ephemeral stream systems. Hydrological Processes, 34, 3792–3806. https://doi.org/10.1002/hyp.13847
Rau,, G. C., Halloran,, L. J. S., Cuthbert,, M. O., Andersen,, M. S., Acworth,, R. I., & Tellam,, J. H. (2017). Characterising the dynamics of surface water‐groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures. Advances in Water Resources, 107, 354–369. https://doi.org/10.1016/j.advwatres.2017.07.005
Reid,, I., & Frostick,, L. E. (1987). Flow dynamics and suspended sediment properties in arid zone flash floods. Hydrological processes, 1(3), 239–253. https://doi.org/10.1002/9781444303773.ch7
Reid,, I., & Frostick,, L. E. (2011). Channel form, flows and sediments of endogenous ephemeral Rivers in deserts. In Arid zone geomorphology: Process, form and change in drylands (pp. 301–332). Chichester, UK: Wiley Blackwell. https://doi.org/10.1002/9780470710777.ch13
Richter,, B. D. (1996). Un metro para evaluar alteraciones hidrologicas dentro de ecosistemas. Conservation Biology, 10(4), 1163–1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x
Richter,, B. D., Baumgartner,, J. V., Wigington,, R., & Braun,, D. P. (1997). How much water does a river need?. Freshwater biology, 37(1), 231–249. https://doi.org/10.1046/j.1365-2427.1997.00153.x
Rodríguez‐Burgueño,, J. E., Shanafield,, M., & Ramírez‐Hernández,, J. (2017). Comparison of infiltration rates in the dry riverbed of the Colorado River Delta during environmental flows. Ecological Engineering, 106, 675–682. https://doi.org/10.1016/j.ecoleng.2017.02.014
Rogosch,, J. S., Tonkin,, J. D., Lytle,, D. A., Merritt,, D. M., Reynolds,, L. V., & Olden,, J. D. (2019). Increasing drought favors nonnative fishes in a dryland river: Evidence from a multispecies demographic model. Ecosphere, 10(4), e02681. https://doi.org/10.1002/ecs2.2681
Romaní,, A. M., Chauvet,, E., Febria,, C., Mora‐Gómez,, J., Risse‐Buhl,, U., Timoner,, X., … Zeglin,, L. (2017). The biota of intermittent rivers and ephemeral streams: Prokaryotes, fungi, and protozoans. In Intermittent Rivers and Ephemeral Streams: Ecology and Management (pp. 161–188). Elsevier Inc., London, UK. https://doi.org/10.1016/B978-0-12-803835-2.00009-7
Roy,, J. W., & Hayashi,, M. (2009). Multiple, distinct groundwater flow systems of a single moraine‐talus feature in an alpine watershed. Journal of Hydrology, 373(1–2), 139–150. https://doi.org/10.1016/j.jhydrol.2009.04.018
Sabater,, S., Timoner,, X., Borrego,, C., & Acuña,, V. (2016). Stream biofilm responses to flow intermittency: From cells to ecosystems. Front. Environ. Sci. 4, 14. doi: 10.3389/fenvs.2016.00014
Sajikumar,, N., & Thandaveswara,, B. S. (1999). A non‐linear rainfall‐runoff model using an artificial neural network. Journal of Hydrology, 216(1–2), 32–55. https://doi.org/10.1016/S0022-1694(98)00273-X
Scanlon,, B. R., Keese,, K. E., Flint,, A. L., Flint,, L. E., Gaye,, C. B., Edmunds,, W. M., & Simmers,, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20(15), 3335–3370. https://doi.org/10.1002/hyp.6335
Schilling,, O. S., Irvine,, D. J., Hendricks Franssen,, H.‐J., & Brunner,, P. (2017). Estimating the spatial extent of unsaturated zones in Heterogeneous River‐aquifer systems. Water Resources Research, 53(12), 10583–10602. https://doi.org/10.1002/2017WR020409
Schmadel,, N. M., Neilson,, B. T., & Stevens,, D. K. (2010). Approaches to estimate uncertainty in longitudinal channel water balances. Journal of Hydrology, 394(3), 357–369.
Schreiner‐McGraw,, A. P., & Vivoni,, E. R. (2017). Percolation observations in an arid Piedmont watershed and linkages to historical conditions in the Chihuahuan Desert. Ecosphere, 8(11), e02000. https://doi.org/10.1002/ecs2.2000
Schreiner‐McGraw,, A. P., & Vivoni,, E. R. (2018). On the sensitivity of hillslope runoff and channel transmission losses in arid Piedmont slopes. Water Resources Research, 54(7), 4498–4518. https://doi.org/10.1029/2018WR022842
Schreiner‐McGraw,, A. P., Vivoni,, E. R., Ajami,, H., Sala,, O. E., Throop,, H. L., & Peters,, D. P. C. (2020). Woody Plant encroachment is expected to have a larger impact than climate change on dryland water budgets. Scientific Reports, 10, 8112. https://doi.org/10.1038/s41598-020-65094-x
Shanafield,, M., & Cook,, P. G. (2014). Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. Journal of Hydrology, 511, 518–529. https://doi.org/10.1016/j.jhydrol.2014.01.068
Shanafield,, M., Cook,, P. G., Brunner,, P., McCallum,, J. L., & Simmons,, C. T. (2012). Aquifer response to surface water transience in disconnected streams. Water Resources Research, 48(11), 518–529. https://doi.org/10.1029/2012WR012103
Shanafield,, M., Godsey,, S., Datry,, T., Hale,, R., Zipper,, S., Costigan,, K., … Olden,, J. (2020). Science gets up to speed on dry rivers. Eos, 101. https://doi.org/10.1029/2020eo139902
Shanafield,, M., Gutiérrez‐Jurado,, H., Rodríguez‐Burgueño,, J. E., Ramírez‐Hernández,, J., Jarchow,, C. J., & Nagler,, P. L. (2017). Short‐ and long‐term evapotranspiration rates at ecological restoration sites along a large river receiving rare flow events. Hydrological Processes, 31(24), 4328–4337. https://doi.org/10.1002/hyp.11359
Shanafield,, M., Gutiérrrez‐Jurado,, K., White,, N., Hatch,, M., & Keane,, R. (2020). Catchment‐scale characterization of intermittent stream infiltration; A geophysics approach. Journal of Geophysical Research: Earth Surface, 125(2), e2019JF005330. https://doi.org/10.1029/2019JF005330
Shanafield,, M., Niswonger,, R. G., Prudic,, D. E., Pohll,, G., Susfalk,, R., & Panday,, S. (2014). A method for estimating spatially variable seepage and hydraulic conductivity in channels with very mild slopes. Hydrological Processes, 28(1), 51–61. https://doi.org/10.1002/hyp.9545
Shannon,, J., Richardson,, R., & Thornes,, J. (2002). Modelling event‐based fluxes in ephemeral stream. In L. J. Bull, & M. J. Kirkby, (Eds.), Dryland Rivers: Hydrology and geomorphology of semi‐arid channels (pp. 129–172). New York, NY: John Wiley %26 Sons, Ltd..
Sheldon,, F., Bunn,, S. E., Hughes,, J. M., Arthington,, A. H., Balcombe,, S. R., & Fellows,, C. S. (2010). Ecological roles and threats to aquatic refugia in arid landscapes: Dryland river waterholes. Marine and Freshwater Research, 61(8), 885. https://doi.org/10.1071/MF09239
Shentsis,, I., & Rosenthal,, E. (2003). Recharge of aquifers by flood events in an arid region. Hydrological Processes, 17(4), 695–712. https://doi.org/10.1002/hyp.1160
Shumilova,, O., Zak,, D., Datry,, T., von Schiller,, D., Corti,, R., Foulquier,, A., … Arce,, M. I. (2019). Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Global Change Biology, 25(5), 1591–1611. https://doi.org/10.1111/gcb.14537
Silberstein,, R. P., Aryal,, S. K., Durrant,, J., Pearcey,, M., Braccia,, M., Charles,, S. P., … McFarlane,, D. J. (2012). Climate change and runoff in South‐Western Australia. Journal of Hydrology, 475, 441–455. https://doi.org/10.1016/j.jhydrol.2012.02.009
Simmers,, I. (2003). Understanding water in a dry environment: Hydrological processes in arid and semi‐arid zones. Rotterdam: AA Balkema Publishers.
Smakhtin,, V. U. (2001). Low flow hydrology: A review. Journal of Hydrology, 240(2001), 147–186. https://doi.org/10.1016/S0022-1694(00)00340-1
Smettem,, K. R. J., Waring,, R. H., Callow,, J. N., Wilson,, M., & Mu,, Q. (2013). Satellite‐derived estimates of forest leaf area index in Southwest Western Australia are not tightly coupled to interannual variations in rainfall: Implications for groundwater decline in a drying climate. Global Change Biology, 19(8), 2401–2412. https://doi.org/10.1111/gcb.12223
Sorman,, A. U., & Abdulrazzak,, M. J. (1993). Infiltration‐recharge through Wadi beds in arid regions. Hydrological Sciences Journal, 38(3), 173–186. https://doi.org/10.1080/02626669309492661
Spence,, C., & Mengistu,, S. (2016). Deployment of an unmanned aerial system to assist in mapping an intermittent stream. Hydrological Processes, 30(3), 493–500. https://doi.org/10.1002/hyp.10597
Springer,, A. E., & Stevens,, L. E. (2009). Spheres of discharge of springs. Hydrogeology Journal, 17(1), 83–93. https://doi.org/10.1007/s10040-008-0341-y
Stanley,, E. H., & Boulton,, A. J. (1993). Hydrology and the distribution of Hyporheos: Perspectives from a Mesic River and a desert stream. Journal of the North American Benthological Society, 12(1), 79–83. https://doi.org/10.2307/1467688
Steward,, A. L., Negus,, P., Marshall,, J. C., Clifford,, S. E., & Dent,, C. (2018). Assessing the ecological health of rivers when they are dry. Ecological Indicators, 85, 537–547. https://doi.org/10.1016/j.ecolind.2017.10.053
Steward,, A. L., von Schiller,, D., Tockner,, K., Marshall,, J. C., & Bunn,, S. E. (2012). When the river runs dry: Human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment, 10(4), 202–209. https://doi.org/10.1890/110136
Stewart‐Deaker,, A. E., Stonestorm,, D., & Moore,, S. J.. (2007). Streamflow, infiltration, and ground‐water recharge at Abo Arroyo, New Mexico. Ground‐water recharge in the Aria and Semiarid southwestern United States. (US Geological Survey, Professional Paper 1703).
Stonestrom,, D. A., Constantz,, J., Ferré,, T., & Leake,, S. A. (2007). Ground‐water recharge in the arid and semiarid southwestern United States. (US Geological Survey Professional Paper 1703).
Stonestrom,, D. A., & Harrill,, J. R. (2007). Ground‐water recharge in the arid and semiarid southwestern United States‐climatic and geologic framework. (US Geological Survey Professional Paper 1703‐A).
Stromberg,, J. C., Setaro,, D. L., Gallo,, E. L., Lohse,, K. A., & Meixner,, T. (2017). Riparian vegetation of ephemeral streams. Journal of Arid Environments, 138, 27–37. https://doi.org/10.1016/j.jaridenv.2016.12.004
Stubbington,, R., England,, J., Wood,, P. J., & Sefton,, C. E. M. (2017). Temporary streams in temperate zones: Recognizing, monitoring and restoring transitional aquatic‐terrestrial ecosystems. Wiley Interdisciplinary Reviews: Water, 4(4), e1223. https://doi.org/10.1002/wat2.1223
Subyani,, A. M. (2004). Use of chloride‐mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environmental Geology, 46(6–7), 741–749. https://doi.org/10.1007/s00254-004-1096-y
Sutfin,, N. A., Shaw,, J., Wohl,, E. E., & Cooper,, D. (2014). A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA. Geomorphology, 221, 164–175. https://doi.org/10.1016/j.geomorph.2014.06.005
Svec,, J. R., Kolka,, R. K., & Stringer,, J. W. (2005). Defining perennial, intermittent, and ephemeral channels in eastern Kentucky: Application to forestry best management practices. Forest Ecology and Management, 214(1–3), 170–182. https://doi.org/10.1016/j.foreco.2005.04.008
Tooth,, S. (2000). Process, form and change in dryland rivers: A review of recent research. Earth‐Science Reviews, 51(1), 67–107. https://doi.org/10.1016/S0012-8252(00)00014-3
Tramblay,, Y., Bouvier,, C., Martin,, C., Didon‐Lescot,, J. F., Todorovik,, D., & Domergue,, J. M. (2010). Assessment of initial soil moisture conditions for event‐based rainfall‐runoff modelling. Journal of Hydrology, 387(3–4), 176–187. https://doi.org/10.1016/j.jhydrol.2010.04.006
Turner,, D. S., & Richter,, H. E. (2011). Wet/dry mapping: Using citizen scientists to monitor the extent of perennial surface flow in dryland regions. Environmental Management, 47(3), 497–505. https://doi.org/10.1007/s00267-010-9607-y
United States Environmental Protection Agency (EPA). (2015). Connectivity of streams and wetlands to downstream waters: A review and synthesis of the scientific evidence. Washington, DC. Retrieved from epa.gov/research
Van Dijk,, A. I. J. M., Brakenridge,, G. R., Kettner,, A. J., Beck,, H. E., De Groeve,, T., & Schellekens,, J. (2016). River gauging at global scale using optical and passive microwave remote sensing. Water Resources Research, 52(8), 6404–6418. https://doi.org/10.1002/2015WR018545
Van Meerveld,, H. J., Kirchner,, J. W., Vis,, M. J. P., Assendelft,, R. S., & Seibert,, J. (2019). Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution. Hydrology and Earth System Sciences, 23(11), 4825–4834. https://doi.org/10.5194/hess-23-4825-2019
Van Vliet,, M. T. H., Franssen,, W. H. P., Yearsley,, J. R., Ludwig,, F., Haddeland,, I., Lettenmaier,, D. P., & Kabat,, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change, 23(2), 450–464. https://doi.org/10.1016/j.gloenvcha.2012.11.002
Villeneuve,, S., Cook,, P. G., Shanafield,, M., Wood,, C., & White,, N. (2015). Groundwater recharge via infiltration through an ephemeral riverbed, Central Australia. Journal of Arid Environments, 117, 47–58. https://doi.org/10.1016/j.jaridenv.2015.02.009
Vincent,, W. F., & Laybourn‐Parry,, J. (Eds.). (2008). Polar Lakes and Rivers: Limnology of Arctic and Antarctic aquatic ecosystems. New York, NY: Oxford University Press.
von Schiller,, D., Acuña,, V., Graeber,, D., Martí,, E., Ribot,, M., Sabater,, S., … Tockner,, K. (2011). Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences, 73(4), 485–497. https://doi.org/10.1007/s00027-011-0195-6
von Schiller,, D., Marcé,, R., Obrador,, B., Gómez‐Gener,, L., Casas‐Ruiz,, J. P., Acuña,, V., & Koschorreck,, M. (2014). Carbon dioxide emissions from dry watercourses. Inland Waters, 4(4), 377–382. https://doi.org/10.5268/IW-4.4.746
Walker,, H. J. (1975). Intermittent arctic streams and their influence on landforms. Catena, 2(C, 181–191. https://doi.org/10.1016/S0341-8162(75)80011-7
Walter,, G. R., Necsoiu,, M., & McGinnis,, R. (2012). Estimating Aquifer Channel recharge using optical data interpretation. Ground Water, 50(1), 68–76. https://doi.org/10.1111/j.1745-6584.2011.00815.x
Walters,, M. O. (1990). Transmission losses in arid region. Journal of Hydraulic Engineering, 116(1), 129–138. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(129)
Wang,, P., Pozdniakov,, S. P., & Vasilevskiy,, P. Y. (2017). Estimating groundwater‐ephemeral stream exchange in hyper‐arid environments: Field experiments and numerical simulations. Journal of Hydrology, 555, 68–79. https://doi.org/10.1016/j.jhydrol.2017.10.004
Ward,, A. S. (2016). The evolution and state of interdisciplinary hyporheic research. Wiley Interdisciplinary Reviews: Water, 3(1), 83–103. https://doi.org/10.1002/wat2.1120
Ward,, A. S., Schmadel,, N. M., & Wondzell,, S. M. (2018). Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network. Advances in Water Resources, 114, 64–82. https://doi.org/10.1016/j.advwatres.2018.01.018
Ward,, K., Schmadel,, K., Blaen,, H., … Zarnetske,. (2019). Solute transport and transformation in an intermittent, Headwater Mountain stream with diurnal discharge fluctuations. Water, 11(11), 2208. https://doi.org/10.3390/w11112208
Watson,, V., Kooi,, H., & Bense,, V. (2013). Potential controls on cold‐season river flow behavior in subarctic river basins of Siberia. Journal of Hydrology, 489, 214–226. https://doi.org/10.1016/j.jhydrol.2013.03.011
Welch,, K., Lyons,, B., McKnight,, D., Doran,, P., Fountain,, A., & Wall,, D. (2003). Climate and hydrologic variations and implications for Lake and stream ecological response in the McMurdo dry valleys, Antarctica. In D. Greenland,, D. Goodin,, & R. Smith, (Eds.), Climate variability and ecosystem response at long‐term ecological research sites (p. 174). New York, NY: Oxford University Press.
Wheater,, H. S., Mathias,, S. A., & Li,, X. (Eds.). (2010). Groundwater modelling in arid and semi‐arid areas. New York, NY: Cambridge University Press.
Whitehead,, K., & Hugenholtz,, C. H. (2014). Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. Journal of Unmanned Vehicle Systems, 02(03), 69–85. https://doi.org/10.1139/juvs-2014-0006
Whiting,, J. A., & Godsey,, S. E. (2016). Discontinuous headwater stream networks with stable flowheads, Salmon River basin, Idaho. Hydrological Processes, 30(13), 2305–2316. https://doi.org/10.1002/hyp.10790
Wigington,, P. J., Moser,, T. J., & Lindeman,, D. R. (2005). Stream network expansion: A riparian water quality factor. Hydrological Processes, 19(8), 1715–1721. https://doi.org/10.1002/hyp.5866
Wilcox,, B. P., & Thurow,, T. L. (2006). Emerging issues in rangeland ecohydrology: Vegetation change and the water cycle. Rangeland Ecology and Management, 59(2), 220–224. https://doi.org/10.2111/05-090R1.1
Williams,, W. D. (1988). Limnological imbalances: An antipodean viewpoint. Freshwater Biology, 20(3), 407–420. https://doi.org/10.1111/j.1365-2427.1988.tb00466.x
Winter,, T. C., Harvey,, J. W., Franke,, O. L., & Alley,, W. M. (1998). Ground water and surface water: A single resource. (US Geological Survey Circular. Vol. 1139).
Wolman,, M. G., & Gerson,, R. (1978). Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes, 3(2), 189–208. https://doi.org/10.1002/esp.3290030207
Woo,, M.‐K., & Guan,, X. J. (2006). Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic. Permafrost and Periglacial Processes, 17(4), 309–323. https://doi.org/10.1002/ppp.565
WorldBank, 2017. World map of the Köppen‐Geiger climate classification observed using CRU TS 2.1 temperature and GPCC Full v4 precipitation data, period 1976‐2000; accessed 19/04/2020. https://datacatalog.worldbank.org/dataset/world‐mapsk%C3%B6ppen‐geiger‐climate‐classification
Wu,, H., Kimball,, J. S., Li,, H., Huang,, M., Leung,, L. R., & Adler,, R. F. (2012). A new global river network database for macroscale hydrologic modeling. Water Resources Research, 48(9), W09701. https://doi.org/10.1029/2012WR012313
Yamazaki,, D., O`Loughlin,, F., Trigg,, M. A., Miller,, Z. F., Pavelsky,, T. M., & Bates,, P. D. (2014). Development of the global width database for large rivers. Water Resources Research, 50(4), 3467–3480. https://doi.org/10.1002/2013WR014664
Yamazaki,, D., Ikeshima,, D., Sosa,, J., Bates,, P. D., Allen,, G., & Pavelsky,, T. (2019). MERIT hydro: A high‐resolution global hydrography map based on latest topography datasets. Water Resources Research, 55(6), 5053–5073. https://doi.org/10.1029/2019WR024873
Ye,, W., Bates,, B. C., Viney,, N. R., Sivapalan,, M., & Jakeman,, A. J. (1997). Performance of conceptual rainfall‐runoff models in low‐yielding ephemeral catchments. Water Resources Research, 33(1), 153–166. https://doi.org/10.1029/96WR02840
Ye,, W., Jakeman,, A. J., & Young,, P. C. (1998). Identification of improved rainfall‐runoff models for an ephemeral low‐yielding Australian catchment. Environmental Modelling and Software, 13(1), 59–74. https://doi.org/10.1016/S1364-8152(98)00004-8
Yeakley,, J. A., Ervin,, D., Chang,, H., Granek,, E. F., Dujon,, V., Shandas,, V., & Brown,, D. (2016). Ecosystem services of streams and rivers. In River science (pp. 335–352). Chichester, UK: John Wiley %26 Sons, Ltd.. https://doi.org/10.1002/9781118643525.ch17
Yu,, S., Bond,, N. R., Bunn,, S. E., & Kennard,, M. J. (2019). Development and application of predictive models of surface water extent to identify aquatic refuges in eastern Australian temporary stream networks. Water Resources Research, 55(11), 9639–9655. https://doi.org/10.1029/2019WR025216
Yu,, S., Bond,, N. R., Bunn,, S. E., Xu,, Z., & Kennard,, M. J. (2018). Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data. Journal of Hydrology, 559, 861–872. https://doi.org/10.1016/j.jhydrol.2018.03.009
Zhang,, Z., Kane,, D. L., & Hinzman,, L. D. (2000). Development and application of a spatially‐distributed Arctic hydrological and thermal process model (ARHYTHM). Hydrological Processes, 14(6), 1017–1044. https://doi.org/10.1002/(SICI)1099‐1085(20000430)14:6%3C1017::AID‐HYP982%3E3.0.CO;2‐G
Zimmer,, M. A., Kaiser,, K. E., Blaszczak,, J. R., Zipper,, S. C., Hammond,, J. C., Fritz,, K. M., … Allen,, D. C. (2020). Zero or not? Causes and consequences of zero‐flow stream gage readings. WIREs Water, 7(3). https://doi.org/10.1002/wat2.1436
Zimmer,, M. A., & McGlynn,, B. L. (2017). Bidirectional stream–groundwater flow in response to ephemeral and intermittent streamflow and groundwater seasonality. Hydrological Processes, 31(22), 3871–3880. https://doi.org/10.1002/hyp.11301