Aaltonen,, J., & Olofsson,, B. (2002). Direct current (DC) resistivity measurements in long‐term groundwater monitoring programmes. Environmental Geology, 41(6), 662–671.
Ahmed,, A. S., Revil,, A., & Gross,, L. (2019). Multiscale induced polarization tomography in hydrogeophysics: A new approach. Advances in Water Resources, 134, 103451. https://doi.org/10.1016/j.advwatres.2019.103451
Aines,, R., Nitao,, J., Newmark,, R., Carle,, S., Ramirez,, A., Harris,, D., … Sugiyama,, G. (2002). The stochastic engine initiative: Improving prediction of behavior in geologic environments we cannot directly observe. Livermore, CA: Lawrence Livermore National Lab.
Åkerman,, H. J., & Johansson,, M. (2008). Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafrost and Periglacial Processes, 19(3), 279–292. https://doi.org/10.1002/ppp.626
Archie,, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 146, 54–62.
Atekwana,, E., & Slater,, L. D. (2009). Biogeophysics: A new frontier in earth science research. Reviews of Geophysics, 47(RG4004/2009), 1–30. https://doi.org/10.1029/2009RG000285
Balbarini,, N., Rønde,, V., Maurya,, P., Fiandaca,, G., Møller,, I., Klint,, K. E., … Bjerg,, P. L. (2018). Geophysics‐based contaminant mass discharge quantification downgradient of a landfill and a former pharmaceutical factory. Water Resources Research, 54(8), 5436–5456. https://doi.org/10.1029/2017WR021855
Benson,, R. C., Glaccum,, R. A., & Noel,, M. R. (1983). Geophysical techniques for sensing buried wastes and waste migration, Las Vegas, NV: Environmental Monitoring Systems Laboratory.
Bergmann,, P., Schmidt‐Hattenberger,, C., Labitzke,, T., Wagner,, F. M., Just,, A., Flechsig,, C., & Rippe,, D. (2017). Fluid injection monitoring using electrical resistivity tomography—Five years of CO2 injection at Ketzin, Germany. Geophysical Prospecting, 65(3), 859–875.
Binley,, A., Daily,, W., & Ramirez,, A. (1997). Detecting leaks from environmental barriers using electrical current imaging. Journal of Environmental and Engineering Geophysics, 2(1), 11–19.
Binley,, A., Henry‐Poulter,, S., & Shaw,, B. (1996). Examination of solute transport in an undisturbed soil column using electrical resistance tomography. Water Resources Research, 32(4), 763–769.
Binley,, A., & Slater,, L. (2020). Resistivity and induced polarization: Theory and applications to the near‐surface earth, Cambridge, UK: Cambridge University Press.
Blanchy,, G., Virlet,, N., Sadeghi‐Tehran,, P., Watts,, C. W., Hawkesford,, M. J., Whalley,, W. R., & Binley,, A. (2020). Time‐intensive geoelectrical monitoring under winter wheat. Near Surface Geophysics, 18(4), 413–425. https://doi.org/10.1002/nsg.12107
Blome,, M., Maurer,, H., & Greenhalgh,, S. (2011). Geoelectric experimental design—Efficient acquisition and exploitation of complete pole‐bipole data sets. Geophysics, 76(1), F15–F26.
Bogena,, H. R., White,, T., Bour,, O., Li,, X., & Jensen,, K. H. (2018). Toward better understanding of terrestrial processes through long‐term hydrological observatories. Vadose Zone Journal, 17(1), 180194. https://doi.org/10.2136/vzj2018.10.0194
Bogoslovsky,, V. A., & Ogilvy,, A. A. (1977). Geophysical methods for the investigation of landslides. Geophysics, 42(3), 562–571.
Boulton,, A. J., Findlay,, S., Marmonier,, P., Stanley,, E. H., & Valett,, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29(1), 59–81. https://doi.org/10.1146/annurev.ecolsys.29.1.59
Brillante,, L., Bois,, B., Mathieu,, O., Bichet,, V., Michot,, D., & Lévêque,, J. (2014). Monitoring soil volume wetness in heterogeneous soils by electrical resistivity. A field‐based pedotransfer function. Journal of Hydrology, 55–66. https://doi.org/10.1016/j.jhydrol.2014.01.052
Brunetti,, C., & Linde,, N. (2018). Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection. Advances in Water Resources, 111, 346–359. https://doi.org/10.1016/j.advwatres.2017.11.028
Bussian,, A. E. (1983). Electrical conductance in a porous medium. Geophysics, 48(9), 1258–1268. https://doi.org/10.1190/1.1441549
Cassiani,, G., Godio,, A., Stocco,, S., Villa,, A., Deiana,, R., Frattini,, P., & Rossi,, M. (2009). Monitoring the hydrologic behaviour of a mountain slope via time‐lapse electrical resistivity tomography. Near Surface Geophysics, 7(5–6), 475–486. https://doi.org/10.3997/1873-0604.2009013
Caterina,, D., Flores Orozco,, A., & Nguyen,, F. (2017). Long‐term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination. Journal of Contaminant Hydrology, 201, 19–29. https://doi.org/10.1016/j.jconhyd.2017.04.003
Chambers,, J., Meldrum,, P., Gunn,, D., Wilkinson,, P., Uhlemann,, S., Kuras,, O., & Swift,, R. (2015). Proactive infrastructure monitoring and evaluation (PRIME): a new electrical resistivity tomography system for remotely monitoring the internal condition of geotechnical infrastructure assets. In 3rd International Workshop on Geoelectrical Monitoring (GELMON), Vienna, Austria.
Chambers,, J. E., Gunn,, D. A., Wilkinson,, P. B., Meldrum,, P. I., Haslam,, E., Holyoake,, S., … Wragg,, J. (2014). 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surface Geophysics, 12(1), 61–72.
Chelli,, A., Francese,, R., Petrella,, E., Carri,, A., Quagliarini,, A., Segalini,, A., … Celico,, F. (2020). A multi‐parameter field monitoring system to investigate the dynamics of large earth slides–earth flows in the Northern Apennines, Italy. Engineering Geology, 275, 105780. https://doi.org/10.1016/j.enggeo.2020.105780
Cimpoiaşu,, M. H., Kuras,, O., Pridmore,, T., & Mooney,, S. J. (2020). Potential of geoelectrical methods to monitor root zone processes and structure: A review. Geoderma, 365, 114232. https://doi.org/10.1016/j.geoderma.2020.114232
Clennell,, M. B. (1997). Tortuosity: A guide through the maze. Geological Society, London, Special Publications, 122(1), 299–344. https://doi.org/10.1144/GSL.SP.1997.122.01.18
Coscia,, I., Linde,, N., Greenhalgh,, S., Günther,, T., & Green,, A. (2012). A filtering method to correct time‐lapse 3D ERT data and improve imaging of natural aquifer dynamics. Journal of Applied Geophysics, 80, 12–24. https://doi.org/10.1016/j.jappgeo.2011.12.015
Dafflon,, B., Hubbard,, S., Wainwright,, H., Kneafsey,, T. J., Ulrich,, C., Peterson,, J., & Wu,, Y. (2016). Geophysical estimation of shallow permafrost distribution and properties in an ice‐wedge polygon‐dominated Arctic tundra region. Geophysics, 81(1), WA247–WA263. https://doi.org/10.1190/geo2015-0175.1
Daily,, W., & Ramirez,, A. (1995). Electrical resistance tomography during in‐situ trichloroethylene remediation at the Savannah River site. Journal of Applied Geophysics, 33(4), 239–249. https://doi.org/10.1016/0926-9851(95)90044-6
Daily,, W., Ramirez,, A., & Binley,, A. (2004). Remote monitoring of leaks in storage tanks using electrical resistance tomography: Application at the Hanford site. Journal of Environmental %26 Engineering Geophysics, 9(1), 11–24.
Daily,, W., Ramirez,, A., LaBrecque,, D., & Nitao,, J. (1992). Electrical resistivity tomography of vadose water movement. Water Resources Research, 28(5), 1429–1442.
Daily,, W., & Ramirez,, A. L. (2000). Electrical imaging of engineered hydraulic barriers. Geophysics, 65(1), 83–94.
Day‐Lewis,, F. D., Singha,, K., & Binley,, A. M. (2005). Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution‐dependent limitations. Journal of Geophysical Research: Solid Earth, 110(B8), B08206. https://doi.org/10.1029/2004JB003569
de Franco,, R., Biella,, G., Tosi,, L., Teatini,, P., Lozej,, A., Chiozzotto,, B., … Gasparetto‐Stori,, G. (2009). Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). Journal of Applied Geophysics, 69(3), 117–130. https://doi.org/10.1016/j.jappgeo.2009.08.004
Deceuster,, J., Kaufmann,, O., & Van Camp,, M. (2013). Automated identification of changes in electrode contact properties for long‐term permanent ERT monitoring experiments. Geophysics, 78(2), E79–E94. https://doi.org/10.1190/geo2012-0088.1
Doetsch,, J., Ingeman‐Nielsen,, T., Christiansen,, A. V., Fiandaca,, G., Auken,, E., & Elberling,, B. (2015). Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution. Cold Regions Science and Technology, 119, 16–28. https://doi.org/10.1016/j.coldregions.2015.07.002
Doetsch,, J., Linde,, N., & Binley,, A. (2010). Structural joint inversion of time‐lapse crosshole ERT and GPR traveltime data. Geophysical Research Letters, 37, L24404. https://doi.org/10.1029/2010GL045482
Farzamian,, M., Vieira,, G., Monteiro Santos,, F. A., Yaghoobi Tabar,, B., Hauck,, C., Catarina Paz,, M., … Angel De Pablo,, M. (2020). Detailed detection of active layer freeze‐thaw dynamics using quasi‐continuous electrical resistivity tomography (Deception Island, Antarctica). The Cryosphere, 14(3), 1105–1120. https://doi.org/10.5194/tc-14-1105-2020
Findlay,, S. (1995). Importance of surface‐subsurface exchange in stream ecosystems: The hyporheic zone. Limnology and Oceanography, 40(1), 159–164. https://doi.org/10.4319/lo.1995.40.1.0159
Flores Orozco,, A., Micić,, V., Bücker,, M., Gallistl,, J., Hofmann,, T., & Nguyen,, F. (2019). Complex‐conductivity monitoring to delineate aquifer pore clogging during nanoparticles injection. Geophysical Journal International, 218(3), 1838–1852. https://doi.org/10.1093/gji/ggz255
Galetti,, E., & Curtis,, A. (2018). Transdimensional electrical resistivity tomography. Journal of Geophysical Research: Solid Earth, 123(8), 6347–6377.
Gallardo,, L. A., & Meju,, M. A. (2003). Characterization of heterogeneous near‐surface materials by joint 2D inversion of dc resistivity and seismic data. Geophysical Research Letters, 30(13), 1658. https://doi.org/10.1029/2003GL017370
Garré,, S., Coteur,, I., Wongleecharoen,, C., Kongkaew,, T., Diels,, J., & Vanderborght,, J. (2013). Noninvasive monitoring of soil water dynamics in mixed cropping systems: A case study in Ratchaburi Province, Thailand. Vadose Zone Journal, 12(2), 1–12. https://doi.org/10.2136/vzj2012.0129
Gasperikova,, E., Hubbard,, S. S., Watson,, D. B., Baker,, G. S., Peterson,, J. E., Kowalsky,, M. B., … Brooks,, S. (2012). Long‐term electrical resistivity monitoring of recharge‐induced contaminant plume behavior. Journal of Contaminant Hydrology, 142–143, 33–49. https://doi.org/10.1016/j.jconhyd.2012.09.007
Glover,, P. W. J. (2009). What is the cementation exponent? A new interpretation. The Leading Edge, 28, 82–85.
González‐Aguilera,, D., Gómez‐Lahoz,, J., & Sánchez,, J. (2008). A new approach for structural monitoring of large dams with a three‐dimensional laser scanner. Sensors, 8(9), 5866–5883.
Greenhouse,, J. P., & Harris,, R. D. (1983). Migration of contaminants in groundwater at a landfill: A case study: 7. DC, VLF, and inductive resistivity surveys. Journal of Hydrology, 63(1), 177–197. https://doi.org/10.1016/0022-1694(83)90227-5
Haarder,, E. B., Jensen,, K. H., Binley,, A., Nielsen,, L., Uglebjerg,, T. B., & Looms,, M. C. (2015). Estimation of recharge from Long‐term monitoring of saline tracer transport using electrical resistivity tomography. Vadose Zone Journal, 14(7), vzj2014.08.0110. https://doi.org/10.2136/vzj2014.08.0110
Hackbarth,, D. A. (1971). Field study of subsurface spent sulfite liquor movement using earth resistivity measurements. Groundwater, 9(3), 11–16. https://doi.org/10.1111/j.1745-6584.1971.tb03546.x
Harris,, C., Arenson,, L. U., Christiansen,, H. H., Etzelmüller,, B., Frauenfelder,, R., Gruber,, S., … Vonder Mühll,, D. (2009). Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth‐Science Reviews, 92(3–4), 117–171. https://doi.org/10.1016/j.earscirev.2008.12.002
Heenan,, J., Slater,, L., Ntarlagiannis,, D., Atekwana,, Estella A., Fathepure,, B. Z., Dalvi,, S., … Atekwana,, Eliot A.. (2014). Electrical resistivity imaging for long‐term autonomous monitoring of hydrocarbon degradation: Lessons from the Deepwater Horizon oil spill. Geophysics, 80(1), B1–B11. https://doi.org/10.1190/geo2013-0468.1
Helene,, L. P. I., Moreira,, C. A., & Bovi,, R. C. (2020). Identification of leachate infiltration and its flow pathway in landfill by means of electrical resistivity tomography (ERT). Environmental Monitoring and Assessment, 192(4), 249. https://doi.org/10.1007/s10661-020-8206-5
Hilbich,, C., Fuss,, C., & Hauck,, C. (2011). Automated time‐lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost and Periglacial Processes, 22(4), 306–319. https://doi.org/10.1002/ppp.732
Hilbich,, C., Hauck,, C., Hoelzle,, M., Scherler,, M., Schudel,, L., Völksch,, I., … Mäusbacher,, R. (2008). Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7‐year study of seasonal, annual, and long‐term variations at Schilthorn, Swiss Alps. Journal of Geophysical Research: Earth Surface, 113(1), 1–12. https://doi.org/10.1029/2007JF000799
Hinnell,, A. C., Ferré,, T. P. A., Vrugt,, J. A., Huisman,, J. A., Moysey,, S., Rings,, J., & Kowalsky,, M. B. (2010). Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water Resources Research, 46(4), W00D40.
Hojat,, A., Arosio,, D., Ivanov,, V. I., Loke,, M. H., Longoni,, L., Papini,, M., … Zanzi,, L. (2020). Quantifying seasonal 3D effects for a permanent electrical resistivity tomography monitoring system along the embankment of an irrigation canal. Near Surface Geophysics, 18(4), 427–443. https://doi.org/10.1002/nsg.12110
Holmes,, J., Chambers,, J., Meldrum,, P., Wilkinson,, P., Boyd,, J., Williamson,, P., … Donohue,, S. (2020). Four‐dimensional electrical resistivity tomography for continuous, near‐real‐time monitoring of a landslide affecting transport infrastructure in British Columbia, Canada. Near Surface Geophysics, 18(4), 337–351. https://doi.org/10.1002/nsg.12102
Hübner,, R., Heller,, K., Günther,, T., & Kleber,, A. (2015). Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements. Hydrology and Earth System Sciences, 19(1), 225–240. https://doi.org/10.5194/hess-19-225-2015
Huisman,, J. A., Rings,, J., Vrugt,, J. A., Sorg,, J., & Vereecken,, H. (2010). Hydraulic properties of a model dike from coupled Bayesian and multi‐criteria hydrogeophysical inversion. Journal of Hydrology, 380(1–2), 62–73. https://doi.org/10.1016/j.jhydrol.2009.10.023
Jensen,, K. H., & Refsgaard,, J. C. (2018). HOBE: The Danish hydrological observatory. Vadose Zone Journal, 17(1), 180059. https://doi.org/10.2136/vzj2018.03.0059
Johnson,, T. C., Hammond,, G. E., & Chen,, X. (2017). PFLOTRAN‐E4D: A parallel open source PFLOTRAN module for simulating time‐lapse electrical resistivity data. Computers and Geosciences, 99, 72–80. https://doi.org/10.1016/j.cageo.2016.09.006
Johnson,, T. C., Versteeg,, R. J., Day‐Lewis,, F. D., Major,, W., & Lane,, J. W. (2014). Time‐lapse electrical geophysical monitoring of amendment‐based biostimulation. Groundwater, 53(6), 920–932. https://doi.org/10.1111/gwat.12291
Johnson,, T. C., Versteeg,, R. J., Huang,, H., & Routh,, P. S. (2009). Data‐domain correlation approach for joint hydrogeologic inversion of time‐lapse hydrogeologic and geophysical data. Geophysics, 74(6), F127–F140. https://doi.org/10.1190/1.3237087
Jongmans,, D., & Garambois,, S. (2007). Geophysical investigation of landslides: A review. Bulletin de La Société Géologique de France, 178(2), 101–112.
Kang,, X., Shi,, X., Revil,, A., Cao,, Z., Li,, L., Lan,, T., & Wu,, J. (2019). Coupled hydrogeophysical inversion to identify non‐Gaussian hydraulic conductivity field by jointly assimilating geochemical and time‐lapse geophysical data. Journal of Hydrology, 578, 124092.
Karaoulis,, M., Revil,, A., Zhang,, J., & Werkema,, D. D. (2012). Time‐lapse joint inversion of crosswell DC resistivity and seismic data: A numerical investigation. Geophysics, 77(4), D141–D157. https://doi.org/10.1190/geo2012-0011.1
Karaoulis,, M., Tsourlos,, P., Kim,, J. H., & Revill,, A. (2014). 4D time‐lapse ERT inversion: Introducing combined time and space constraints. In Near Surface Geophysics (Vol. 12, pp. 25–34). EAGE Publishing BV. https://doi.org/10.3997/1873-0604.2013004
Karaoulis,, M. C., Kim,, J.‐H., & Tsourlos,, P. I. (2011). 4D active time constrained resistivity inversion. Journal of Applied Geophysics, 73(1), 25–34.
Kemna,, A., Binley,, A., Cassiani,, G., Niederleithinger,, E., Revil,, A., Slater,, L., … Zimmermann,, E. (2012). An overview of the spectral induced polarization method for near‐surface applications. Near Surface Geophysics, 10(6), 453–468. https://doi.org/10.3997/1873-0604.2012027
Kemna,, A., Vanderborght,, J., Kulessa,, B., & Vereecken,, H. (2002). Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3–4), 125–146.
Kessouri,, P., Furman,, A., Huisman,, J. A., Martin,, T., Mellage,, A., Ntarlagiannis,, D., … E. Placencia‐Gomez,. (2019). Induced polarization applied to biogeophysics: Recent advances and future prospects. Near Surface Geophysics, 17(6), 595–621.
Kim,, J. H., Yi,, M. J., Park,, S. G., & Kim,, J. G. (2009). 4‐D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. Journal of Applied Geophysics, 68(4), 522–532. https://doi.org/10.1016/j.jappgeo.2009.03.002
Kirkby,, M. (1988). Hillslope runoff processes and models. Journal of Hydrology, 100(1), 315–339. https://doi.org/10.1016/0022-1694(88)90190-4
Kneisel,, C., Rödder,, T., & Schwindt,, D. (2014). Frozen ground dynamics resolved by multi‐year and yearround electrical resistivity monitoring at three alpine sites in the Swiss Alps. Near Surface Geophysics, 12(1), 117–132. https://doi.org/10.3997/1873-0604.2013067
Kotikian,, M., Parsekian,, A. D., Paige,, G., & Carey,, A. (2019). Observing heterogeneous unsaturated flow at the Hillslope scale using time‐lapse electrical resistivity tomography. Vadose Zone Journal, 18(1), 1–16. https://doi.org/10.2136/vzj2018.07.0138
Kuras,, O., Pritchard,, J. D., Meldrum,, P. I., Chambers,, J. E., Wilkinson,, P. B., Ogilvy,, R. D., & Wealthall,, G. P. (2009). Monitoring hydraulic processes with automated time‐lapse electrical resistivity tomography (ALERT). Comptes Rendus Geoscience, 341(10–11), 868–885.
Kuras,, O., Wilkinson,, P. B., Meldrum,, P. I., Oxby,, L. S., Uhlemann,, S., Chambers,, J. E., … Atherton,, N. (2016). Geoelectrical monitoring of simulated subsurface leakage to support high‐hazard nuclear decommissioning at the Sellafield Site, UK. Science of the Total Environment, 566–567, 350–359. https://doi.org/10.1016/j.scitotenv.2016.04.212
LaBrecque,, D. J., Heath,, G., Sharpe,, R., & Versteeg,, R. (2004). Autonomous monitoring of fluid movement using 3‐D electrical resistivity tomography. Journal of Environmental and Engineering Geophysics, 9(3), 167–176. https://doi.org/10.4133/jeeg9.3.167
LaBrecque,, D. J., Miletto,, M., Daily,, W., Ramirez,, A., & Owen,, E. (1996). The effects of noise on Occam`s inversion of resistivity tomography data. Geophysics, 61(2), 538–548.
LaBrecque,, D. J., Ramirez,, A. L., Daily,, W. D., Binley,, A. M., & Schima,, S. A. (1996). ERT monitoring of environmental remediation processes. Measurement Science and Technology, 7(3), 375–383. https://doi.org/10.1088/0957-0233/7/3/019
LaBrecque,, D. J., & Yang,, X. (2001). Difference inversion of ERT data: A fast inversion method for 3‐D in situ monitoring. Journal of Environmental and Engineering Geophysics, 6(2), 83–89. https://doi.org/10.4133/jeeg6.2.83
Lesparre,, N., Nguyen,, F., Kemna,, A., Robert,, T., Hermans,, T., Daoudi,, M., & Flores‐Orozco,, A. (2017). A new approach for time‐lapse data weighting in electrical resistivity tomography. Geophysics, 82(6), E325–E333.
Linde,, N. (2014). Falsification and corroboration of conceptual hydrological models using geophysical data. Wiley Interdisciplinary Reviews: Water, 1(2), 151–171. https://doi.org/10.1002/wat2.1011
Looms,, M. C., Binley,, A., Jensen,, K. H., Nielsen,, L., & Hansen,, T. M. (2008). Identifying unsaturated hydraulic parameters using an integrated data fusion approach on cross‐borehole geophysical data. Vadose Zone Journal, 7(1), 238. https://doi.org/10.2136/vzj2007.0087
Loperte,, A., Soldovieri,, F., & Lapenna,, V. (2015). Monte Cotugno dam monitoring by the electrical resistivity tomography. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(11), 5346–5351. https://doi.org/10.1109/JSTARS.2015.2476663
Lu,, N., & Godt,, J. W. (2013). Hillslope hydrology and stability, Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781139108164
Mboh,, C. M., Huisman,, J. A., Van Gaelen,, N., Rings,, J., & Vereecken,, H. (2012). Coupled hydrogeophysical inversion of electrical resistances and inflow measurements for topsoil hydraulic properties under constant head infiltration. Near Surface Geophysics, 10(5), 413–426. https://doi.org/10.3997/1873-0604.2012009
McKenzie,, J. M., & Voss,, C. I. (2013). Permafrost thaw in a nested groundwater‐flow system. Hydrogeology Journal, 21(1), 299–316.
McLachlan,, P., Chambers,, J., Uhlemann,, S., & Binley,, A. (2020). Electrical resistivity and induced polarization imaging of riverbed sediments: Observations from laboratory, field and synthetic experiments. Journal of Applied Geophysics, 183, 104173. https://doi.org/10.1016/j.jappgeo.2020.104173
McLachlan,, P. J., Chambers,, J. E., Uhlemann,, S. S., & Binley,, A. (2017). Geophysical characterisation of the groundwater–surface water interface. Advances in Water Resources, 109, 302–319. https://doi.org/10.1016/j.advwatres.2017.09.016
McNamara,, J. P., Chandler,, D., Seyfried,, M., & Achet,, S. (2005). Soil moisture states, lateral flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. Hydrological Processes: An International Journal, 19(20), 4023–4038.
Michot,, D., Benderitter,, Y., Dorigny,, A., Nicoullaud,, B., King,, D., & Tabbagh,, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5), 1138. https://doi.org/10.1029/2002WR001581
Musgrave,, H., & Binley,, A. (2011). Revealing the temporal dynamics of subsurface temperature in a wetland using time‐lapse geophysics. Journal of Hydrology, 396(3–4), 258–266. https://doi.org/10.1016/j.jhydrol.2010.11.008
Neyamadpour,, A. (2019). 3D electrical resistivity tomography as an aid in investigating gravimetric water content and shear strength parameters. Environmental Earth Sciences, 78(19), 583.
Ntarlagiannis,, D., Williams,, K. H., Slater,, L., & Hubbard,, S. (2005). Low‐frequency electrical response to microbial induced sulfide precipitation. Journal of Geophysical Research, 110(G2), 1–12. https://doi.org/10.1029/2005JG000024
Oldenborger,, G. A., & LeBlanc,, A. M. (2018). Monitoring changes in unfrozen water content with electrical resistivity surveys in cold continuous permafrost. Geophysical Journal International, 215(2), 965–977. https://doi.org/10.1093/GJI/GGY321
Oldenborger,, G. A., Routh,, P. S., & Knoll,, M. D. (2007). Model reliability for 3D electrical resistivity tomography: Application of the volume of investigation index to a time‐lapse monitoring experiment. Geophysics, 72(4), F167. https://doi.org/10.1190/1.2732550
Oldenburg,, D. W., Mcgillivray,, P. R., & Ellis,, R. G. (1993). Generalized subspace methods for large‐scale inverse problems. Geophysical Journal International, 114(1), 12–20. https://doi.org/10.1111/j.1365-246X.1993.tb01462.x
Oware,, E. K., Moysey,, S. M. J., & Khan,, T. (2013). Physically based regularization of hydrogeophysical inverse problems for improved imaging of process‐driven systems. Water Resources Research, 49(10), 6238–6247. https://doi.org/10.1002/wrcr.20462
Palacios,, A., José Ledo,, J., Linde,, N., Luquot,, L., Bellmunt,, F., Folch,, A., … Carrera,, J. (2020). Time‐lapse cross‐hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer. Hydrology and Earth System Sciences, 24(4), 2121–2139. https://doi.org/10.5194/hess-24-2121-2020
Park,, S., Yi,, M.‐J., Kim,, J.‐H., & Shin,, S. W. (2016). Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea. Journal of Applied Geophysics, 135, 1–7.
Perrone,, A., Lapenna,, V., & Piscitelli,, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth‐Science Reviews, 135, 65–82.
Phuong Tran,, A., Dafflon,, B., Hubbard,, S. S., Kowalsky,, M. B., Long,, P., Tokunaga,, T. K., & Williams,, K. H. (2016). Quantifying shallow subsurface water and heat dynamics using coupled hydrological–thermal–geophysical inversion. Hydrology and Earth System Sciences, 20(9), 3477–3491.
Ramirez,, A., Daily,, W., LaBrecque,, D., Owen,, E., & Chesnut,, D. (1993). Monitoring an underground steam injection process using electrical resistance tomography. Water Resources Research, 29(1), 73–87.
Ramirez,, A., Daily,, W., Binley,, A., LaBrecque,, D., & Roelant,, D. (1996). Detection of leaks in underground storage tanks using electrical resistance methods. Journal of Environmental and Engineering Geophysics, 1(3), 189–203. https://doi.org/10.4133/jeeg1.3.189
Revil,, A., Soueid Ahmed,, A., Coperey,, A., Ravanel,, L., Sharma,, R., & Panwar,, N. (2020). Induced polarization as a tool to characterize shallow landslides. Journal of Hydrology, 589, 125369. https://doi.org/10.1016/j.jhydrol.2020.125369
Riebe,, C. S., Hahm,, W. J., & Brantley,, S. L. (2017). Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42(1), 128–156. https://doi.org/10.1002/esp.4052
Rink,, M., & Schopper,, J. R. (1974). Interface conductivity and its implications to electric logging. In SPWLA 15th Annual Logging Symposium, McAllen, TX.
Robinson,, J., Buda,, A., Collick,, A., Shober,, A., Ntarlagiannis,, D., Bryant,, R., … Slater,, L. (2020). Electrical monitoring of saline tracers to reveal subsurface flow pathways in a flat ditch‐drained field. Journal of Hydrology, 586, 124862. https://doi.org/10.1016/j.jhydrol.2020.124862
Romanovsky,, V. E., & Osterkamp,, T. E. (2000). Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafrost and Periglacial Processes, 11(3), 219–239.
Rosqvist,, H., Leroux,, V., Dahlin,, T., Svensson,, M., Lindsjö,, M., Månsson,, C.‐H., & Johansson,, S. (2011). Mapping landfill gas migration using resistivity monitoring. Proceedings of the Institution of Civil Engineers—Waste and Resource Management, 164(1), 3–15. https://doi.org/10.1680/warm.2011.164.1.3
Rucker,, D. F., Fink,, J. B., & Loke,, M. H. (2011). Environmental monitoring of leaks using time‐lapsed long electrode electrical resistivity. Journal of Applied Geophysics, 74(4), 242–254.
Saneiyan,, S., Ntarlagiannis,, D., Ohan,, J., Lee,, J., Colwell,, F., & Burns,, S. (2019). Induced polarization as a monitoring tool for in‐situ microbial induced carbonate precipitation (MICP) processes. Ecological Engineering, 127, 36–47. https://doi.org/10.1016/j.ecoleng.2018.11.010
Schima,, S., LaBrecque,, D. J., & Lundegard,, P. D. (1996). Monitoring air sparging using resistivity tomography. Groundwater Monitoring %26 Remediation, 16(2), 131–138.
Schmidt‐Hattenberger,, C., Bergmann,, P., Labitzke,, T., & Wagner,, F. (2014). CO2 migration monitoring by means of electrical resistivity tomography (ERT)—Review on five years of operation of a permanent ERT system at the Ketzin pilot site. Energy Procedia, 63, 4366–4373.
Sherrod,, L., Sauck,, W., & Werkema,, D.D. (2012). A low‐cost, in situ resistivity and temperature monitoring system. Groundwater Monitoring %26 Remediation, 32 (2), 31–39. https://doi.org/10.1111/j1745
Simyrdanis,, K., Papadopoulos,, N., Soupios,, P., Kirkou,, S., & Tsourlos,, P. (2018). Characterization and monitoring of subsurface contamination from Olive Oil Mills` waste waters using electrical resistivity tomography. Science of the Total Environment, 637–638, 991–1003. https://doi.org/10.1016/j.scitotenv.2018.04.348
Singha,, K., Day‐Lewis,, F. D. D., Johnson,, T., & Slater,, L. D. D. (2014). Advances in interpretation of subsurface processes with time‐lapse electrical imaging. Hydrological Processes, 29, 1549–1576. https://doi.org/10.1002/hyp.10280
Slater,, L., & Lesmes,, D. (2002). IP interpretation in environmental investigations. Geophysics, 67(1), 77–88. https://doi.org/10.1190/1.1451353
Spies,, B. R., & Ellis,, R. G. (1995). Cross‐borehole resistivity tomography of a pilot‐scale, in‐situ vitrification test. Geophysics, 60(3), 886–898. https://doi.org/10.1190/1.1443824
Tedrow,, J. C. F. (2005). Polar soils. In D. Hillel, (Ed.), Encyclopedia of soils in the environment (pp. 239–249). Oxford: Elsevier. https://doi.org/10.1016/B0-12-348530-4/00010-2
Terry,, N., Slater,, L., Comas,, X., Reeve,, A. S. A. S., Schaefer,, K. V. R., Yu,, Z., … Yu,, Z. (2016). Free phase gas processes in a northern peatland inferred from autonomous field‐scale resistivity imaging. Water Resources Research, 52(4), 2996–3018. https://doi.org/10.1002/2015WR018111
Terzaghi,, K. (1943). Theoretical soil mechanics (pp. 11–15). New York: JohnWiley %26 Sons.
Thayer,, D., Parsekian,, A. D., Hyde,, K., Speckman,, H., Beverly,, D., Ewers,, B., … Holbrook,, W. S. (2018). Geophysical measurements to determine the hydrologic partitioning of snowmelt on a snow‐dominated subalpine Hillslope. Water Resources Research, 54(6), 3788–3808. https://doi.org/10.1029/2017WR021324
Toran,, L., Hughes,, B., Nyquist,, J., & Ryan,, R. (2012). Using hydrogeophysics to monitor change in hyporheic flow around stream restoration structures. Environmental %26 Engineering Geoscience, 18(1), 83–97.
Travelletti,, J., Sailhac,, P., Malet,, J. P., Grandjean,, G., & Ponton,, J. (2012). Hydrological response of weathered clay‐shale slopes: Water infiltration monitoring with time‐lapse electrical resistivity tomography. Hydrological Processes, 26(14), 2106–2119. https://doi.org/10.1002/hyp.7983
Tresoldi,, G., Arosio,, D., Hojat,, A., Longoni,, L., Papini,, M., & Zanzi,, L. (2019). Long‐term hydrogeophysical monitoring of the internal conditions of river levees. Engineering Geology, 259, 105139. https://doi.org/10.1016/j.enggeo.2019.05.016
Truffert,, C., Gance,, J., Leite,, O., & Texier,, B. (2019). New instrumentation for large 3D electrical resistivity tomography and induced polarization surveys. International workshop on gravity, electrical and magnetic methods and their applications, Xi`an, China (pp. 124–127). https://doi.org/10.1190/gem2019-032.1
Tso,, C.‐H. M., Johnson,, T. C., Song,, X., Chen,, X., Kuras,, O., Wilkinson,, P., … Binley,, A. (2020). Integrated hydrogeophysical modelling and data assimilation for geoelectrical leak detection. Journal of Contaminant Hydrology, 234, 103679.
Tso,, C.‐H. M., Kuras,, O., & Binley,, A. (2019). On the field estimation of moisture content using electrical geophysics: The impact of petrophysical model uncertainty. Water Resources Research, 55(8), 7196–7211. https://doi.org/10.1029/2019WR024964
Tso,, C. M., Kuras,, O., Wilkinson,, P. B., Uhlemann,, S., Chambers,, J. E., Meldrum,, P. I., … Binley,, A. (2017). Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. Journal of Applied Geophysics, 146, 103–119. https://doi.org/10.1016/j.jappgeo.2017.09.009
Uhlemann,, S., Chambers,, J., Wilkinson,, P., Maurer,, H., Merritt,, A., Meldrum,, P., … Dijkstra,, T. (2017). Four‐dimensional imaging of moisture dynamics during landslide reactivation. Journal of Geophysical Research: Earth Surface, 122(1), 398–418.
Utili,, S., Castellanza,, R., Galli,, A., & Sentenac,, P. (2015). Novel approach for health monitoring of earthen embankments. Journal of Geotechnical and Geoenvironmental Engineering, 141(3), 4014111.
Van,, G. P., Park,, S. K., & Hamilton,, P. (1991). Monitoring leaks from storage ponds using resistivity methods. Geophysics, 56(8), 1267–1270.
Wallin,, E. L., Johnson,, T. C., Greenwood,, W. J., & Zachara,, J. M. (2013). Imaging high stage river‐water intrusion into a contaminated aquifer along a major river corridor using 2‐D time‐lapse surface electrical resistivity tomography. Water Resources Research, 49(3), 1693–1708. https://doi.org/10.1002/wrcr.20119
Ward,, A. S., Gooseff,, M. N., & Singha,, K. (2010). Imaging hyporheic zone solute transport using electrical resistivity. Hydrological Processes: An International Journal, 24(7), 948–953.
Washburn,, A. L. (1980). Permafrost features as evidence of climatic change. Earth‐Science Reviews, 15(4), 327–402. https://doi.org/10.1016/0012-8252(80)90114-2
Waxman,, M. H., & Smits,, L. J. M. (1968). Electrical conductivities in oil‐bearing Shaly Sands. Society of Petroleum Engineers Journal., 8(2), 107–122. https://doi.org/10.2118/1863-A
Weiler,, M., & McDonnell,, J. (2004). Virtual experiments: A new approach for improving process conceptualization in hillslope hydrology. Journal of Hydrology, 285(1), 3–18. https://doi.org/10.1016/S0022-1694(03)00271-3
Weller,, A., Lewis,, R., Canh,, T., Möller,, M., & Scholz,, B. (2014). Geotechnical and geophysical long‐term monitoring at a levee of Red River in Vietnam. Journal of Environmental and Engineering Geophysics, 19(3), 183–192.
Whalley,, W. R., Binley,, A., Watts,, C. W., Shanahan,, P., Dodd,, I. C., Ober,, E. S., … Hawkesford,, M. J. (2017). Methods to estimate changes in soil water for phenotyping root activity in the field. Plant and Soil, 415, 407–422. https://doi.org/10.1007/s11104-016-3161-1
White,, C. C., & Barker,, R. D. (1997). Electrical leak detection system for landfill liners: A case history. Groundwater Monitoring %26 Remediation, 17(3), 153–159.
Whiteley,, J. S., Chambers,, J. E., Uhlemann,, S., Wilkinson,, P. B., & Kendall,, J. M. (2019). Geophysical monitoring of moisture‐induced landslides: A review. Reviews of Geophysics, 57(1), 106–145.
Wilkinson,, P., Chambers,, J., Uhlemann,, S., Meldrum,, P., Smith,, A., Dixon,, N., & Loke,, M. H. (2016). Reconstruction of landslide movements by inversion of 4‐D electrical resistivity tomography monitoring data. Geophysical Research Letters, 43(3), 1166–1174.
Wilkinson,, P. B., Loke,, M. H., Meldrum,, P. I., Chambers,, J. E., Kuras,, O., Gunn,, D. A., & Ogilvy,, R. D. (2012). Practical aspects of applied optimized survey design for electrical resistivity tomography. Geophysical Journal International, 189(1), 428–440.
Wilkinson,, P. B., Uhlemann,, S., Meldrum,, P. I., Chambers,, J. E., Carrière,, S., Oxby,, L. S., & Loke,, M. H. (2015). Adaptive time‐lapse optimized survey design for electrical resistivity tomography monitoring. Geophysical Journal International, 203(1), 755–766.
Williams,, K. H. K. H., Ntarlagiannis,, D., Slater,, L. D. L. D., Dohnalkova,, A., Hubbard,, S. S., & Banfield,, J. F. J. F. (2005). Geophysical imaging of stimulated microbial biomineralization. Environmental Science %26 Technology, 39(19), 7592–7600. https://doi.org/10.1021/es0504035
Wyllie,, M. R. J., & Rose,, W. D. (1950). Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. Journal of Petroleum Technology, 2(04), 105–118.
Yang,, X., Lassen,, R. N., Jensen,, K. H., & Looms,, M. C. (2015). Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography. International Journal of Greenhouse Gas Control, 42, 534–544.
Zarif,, F., Kessouri,, P., & Slater,, L. (2017). Recommendations for field‐scale induced polarization (IP) data acquisition and interpretation. Journal of Environmental and Engineering Geophysics, 22(4), 395–410. https://doi.org/10.2113/JEEG22.4.395
Zhang,, J., & Revil,, A. (2015). Cross‐well 4‐D resistivity tomography localizes the oil‐water encroachment front during water flooding. Geophysical Journal International, 201(1), 343–354. https://doi.org/10.1093/gji/ggv028
Zheng,, C., Bianchi,, M., & Gorelick,, S. M. (2011). Lessons learned from 25 years of research at the MADE site. Ground Water, 49(5), 649–662. https://doi.org/10.1111/j.1745-6584.2010.00753.x
Zohdy,, A. A. R., Eaton,, G. P., & Mabey,, D. R. (1974). Application of surface geophysics to ground‐water investigations, Denver: United States Geological Survey.