Acosta‐Coll,, M., Ballester‐Merelo,, F., Matrinez‐Peiro,, M., & De la Hoz‐Franco,, E. (2018). Real‐time early warning system Design for Pluvial Flash Floods‐a Review. Sensors, 18(7), 2255. https://doi.org/10.3390/s18072255
Aldridge,, T., Gunawan,, O., Moore,, R. J., Cole,, S. J., Boyce,, G., & Cowling,, R. (2020). Developing an impact library for forecasting surface water flood risk. Journal of Flood Risk Management, 13, e12641. https://doi.org/10.1111/jfr3.12641
Arnal,, L., Anspoks,, L., Manson,, S., Neumann,, J., Norton,, T., Stephens,, E., … Cloke,, H. L. (2019). Are we talking just a bit of water out of bank? Or is it Armageddon? Front line perspectives on transitioning to probabilistic fluvial flood forecasts in England. Geoscience Communication Discussion, 3, 203–232. https://doi.org/10.5194/gc-2019-18
Asch,, M., Bocquet,, M., & Nodet,, M. (2016). Data assimilation: Methods, algorithms, and applications (Vol. 11). Philadelphia, PA: SIAM.
Ballard,, S., Li,, Z., Simonin,, D., & Caron,, J. F. (2015). Performance of 4D‐Var NWP‐based nowcasting of precipitation at the Met Office for summer 2012. Quarterly Journal of the Royal Meteorological Society, 142, 472–487. https://doi.org/10.1002/qj.2665
Bauer,, P., Thorpe,, A., & Brunet,, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525, 47–55. https://doi.org/10.1038/nature14956
Bevan,, J. (2018). Surface Water: The Biggest Flood Risk of All. CIWEM Surface Water Management Conference, 17th October 2018. Retrieved from https://www.gov.uk/government/news/surface-water-the-biggest-flood-risk-of-all
Blenkinsop,, S., Lewis,, E., Chan,, S. C., & Fowler,, H. J. (2016). Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK. International Journal of Climatology, 37(2), 722–740. https://doi.org/10.1002/joc.4735
Boccardo,, P., & Tonolo,, F. (2015). Remote sensing role in emergency mapping for disaster response. In G. Lollino,, A. Manconi,, F. Guzzetti,, M. Culshaw,, P. Bobrowsky,, & F. Luino, (Eds.), Engineering geology for society and territory (Vol. 5, pp. 17–24). New York: Springer, Champions. https://doi.org/10.1007/978-3-319-09048-1_3
Bowler,, N. E., Pierce,, C. E., & Seed,, A. W. (2006). STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Q.J.R Meteorology Society, 132, 2127–2155. https://doi.org/10.1256/qj.04.100
Brouwer,, T., Eilander,, D., van Loenen,, A., Booij,, M., Wijnberg,, K., Verkade,, J., & Wagemaker,, J. (2017). Probabilistic flood extent estimates from social media observations. National Hazards Earth Systems Science, 17, 735–747. https://doi.org/10.5194/nhess-17-735-2017
Chang,, L.‐C., Chang,, F.‐J., Yang,, S.‐N., Kao,, I.‐F., Ku,, Y.‐K., Kuo,, C.‐L., & Amin,, I. R. (2019). Building an intelligent Hydroinformatics integration platform for regional flood inundation warning systems. Water, 11, 9. https://doi.org/10.3390/w11010009
Chu,, H., Wu,, W., Wang,, Q. J., Nathan,, R., & Wei,, J. (2020). An ANN‐based emulation modelling framework for flood inundation modelling: Application, challenges and future directions. Environmental Modelling %26 Software, 124. 104587. https://doi.org/10.1016/j.envsoft.2019.104587
Clark,, A. J., Kain,, J. S., Stensrud,, D. J., Xue,, M., Kong,, F., Coniglio,, M. C., … Du,, J. (2010). Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection‐allowing ensemble. Monthly Weather Review, 139, 1410–1418. https://doi.org/10.1175/2010MWR3624.1
Clark,, P., Roberts,, N., Lean,, H., Ballard,, S. P., & Charlton‐Perez,, C. (2016). Convection‐permitting models: A step‐change in rainfall forecasting. Meteorological Applications, 23, 165–181. https://doi.org/10.1002/met.1538
Clark,, R. A., Gourley,, J. J., Flamig,, Z. L., Hong,, Y., & Clark,, E. (2014). CONUS‐wide evaluation of national weather service flash flood guidance products. Weather and Forecasting, 29, 377–392. https://doi.org/10.1175/WAF-D-12-00124.1
Cloke,, H., & Pappenberger,, F. (2009). Ensemble flood forecasting: A review. Journal of Hydrology, 375, 613–626. https://doi.org/10.1016/j.jhydrol.2009.06.005
Cole,, S.J., Moore,, R.J., Aldridge,, T.A., Gunawan,, O., Balmforth,, H., Hunter,, N., Mooney,, J., Lee,, D., Fenwick,, K., Price,, D. & Demeritt,, D. (n.d.). Natural hazards partnership surface water flooding hazard impact model: Phase 2 final report (p. 19). Natural Hazards Partnership. Retrieved from http://www.naturalhazardspartnership.org.uk/wp-content/uploads/2016/10/NHP-HIM-Surface-Water-Flooding-Phase-2-Final-Report.pdf
Cole,, S.J., Moore,, R.M., Aldridge,, T., Lane,, A. & Laeger,, S. (2013). Real‐time Hazard Impact Modelling of Surface Water Flooding: Some UK Developments. In International Conference on Flood Resilience: Experiences in Asia and Europe, 5–7th September, Exeter, UK. Retrieved from https://core.ac.uk/download/pdf/16748860.pdf
Coughlan de Perez,, E., van den Hurk,, B., van Aalst,, M. K., Amuron,, I., Bamanya,, D., Hauser,, T., … Zsoter,, E. (2016). Action‐based flood forecasting for triggering humanitarian action. Hydrology and Earth System Sciences, 20, 3549–3560. https://doi.org/10.5194/hess-20-3549-2016
Cranston,, M., Cuthill,, F., Smith,, F., Black,, A. & Malcolm,, J. (2018) Communicating risk in uncertain predictions. Research Report, University of Dundee. Retrieved from https://sites.dundee.ac.uk/hydrology/wp-content/uploads/sites/83/2018/12/Communicating-Flood-Risk-with-Uncertain-Predictions_final.pdf
Cranston,, M., & Tavendale,, A. C. W. (2012). Advances in operational flood forecasting in Scotland. Proceedings of the Institution of Civil Engineers ‐ Water Management, 165(2), 79–87. https://doi.org/10.1680/wama.2012.165.2.79
Dale,, M., Davies,, P., & Harrison,, T. (2012). Review of recent advances in UKoperational hydrometeorology. Proceedings of the Institution of Civil Engineers, Water Management, 165(2), 55–64. https://doi.org/10.1680/wama.2012.165.2.55
Dale,, M., Ji,, J., Wicks,, J., Mylne,, K., Pappenberger,, F. & Cloke,, H. (2013). Applying probabilistic flood forecasting in flood incident management. Technical Report ‐ SC090032 (p. 97). Bristol: Environment Agency. Retrieved from https://www.gov.uk/government/publications/applying-probabilistic-flood-forecasting-in-flood-incident-management
Dale,, M., Wicks,, J., Mylne,, K., Pappenberger,, F., Laeger,, S., & Taylor,, S. (2014). Probabilistic flood forecasting and decision‐making: An innovative risk‐based approach. Natural Hazards, 70, 159–172. https://doi.org/10.1007/s11069-012-0483-z
Dance,, S. L., Ballard,, S. P., Bannister,, R. N., Clark,, P., Cloke,, H. L., Darlington,, T., … Waller,, J. A. (2019). Improvements in forecasting intense rainfall: Results from the FRANC (forecasting rainfall exploiting new data assimilation techniques and novel observations of convection) project. Atmosphere, 10, 125. https://doi.org/10.3390/atmos10030125
Darlington,, T., Adams,, D., Best,, S., Husnoo,, N., Lyons,, S. & Norman,, K. (2016). Optimising the accuracy of radar products with dual polarisation: Project benefits. Technical report. Met Office: Exeter, UK. Retrieved from https://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/library/mo-technical-documents/dual_polarisation_09062016.pdf
de Bruijn,, J. A., de Moel,, H., Jongman,, B., de Ruiter,, M. C., Wagemaker,, J., & Aerts,, J. (2019). A global database of historic and real‐time flood events based on social media. Scientific Data, 6, 311. https://doi.org/10.1038/s41597-019-0326-9
de Brujin,, J., de Moel,, H., Jongman,, B., Wagemaker,, J., & Aerts,, J. (2018). TAGGS: Grouping tweets to improve global Geoparsing for disaster response. Journal of Geovisualization and Spatial Analysis, 2, 2. https://doi.org/10.1007/s41651-017-0010-6
De Moel,, H., Van Alphen,, J., & Aerts,, J. (2009). Flood maps in Europe ‐ methods availability and use. Natural Hazards and Earth System Sciences, 9, 289–301. https://doi.org/10.5194/nhess-9-289-2009
DEFRA (2018). Surface water management: An action plan (p. 41). London: DEFRA. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/725664/surface-water-management-action-plan-july-2018.pdf
Domeneghetti,, A., Schumman,, G., & Tarpanelli,, A. (2019). Preface: Remote sensing for flood mapping and monitoring of flood dynamics. Remote Sensing, 11(8), 943. https://doi.org/10.3390/rs11080943
Dottori,, F., Kalas,, M., Salamon,, P., Bianchi,, A., Alfieri,, L., & Feyen,, L. (2017). An operational procedure for rapid flood risk assessment in Europe. Natural Hazards and Earth System Sciences, 17, 1111–1126. https://doi.org/10.5194/nhess-17-1111-2017
Emerton,, R. E., Stephens,, E. M., Pappenberger,, F., Pagano,, T. C., Weerts,, A. H., Wood,, A. W., … Cloke,, H. L. (2016). Continental and global scale flood forecasting systems. WIREs Water, 3, 391–418. https://doi.org/10.1002/wat2.1137
Environment Agency (2009) Flooding in England: A national assessment of risk (p. 33). Bristol: Environment Agency. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/292928/geho0609bqds-e-e.pdf
Flack,, D. L., Gray,, S. L., Plant,, R. S., Lean,, H. W., & Craig,, G. C. (2018). Convective‐scale perturbation growth across the Spectrum of convective regimes. Monthly Weather Review, 146, 387–405. https://doi.org/10.1175/MWR-D-17-0024.1
Flack,, D. L., Plant,, R. S., Gray,, S. L., Lean,, H. W., Keil,, C., & Craig,, G. C. (2016). Characterisation of convective regimes over the British Isles. Q.J.R Meteorology Society, 142, 1541–1553. https://doi.org/10.1002/qj.2758
Flack,, D. L. A., Gray,, S. L., & Plant,, R. S. (2019). A simple ensemble approach for more robust process‐based sensitivity analysis of case studies in convection‐permitting models. Quarterly Journal of the Royal Meteorological Society, 145, 3089–3101. https://doi.org/10.1002/qj.3606
Flack,, D. L. A., Skinner,, C. J., Hawkness‐Smith,, L., O`Donnell,, G., Thompson,, R. J., Waller,, J. A., … Speight,, L. J. (2019). Recommendations for improving integration in National end‐to‐end Flood Forecasting Systems: An overview of the FFIR (flooding from intense rainfall) Programme. Water, 11, 725. https://doi.org/10.3390/w11040725
Flood Forecasting Centre (2018). Annual review 2017/18 (p. 9). Exeter: Flood Forecasting Centre. Retrieved from http://www.ffc-environment-agency.metoffice.gov.uk/media/pdf/FFC-Annual-Review-2017-18.pdf
Foresti,, L., Reyniers,, M., Seed,, A., & Delobbe,, L. (2016). Development and verification of a real‐time stochastic precipitation nowcasting system for urban hydrology in Belgium. Hydrology and Earth System Sciences, 20(1), 505–527. https://doi.org/10.5194/hess-20-505-2016
Glenis,, V., Kutija,, V., & Kilsby,, C. G. (2018). A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions. Environmental Modelling %26 Software, 109, 272–292. https://doi.org/10.1016/j.envsoft.2018.07.018
Golding,, B., Roberts,, N., Leoncini,, G., Mylne,, K., & Swinbank,, R. (2016). MOGREPS‐UKconvection‐permitting ensemble products for surface water flood forecasting: Rationale and first results. Journal of Hydrometeorology, 17(5), 1383–1406. https://doi.org/10.1175/JHM-D-15-0083.1
Golding,, B. W. (1998). Nimrod: A system for generating automated very short‐range forecasts. Meteorological Applications, 5(1), 1–16. https://doi.org/10.1017/S1350482798000577
Golding,, B. W. (2009). Long lead time flood warnings: Reality or fantasy? Meteorological Applications, 16(1), 3–12. https://doi.org/10.1002/met.123
Golding,, B. W., Ballard,, S. P., Mylne,, K., Roberts,, N., Saulter,, A., Wilson,, C., … Moseley,, S. (2014). Forecasting capabilities for the London 2012 Olympics. Bulletin of the American Meteorological Society, 95, 883–896. https://doi.org/10.1175/BAMS-D-13-00102.1
Gourley,, J., Hong,, Y., & Wells,, E. (2012). Evaluation of tools used for monitoring and forecasting flash floods in the United States. Weather Forecasting, 27, 158–173. https://doi.org/10.1175/WAF-D-10-05043.1
Green,, D., Yu,, D., Pattison,, I., Wilby,, R., Bosher,, L., Patel,, R., … Ryley,, T. (2017). City‐scale accessibility of emergency responders operating during flood events. Natural Hazards and Earth System Sciences, 17, 1–16. https://doi.org/10.5194/nhess-17-1-2017
Gunawan,, O. & Aldridge,, T. (2016). Surface water flooding hazard impact model – Impact library refinement and testing: Phase 2 report (p. 35). Buxton: Health %26 Safety Laboratory. Retrieved from http://www.naturalhazardspartnership.org.uk/wp-content/uploads/2016/10/Surface-Water-Flooding-Hazard-Impact-Model-Impact-Library-Development_2.0.pdf.
Hagelin,, S., Son,, J., Swinbank,, R., McCabe,, A., Roberts,, N., & Tennant,, W. (2017). The Met Office convective‐scale ensemble, MOGREPS‐UK. Quarterly Journal of the Royal Meteorological Society, 143, 2846–2861. https://doi.org/10.1002/qj.3135
Halcrow (2011). Developing alerting criteria for surface water flooding. Report NA096 for the Environment Agency (p. 25). Bristol: Halcrow.
Hand,, W. H., Fox,, N. I., & Collier,, C. G. (2004). A study of twentieth‐century extreme rainfall events in the United Kingdom with implications for forecasting. Meteorological Applications, 11, 15–31. https://doi.org/10.1017/S1350482703001117
Harrowsmith,, M., Nielsen,, M., Jaime,, C., Coughlan de Perez,, E., Uprety,, M., Johnson,, C., van den Homberg,, M., Tijssen,, A.,. Mulvihill Page,, E., Lux,, S. & Comment, T. (2020) The Future of Forecasts: Impact‐based forecasting for early action (2020). Available from https://www.forecast-based-financing.org/wp-content/uploads/2020/09/Impact-based-forecasting-guide-2020.pdf
Hemingway,, R., & Robbins,, J. (2020). Developing a hazard‐impact model to support impact‐based forecasts and warnings: The vehicle over turning (VOT) model. Meteorological Applications, 27, e1819. https://doi.org/10.1002/met.1819
Henonin,, J., Russo,, B., Mark,, O., & Gourbesville,, P. (2013). Real‐time urban flood forecasting and modelling‐a state of the art. Journal of Hydro Informatics, 15(3), 717–736. https://doi.org/10.2166/hydro.2013.132
Heuvelink,, D., Berenguer,, M., Brauer,, C., & Uijlenhoet,, R. (2020). Hydrological application of radar rainfall nowcasting in The Netherlands. Environment International, 136, 105431. https://doi.org/10.1016/j.envint.2019.105431
Hintz,, K. S., O`Boyle,, K., Dance,, S. L., Saja Al‐Ali,, S., Ansper,, I., Blaauboer,, D., … Yang,, X. (2019). Collecting and utilising crowdsourced data for numerical weather prediction: Propositions from the meeting held in Copenhagen, 4–5 December 2018. Atmospheric Science Letters, 20, e921. https://doi.org/10.1002/asl.921
Hofmann,, J., & Schüttrumpf,, H. (2019). Risk‐based early warning system for pluvial flash floods: Approaches and foundations. Geosciences, 9(3), 127. https://doi.org/10.3390/geosciences9030127
Hurford,, A. P., Priest,, S. J., Parker,, D. J., & Lumbroso,, D. M. (2012). The effectiveness of extreme rainfall alerts in predicting surface water flooding in England and Wales. International Journal of Climatology, 32, 1768–1774. https://doi.org/10.1002/joc.2391
Javelle,, P., Organde,, D., Demargne,, J., Saint‐Martin,, C., de Saint‐Aubin,, C., Gerandeau,, L. & Janet,, B. (2016). Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method. E3S Web Conf. Volume 7, 2016, 3rd European Conference on Flood Risk Management, FLOODRisk 2016. DOI: https://doi.org/10.1051/e3sconf/20160718010
Javelle,, P., Saint‐Martin,, C., Garandeau,, L. & Janet,, B. (2019). Flash flood warnings: Recent achievements in France with the national Vigicrues Flash system. United Nations Office for Disaster Risk Reduction, Contributing Paper to the Global Assessment Report on Disaster Risk Reduction (GAR 2019). Available from https://www.undrr.org/publication/flash-flood-warnings-recent-achievements-france-national-vigicrues-flash-system
JBA Consulting (2018). Coverack flood incident review. Technical summary report for the environment agency (p. 37). Bodmin: Environment Agency. Retrieved from https://www.cornwall.gov.uk/media/32471292/coverack-flood-incident-review-technical-summary-report-2017s6474_v20-mar-2018.pdf.
Kimura,, M., Kido,, Y., & Nakakita,, E. (2012). Study on a real‐time flood forecasting method for locally heavy rainfall with high‐resolution X‐band polarimetric radar information. In R. J. Moore,, S. J. Cole,, & A. J. Illingworth, (Eds.), Weather radar and hydrology (pp. 454, 351–459). Wallingford, UK: IAHS Publ.
Kirk,, P. J., Clark,, M. R., & Creed,, E. (2020). Weather observations website. Weather, 76, 47–49. https://doi.org/10.1002/wea.3856
Kox,, T., Gerhold,, L., & Ulbrich,, U. (2015). Perception and use of uncertainty in severe weather warnings by emergency services in Germany. Atmospheric Research, 158–159, 292–301. https://doi.org/10.1016/j.atmosres.2014.02.024
Kox,, T., Kempf,, H., Lüder,, C., Hagedorn,, R., & Gerhold,, L. (2018). Towards user‐orientated weather warnings. International Journal of Disaster Risk Reduction, 30 (A, 74–80. https://doi.org/10.1016/j.ijdrr.2018.02.033
Leoncini,, G., Plant,, R. S., Gray,, S. L., & Clark,, P. A. (2013). Ensemble forecasts of a flood‐producing storm: Comparison of the influence of model‐state perturbations and parameter modifications. Quarterly Journal of the Royal Meteorological Society, 139, 198–211. https://doi.org/10.1002/qj.1951
Liguori,, S., & Rico‐Ramirez,, M. A. (2014). A review of current approaches to radar‐based quantitative precipitation forecasts. International Journal of River Basin Management, 12(4), 391–402. https://doi.org/10.1080/15715124.2013.848872
Liguori,, S., Rico‐Ramirez,, M. A., Schellart,, A. N. A., & Saul,, A. J. (2012). Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research, 103, 80–95. https://doi.org/10.1016/j.atmosres.2011.05.004
Loughborough University. (2017). Real‐time flood nowcasting [Video file]. Retrieved from https://www.youtube.com/watch?v=5sEDM3kbj00
Mason,, D. C., Dance,, S. L., Vetre‐Carvalho,, S., & Cloke,, H. L. (2018). Robust algorithm for detecting floodwater in urban areas using synthetic aperture radar images. Journal of Applied Remote Sensing, 12(4), 045011. https://doi.org/10.1117/1.JRS.12.04511
Mazzoglio,, P., Laio,, F., Balbo,, S., Boccardo,, P., & Disabato,, F. (2019). Improving an extreme rainfall detection system with GPM IMERG data. Remote Sensing, 11(6), 677. https://doi.org/10.3390/rs11060677
Meléndez‐Landaverde,, E. R., Werner,, M., & Verkade,, J. (2020). Exploring protective decision‐making in the context of impact‐based flood warnings. Journal of Flood Risk Management, 13, e12587. https://doi.org/10.1111/jfr3.12587
Met Office (2018) Nowcasting. Retrieved from https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/data/nowcasting-datasheet_2019.pdf
Mogil,, H., Monro,, J., & Groper,, H. (1978). NWS`s flash flood warning and disaster preparedness programs. Bulletin of the American Meteorological Society, 59, 690–699. https://doi.org/10.1175/1520-0477(1978)059%3C0690:NFFWAD%3E2.0.CO;2
Moore,, R.J., Bell,, V.A., Cole,, S.J. and Jones,, D.A. (2007) Rainfall‐runoff and other modelling for ungauged/low‐benefit locations. Science Report – SC030227/SR1 (p. 249). Bristol: Environment Agency. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290551/scho0307bmer-e-e.pdf
Moore, R.J., Cole, S.J., Dunn, S., Ghimire, S., Golding, B.W., Pierce, C.E., Roberts, N.M. & Speight,, L. (2015). Surface water flood forecasting for urban communities: CREW report CRW2012/03 (p. 32). Aberdeen: The James Hutton Institute. Retrieved from https://www.crew.ac.uk/sites/www.crew.ac.uk/files/sites/default/files/publication/CREW%20Surface%20water%20flood%20forecasting%20for%20urban%20communities_full%20report.pdf
Mosavi,, A., Ozturk,, P., & Chau,, K.‐W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. https://doi.org/10.3390/w10111536
Mugnai,, A., Casella,, D., Cattani,, E., Dietrich,, S., Laviola,, S., Levizzani,, V., … Gattari,, F. (2013). Precipitation products from the hydrology SAF. Natural Hazards and Earth System Sciences, 13, 1959–1981. https://doi.org/10.5194/nhess-13-1959-2013
Neal,, R. A., Boyle,, P., Grahame,, N., Mylne,, K., & Sharpe,, M. (2014). Ensemble based first guess support towards a risk‐based severe weather warning service. Meteorological Applications, 21, 563–577. https://doi.org/10.1002/met.1377
Neely,, R. R., III, Bennett,, L., Blyth,, A., Collier,, C., Dufton,, D., Groves,, J., … Pickering,, B. (2018). The NCAS mobile dual‐polarisation Doppler X‐band weather radar (NXPol). Atmospheric Measurement Techniques, 11, 6481–6494. https://doi.org/10.5194/amt-11-6481-2018
Ochoa‐Rodríguez,, S., Wang,, L., Thraves,, L., Johnston,, A., & Onof,, C. (2018). Surface water flood warnings in England: Overview, assessment and recommendations. Journal of Flood Risk Management, 11, S211–S221. https://doi.org/10.1111/jfr3.12195
Pagano,, T. C., Pappenberger,, F., Wood,, A. W., Ramos,, M.‐H., Persson,, A., & Anderson,, B. (2016). Automation and human expertise in operational river forecasting. WIREs Water, 3, 692–705. https://doi.org/10.1002/wat2.1163
Pagano,, T. C., Wood,, A. W., Ramos,, M. H., Cloke,, H. L., Pappenberger,, F., Clark,, M. P., … Verkade,, J. S. (2014). Challenges of operational river forecasting. Journal of Hydrometeorology, 15, 1692–1707. https://doi.org/10.1175/jhm-d-13-0188.1
Parker,, D. J., Priest,, S. J., & Tapsell,, S. M. (2009). Understanding and enhancing the public`s behavioural response to flood warning information. Meteorological Applications, 16, 103–114. https://doi.org/10.1002/met.119
Perks,, M. T., Russell,, A. J., & Large,, A. R. G. (2016). Technical note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). Hydrological Earth Systems Science, 20, 4005–4015. https://doi.org/10.5194/hess-20-4005-2016
PICS (2018) Compte‐rendu du 1er atelier du groupe utilisateurs, le 17 mai 2018, à Lyon (DREAL). Available from https://pics.ifsttar.fr/fileadmin/contributeurs/PICS/doc/groupe_utilisateurs/PICS_AtelierGU_20180517_CR_v2_diffuse.pdf
Pilling,, C., Dodds,, V., Cranston,, M., Price,, D., & How,, A. (2016). Flood forecasting‐A national overview for Great Britain. In T. Adams, & T. Pagano, (Eds.), Flood forecasting: A global perspective (pp. 201–247). USA: Elsevier.
Pitt,, M. (2008). Learning lessons from the 2007 floods: The Pitt review. London: Cabinet Office.
Potter,, S. H., Kreft,, P. V., Milojev,, P., Noble,, C., Montz,, B., Dhellemmes,, A., … Gauden‐Ing,, S. (2018). The influence of impact‐based severe weather warnings on risk perceptions and intended protective actions. International Journal of Disaster Risk Reduction, 30(A, 34–43. https://doi.org/10.1016/j.ijdrr.2018.03.031
Price,, D., Hudson,, K., Boyce,, G., Schellekens,, J., Moore,, R. J., Clark,, P., … Pilling,, C. (2012). Operational use of a grid‐based model for flood forecasting. Proceedings of the Institution of Civil Engineers, Water Management, 165(2), 65–77. https://doi.org/10.1680/wama.2012.165.2.65
Priest,, S. J., Parker,, D. J., Hurford,, A. P., Walker,, J., & Evans,, K. (2011). Assessing options for the development of surface water flood warning in England and Wales. Journal of Environmental Management, 92(12), 3038–3048. https://doi.org/10.1016/j.jenvman.2011.06.041
Rabb,. B., Boeing,, S., Shelton,, K., Birch,, C. (2019). Enhanced surface water flood forecasts: User‐led development %26 testing, Final Report. Retrieved from https://icasp.org.uk/projects/surface-water-flood-forecasts/
Reinoso‐Rondinel,, R., Bruni,, G., ten Veldhuis,, M. C. & Russchenberg, H. (2013). Toward the Optimal Resolution of Rainfall Estimates to Obtain Reliable Urban Hydrological Response: X‐band Polarimetric Radar Estimates Applied to Rotterdam Urban Drainage System. 36th International Conference on Radar Meteorology, AMS, Breckenridge. Retrieved from https://ams.confex.com/ams/36Radar/webprogram/Paper228987.html
Robbins,, J. C., & Titley,, H. A. (2018). Evaluating high‐impact precipitation forecasts from the met Office global Hazard map (GHM) using a global impact database. Meteorological Applications, 25, 548–560. https://doi.org/10.1002/met.1720
Rothfusz,, L., Smith,, T., Schneider,, R., Smith,, S., Schlatter,, P, Miller,, M., Jacks,, E., Hansen,, T., Brown,, V., Magsig,, M., Harding,, K., Edman,, A., Bookbinder,, E., Madden,, J., Root,, S., & Porter,, J. (2014). Forecasting a Continuum of Environmental Threats (FACETs): Science and strategic implementation plan. (p. 89). NOAA. Retrieved from https://nssl.noaa.gov/projects/facets/FACETs%20SSIP_1.pdf
Rothfusz,, L. P., Schneider,, R., Novak,, D., Klockow‐McClain,, K., Gerard,, A. E., Karstens,, C., … Smith,, T. M. (2018). Facets: A proposed next‐generation paradigm for high‐impact weather forecasting. Bulletin of the American Meteorological Society, 99, 2025–2043. https://doi.org/10.1175/BAMS-D-16-0100.1
Saint‐Martin,, C., Fouchier,, C., Javelle,, P., Douvinet,, J. & Vinet,, F. (2016). Assessing the Exposure to Floods to Estimate The Risk of Flood‐Related Damage in French Mediterranean Basins. 3rd European Conference on Flood Risk Management, FLOODRisk 2016. E3S Web Conference. Vol. 7. https://doi.org/10.1051/e3sconf/2016070401
Saint‐Martin,, C., Javelle,, P., & Vinet,, F. (2018). DamaGIS: A multisource geodatabase for collection of flood‐related damage data. Earth System Science Data, 10, 1019–1029. https://doi.org/10.5194/essd-10-1019-2018
Schilling,, W. (1991). Rainfall data for urban hydrology: What do we need? Atmospheric Research, 27(1–3), 5–21. https://doi.org/10.1016/0169-8095(91)90003-F
See,, L. (2019). A review of citizen science and crowdsourcing in application of pluvial flooding. Frontiers in Earth Science, 7, 44. https://doi.org/10.3389/feart.2019.00044
SEPA (2009) Improved understanding of pluvial flood risk in Scotland (p. 40). Stirling: SEPA.
Sideris,, I. V., Foresti,, L., Nerini,, D., & Germann,, U. (2020). NowPrecip: Localized precipitation nowcasting in the complex terrain of Switzerland. Quarterly Journal of the Royal Meteorological Society, 146(729), 1768–1800. https://doi.org/10.1002/qj.3766
Smith,, L., Liang,, Q., James,, P., & Lin,, W. (2017). Assessing the utility of social media as a data source for flood risk management using a real‐time modelling framework. Journal of Flood Risk Management, 10, 370–380. https://doi.org/10.1111/jfr3.12154
Sønderby,, C.K., Espeholt,, L., Heek,, J., Dehghani,, M., Oliver,, A., Salimans,, T., Agrawal,, S., Hickey,, J., & Kalchbrenner,, N (2020) MetNet: A neural weather model for precipitation forecasting. Retrieved from arXiv:2003.12140v2
Speight,, L., Cole,, S., Moore,, R., Pierce,, C., Wright,, B., Golding,, B., … Ghimire,, S. (2018). Developing surface water flood forecasting capabilities in Scotland: An operational pilot for the 2014 commonwealth games in Glasgow. Journal of Flood Risk Management, 11, S884–S901. https://doi.org/10.1111/jfr3.12281
Speight,, L., Cranston,, M., Kelly,, L., & White,, C. J. (2019). Towards improved surface water flood forecasts for Scotland: A review of UKand international operational and emerging capabilities (pp. 1–59). Glasgow: University of Strathclyde. https://doi.org/10.17868/69416
Starkey,, E., Parkin,, G., Birkinshaw,, S., Large,, A., Quinn,, P., & Gibson,, C. (2017). Demonstrating the value of community‐based (‘citizen science’) observations for catchment modelling and characterisation. Journal of Hydrology, 548, 801–817. https://doi.org/10.1016/j.jhydrol.2017.03.019
Stuart,, N. A., Market,, P. S., Telfeyan,, B., Lackmann,, G. M., Carey,, K., Brooks,, H. E., … Reeves,, K. (2006). The future role of the human in an increasingly automated forecast process. Bulletin of the American Meteorological Society, 87(11), 1497–1502 http://www.jstor.org/stable/26217223
Werner,, M., Cranston,, M., Harrison,, T., Whitfield,, D., & Schellekens,, J. (2009). Recent developments in operational flood forecasting in England, Wales and Scotland. Meteorological Applications, 16(1), 13–22. https://doi.org/10.1002/met.124
Weyrich,, P., Scolobig,, A., & Patt,, A. (2019). Dealing with inconsistent weather warnings: Effects on warning quality and intended actions. Meteorological Applications, 26, 569–583. https://doi.org/10.1002/met.1785
Willems,, P., Delobbe,, L., Reyniers,, M., & Ootegem,, L.V. (2016). Prototype system for nowcasting of urban flood risks. 9th International Conference on Planning and Technologies for Sustainable Management of Water in the City, Lyon, France. Retrieved from http://documents.irevues.inist.fr/bitstream/handle/2042/60465/2D54-199WIL.pdf
Witherow,, M. A., Elbakary,, M. I., Iftekharuddin,, K. M., & Cetin,, M. (2018). Analysis of crowdsourcing images for flooding detection. In J. Tavares, & J. R. Natal, (Eds.), VipIMAGE 2017. ECCOMAS 2017. Lecture notes in computational vision and biomechanics (Vol. 27). New York: Springer. https://doi.org/10.1007/978-3-319-68195-5_15
Witherow,, M. A., Sazara,, C., Winter‐Arboleda,, W., Elbakary,, M. I., Cetin,, M., & Iftekharuddin,, K. M. (2018). Floodwater detection on roadways from crowdsourced images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 7, 5–6. https://doi.org/10.1080/21681163.2018.1488223
World Meteorological Organisation. (2015). WMO guidelines on multi‐hazard impact‐based forecast and warning services. WMO‐No. 1150. Geneva: World Meterological Organisation Retrieved from https://library.wmo.int/doc_num.php?explnum_id=7901
Worsfold,, M., Norman,, K, & Harrison,, D. (2014). Analysis of weather radar coverage over Scotland using a high‐density tipping bucket rain‐gauge network. Exeter: Met Office.
Wu,, W., Emerton,, R., Duan,, Q., Wood,, A. W., Wetterhall,, F., & Robertson,, D. E. (2020). Ensemble flood forecasting: Current status and future opportunities. WIREs Water, 7, e1432. https://doi.org/10.1002/wat2.1432
Xia,, X., Liang,, Q., Ming,, X., & Hou,, J. (2017). An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resources Research, 2017(53), 3730–3759. https://doi.org/10.1002/2016WR020055
Yu,, D., & Coulthard,, T. J. (2015). Evaluating the importance of catchment hydrological parameters for urban surface water flood modelling using a simple hydro‐inundation model. Journal of Hydrology, 524, 385–400. https://doi.org/10.1016/j.jhydrol.2015.02.040
Zhang,, Q., Li,, L., Ebert,, B., Golding,, B., Johnston,, D., Mills,, B., … Keller,, J. (2019). Increasing the value of weather‐related warnings. Science Bulletin, 64(10), 647–649. https://doi.org/10.1016/j.scib.2019.04.003