Krishnamurti, TN, Kishtawal, CM, Zhang, Z, LaRow, T, Bachiochi, D, Williford, E, Gadgil, S, Surendran, S. Multimodel ensemble forecasts for weather and seasonal climate. J Clim 2000, 13:4196–4216.
Whitaker, JS, Hammill, TM, Wei, X. Ensemble data assimilation with the NCEP global forecast system. Mon Wea Rev 2007, 136:463–482.
Charron, M, Pellerin, G, Spacek, L, Houtekamer, PL, Gagnon, N, Mitchell, HL, Michelin, L. Toward random sampling of model error in the Canadian Ensemble Prediction System. Mon Wea Rev 2010, 138:1877–1901. doi:10.1175/2009MWR3187.1.
Stensrud, DJ. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press; 2007, 488 pp.
Jung, J‐H, Arakawa, A. The resolution dependence of model physics: illustrations from nonhydrostatic model experiments. J Atmos Sci 2004, 61:88–102.
SPARC CCMVal. In: Eyring, V, Shepherd, TG, Waugh, DW, eds. SPARC Report on the Evaluation of Chemistry‐Climate Models. SPARC Report No. 5, WCRP‐132, WMO/TD‐No. 1526, 2010, Available at: http://www.atmosp.physics.utoronto.ca/SPARC. (Accessed May 6, 2011).
Hogstrom, ULF. Review of some basic characteristics of the atmospheric surface layer. Bound‐Layer Meteorl 1996, 78:215–246.
Kantha, LH, Clayson, CA. Small Scale Processes in Geophysical Fluid Flows, International Geophysics Series, Vol. 67. Orlando, FL: Academic Press/Harcourt Brace %26 Company; 2000, 888 pp.
Zilitinkevich, SS, Elperin, T, Kleeorin, N, Rogachevskii, I. Energy‐ and flux‐budget (EFB) turbulence closure model for stably stratified flows. Part I: steady‐state, homo‐geneous regimes. Bound‐Layer Meteorl 2007, 125:167–191.
Canuto, VM, Cheng, Y, Howard, AM, Esau, IN. Stably stratified flows: a model with no Ri(cr). J Atmos Sci 2008, 65:2437–2447.
Ferrero, E, Quan, L, Masson, D. Turbulence in the stable boundary layer at higher Richardson numbers. Bound‐Layer Meteorol 2011, 139:225–240. doi:10.1007/s10546‐010‐9581‐1.
Kantha, L, Carniel, S. A note on mixing in stably stratified flows. J Atmos Sci 2009, 66:2501–2505.
Kantha, LH. The length scale in turbulence models. Nonlin Processes Geophys 2004, 11:83–97.
Canuto, VM, Cheng, Y, Howard, AM. An attempt to derive the ε equation from a two‐point closure. J Atmos Sci 2010, 67:1678–1685.
Lenderink, G, Holtslag, AAM. An updated length‐scale formulation for turbulent mixing in clear and cloudy boundary layers. Quart J Roy Meteorol Soc 2004, 130:3405–3427.
Cuxart, JPB, Redelsperger, J‐L. A turbulence scheme allowing for mesoscale and large‐eddy simulations. Quart J Roy Meteorol Soc 2000, 126:1–30.
Clayson, CA, Kantha, L. On turbulence and mixing in the free atmosphere inferred from high‐resolution soundings. J Atmos Ocean Tech 2008, 25:833–852.
Teixiera, J, Stevens, B, Bretherton, CS, Cedarwall, R, Doyle, JD, Golaz, JC, Holtslag, AAM, Klein, SA, Lundquist, JK, Randall, DA, et al. Parameterization of the atmospheric boundary layer: a view from just above the inversion. Bull Amer Meteorl Soc 2008, 89: 453–458.
Arakawa, A. The cumulus parameterization problem: past, present, and future. J Clim 2004, 17:2493–2525.
Manabe, S, Smagorinsky, J, Strickler, RF. Simulated climatology of a general circulation model with a hydrological cycle. Mon Wea Rev 1965, 93:769–798.
Charney, JG, Eliassen, A. On the growth of the hurricane depression. J Atmos Sci 1964, 21:68–75.
Ooyama, K. A dynamical model for the study of tropical cyclone development. Geofis Int 1964, 4:187–198.
Arakawa, A, Schubert, WH. Interaction of a cumulus cloud ensemble with the large‐scale environment. Part I. J Atmos Sci 1974, 31:674–701.
Betts, AK. A new convective adjustment scheme. Part I: observational and theoretical basis. Quart J Roy Meteorl Soc 1986, 112:677–691.
Kuo, HL. Further studies of the parameterization of the influence of cumulus convection on large‐scale flow. J Atmos Sci 1974, 31:1232–1240.
Alexander, MJ, Geller, M, McLandress, C, Polavarapu, S, Preusse, P, Sassi, F, Sato, K, Eckermann, S, Ern, M, Hertzog, A, et al. Recent developments in gravity wave effects in climate models and the global distribution of gravity wave momentum flux from observations and models. Quart J Roy Meteorol Soc 2010, 136:1103–1124.
Emanuel, KA. Atmospheric Convection. New York: Oxford University Press; 1994, 580 pp.
Grabowski, WW, Smolarkiewicz, PK. CRCP: a cloud resolving convective parameterization for modeling the tropical convective atmosphere. Physica D 1999, 133:171–178.
Grabowski, WW. Coupling cloud processes with the large scale dynamics using the cloud‐resolving convective parameterization(CRCP). J Atmos Sci 2001, 58:978–997.
Khairoutdinov, MF, Randall, DA. A cloud‐resolving model as a cloud parameterization in the NCAR Community Climate System model: preliminary results. Geophys Res Lett 2001, 28:3617–3620.
Randall, DA, Khairoutdinov, M, Arakawa, A, Grabowski, W. Breaking the cloud parameterization deadlock. Bull Amer Meteorl Soc 2003, 84:1547–1564.
Tao, W‐K, Chern, J‐D, Atlas, R, Randall, D, Khairoutdinov, M, Li, J‐L, Walliser, DE, Hou, A, Lin, X, Peters‐Lidard, C, et al. A multiscale modeling system; developments, applications, and critical issues. Bull Amer Meteorl Soc 2009, 90:515–534.
Benedict, JJ, Randall, DA. Structure of the Madden–Julian oscillation in the superparameterized CAM. J Atmos Sci 2009, 64:3277–3296.
Thayer‐Calder, K, Randall, DA. The role of convective moistening in the Madden–Julian oscillation. J Atmos Sci 2009, 66:3297–3312.
Lin, WB, Neelin, JD. Toward stochastic deep convective parameterization in general circulation models. Geophys Res Lett 2003, 30:1162. doi:10.1029/2002 GL016203.
Palmer, TN. A nonlinear dynamical perspective on model error: a proposal for non‐local stochastic‐dynamic parameterization in weather and climate prediction models. Quart J Roy Meteorl Soc 2001, 127: 279–304.
Shutts, GJ, Palmer, TN. Convective forcing fluctuations in a cloud‐resolving model: relevance to the stochastic parameterization problem. J Clim 2007, 20:187–202.
Wilks, D. Effects of stochastic parameterizations in the Lorenz `96 system. Quart J Roy Meteorl Soc 2005, 131: 389–407.
Buizza, R, Miller, M, Palmer, T. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart J Roy Meteorl Soc 1999, 125: 2887–2908.
Lin, WB, Neelin, JD. Considerations for stochastic convective parameterization. J Atmos Sci 2002, 59: 959–975.
Teixeira, J, Reynolds, C. Stochastic nature of physical parameterizations in ensemble prediction: a stochastic convection approach. Mon Wea Rev 2008, 136: 483–496.
Palmer, T, Williams, P, eds. Stochastic Physics and Climate Modelling. Cambridge: Cambridge University Press; 2010, 480 pp.
Craig, G, Cohen, B. Fluctuation in an equilibrium convective ensemble. Part I: theoretical formulation. J Atmos Sci 2006, 63:1996–2004.
Davoudi, J, McFarlane, NA, Birner, T. Fluctuation of mass flux in a cloud‐resolving simulation with interactive radiation. J Atmos Sci 2010, 67:400–418.
Plant, R, Craig, G. A stochastic parameterization for deep convection based on equilibrium statistics. J Atmos Sci 2008, 65:87–105.
Kain, J, Fritsch, M. A one‐dimensional entraining/ detraining plume model and its application in convective parameterization. J Atmos Sci 1990, 47:2784–2802.
Bright, D, Mullen, S. Short‐range ensemble forecasts of precipitation during the southwest monsoon. Wea Forecast 2002, 17:1080–1100.
Neelin, JD, Peters, O, Lin, JW‐B, Hales, K, Holloway, C. Rethinking convective quasi‐equilibrium: observational constraints for stochastic convective schemes in climate models, Chapter 16. In: Palmer, T, Williams, P, eds. Stochastic Physics and Climate Modelling. Cambridge: Cambridge University Press; 2010.
Berner, J, Shutts, GJ, Leutbecher, M, Palmer, TN. A spectral stochastic kinetic energy backscatter scheme and its impact on flow‐dependent predictability in the ECMWF ensemble prediction system. J Atmos Sci 2009, 66:603–626. doi:10.1175/2008JAS2677.1.
Tennant, W, Shutts, GJ, Arribas, A, Thompson, SA. Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon Wea Rev 139:1190–1206. doi:10.1175/2010MWR 3430.1.
Khouider, B, Majda, A, Katsoulakis, A. Coarse‐grained stochastic models for tropical convection and climate. Proc Natl Acad Sci U S A 2003, 100:11941–11946.
Barker, HW, Cole, JNS, Morcrette, JJ, Pincus, R, Räisäenen, P, von Salzen, K, Vaillancourt, PA. The Monte Carlo Independent Column Approximation: an assessment using several global atmospheric models. Quart J Roy Met Soc 2008, 134:1463–1478.