Anderson,, K., & Peters,, G. (2016). The trouble with negative emissions. Science, 354(6309), 182–184. https://doi.org/10.1126/science.aah4567
Antal,, M. (In press). How the regime hampered a transition to renewable electricity in Hungary. Environmental Innovation and Societal Transitions. https://doi.org/10.1016/j.eist.2019.04.004
Bäckstrand,, K., Meadowcroft,, J., & Oppenheimer,, M. (2011). The politics and policy of carbon capture and storage: Framing an emergent technology. Global Environmental Change, 21(2), 275–281. https://doi.org/10.1016/j.gloenvcha.2011.03.008
Bain,, P. G., Milfont,, T. L., Kashima,, Y., Bilewicz,, M., Doron,, G., Garoarsdóttir,, R. B., … Saviolidis,, N. M. (2016). Co‐benefits of addressing climate change can motivate action around the world. Nature Climate Change, 6(2), 154–157. https://doi.org/10.1038/nclimate2814
Baldwin,, E., Carley,, S., Brass,, J. N., & MacLean,, L. M. (2017). Global renewable electricity policy: A comparative policy analysis of countries by income status. Journal of Comparative Policy Analysis: Research and Practice, 19(3), 277–298. https://doi.org/10.1080/13876988.2016.1166866
Bergek,, A., & Jacobsson,, S. (2003). The emergence of a growth industry: A comparative analysis of the German, Dutch and Swedish wind turbine industries. In J. Metcalfe, & U. Cantner, (Eds.), Change, transformation and development (pp. 197–228). Heidelberg: Physica‐Verlag HD.
Bernauer,, T., & McGrath,, L. F. (2016). Simple reframing unlikely to boost public support for climate policy. Nature Climate Change, 6(7), 680–683. https://doi.org/10.1038/nclimate2948
Binz,, C., & Truffer,, B. (2017). Global innovation systems—A conceptual framework for innovation dynamics in transnational contexts. Research Policy, 46(7), 1284–1298. https://doi.org/10.1016/j.respol.2017.05.012
Brutschin,, E., & Jewell,, J. (2018). International political economy of nuclear energy. In A. Goldthau,, M. F. Keating,, & C. Kuzemko, (Eds.), Handbook of the international political economy of energy and natural resources (pp. 322–341). Cheltenham, England and Northampton, MA: Edward Elgar.
Cao,, J., Cohen,, A., Hansen,, J., Lester,, R., Peterson,, P., Qvist,, S., & Xu,, H. (2016). Nuclear power: Deployment speed response. Science, 354(6316), 1112–1113.
Cao,, J., Cohen,, A., Hansen,, J., Lester,, R., Peterson,, P., & Xu,, H. (2016). China‐U.S. cooperation to advance nuclear power. Science, 353(6299), 547–548. https://doi.org/10.1126/science.aaf7131
Carey,, G., Kay,, A., & Nevile,, A. (2019). Institutional legacies and “sticky layers”: What happens in cases of transformative policy change? Administration and Society, 51, 491–509. https://doi.org/10.1177/0095399717704682
Carley,, S., Baldwin,, E., MacLean,, L. M., & Brass,, J. N. (2017). Global expansion of renewable energy generation: An analysis of policy instruments. Environmental and Resource Economics, 68(2), 397–440. https://doi.org/10.1007/s10640-016-0025-3
Cherp,, A. (2015). How “dramatic” is the shift to 95% renewable electricity in Uruguay? Retrieved from http://polet.network/blog/2015/12/4/observations-on-a-shift-to-95-of-renewable-electricity-in-uruguay
Cherp,, A., Vinichenko,, V., Jewell,, J., Brutschin,, E., & Sovacool,, B. K. (2018). Integrating techno‐economic, socio‐technical and political perspectives on national energy transitions: A meta‐theoretical framework. Energy Research and Social Science, 37, 175–190. https://doi.org/10.1016/j.erss.2017.09.015
Cherp,, A., Vinichenko,, V., Jewell,, J., Suzuki,, M., & Antal,, M. (2017). Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan. Energy Policy, 101, 612–628. https://doi.org/10.1016/j.enpol.2016.10.044
Cia Alves,, E. E., Steiner,, A., de Almeida Medeiros,, M., & da Silva,, M. E. A. (2019). From a breeze to the four winds: A panel analysis of the international diffusion of renewable energy incentive policies (2005–2015). Energy Policy, 125(1), 317–329. https://doi.org/10.1016/j.enpol.2018.10.064
Climate Action Tracker. (2019). Climate crisis demands more government action as emissions rise. Retrieved from https://climateactiontracker.org/documents/537/CAT_2019-06-19_SB50_CAT_Update.pdf
Deng,, H. M., Liang,, Q. M., Liu,, L. J., & Anadon,, L. D. (2017). Co‐benefits of greenhouse gas mitigation: A review and classification by type, mitigation sector, and geography. Environmental Research Letters, 12(12), 123001. https://doi.org/10.1088/1748-9326/aa98d2
Dinica,, V. (2006). Support systems for the diffusion of renewable energy technologies—An investor perspective. Energy Policy, 34(4), 461–480. https://doi.org/10.1016/j.enpol.2004.06.014
Fouquet,, R., & Pearson,, P. J. G. (2012). Past and prospective energy transitions: Insights from history. Energy Policy, 50, 1–7. https://doi.org/10.1016/j.enpol.2012.08.014
Fuhrmann,, M. (2012). Splitting atoms: Why do countries build nuclear power plants? International Interactions, 38(1), 29–57. https://doi.org/10.1080/03050629.2012.640209
Fuss,, S., Jones,, C. D., Sharifi,, A., Andrew,, R. M., Smith,, P., Kraxner,, F., … Tavoni,, M. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853. https://doi.org/10.1038/nclimate2392
Garcia‐Menendez,, F., Saari,, R. K., Monier,, E., & Selin,, N. E. (2015). U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation. Environmental Science and Technology, 49(13), 7580–7855. https://doi.org/10.1021/acs.est.5b01324
Geels,, F. W. (2014). Regime resistance against low‐carbon transitions: Introducing politics and power into the multi‐level perspective. Theory, Culture %26 Society, 31(5), 21–40. https://doi.org/10.1177/0263276414531627
Geels,, F. W., Kern,, F., Fuchs,, G., Hinderer,, N., Kungl,, G., Mylan,, J., … Wassermann,, S. (2016). The enactment of socio‐technical transition pathways: A reformulated typology and a comparative multi‐level analysis of the German and UK low‐carbon electricity transitions (1990–2014). Research Policy, 45(4), 896–913. https://doi.org/10.1016/j.respol.2016.01.015
Gilabert,, P., & Lawford‐Smith,, H. (2012). Political feasibility: A conceptual exploration. Political Studies, 60(4), 809–825. https://doi.org/10.1111/j.1467-9248.2011.00936.x
Gourley,, B., & Stulberg,, A. N. (2013). Correlates of nuclear energy. In A. N. Stulberg, & M. Fuhrmann, (Eds.), The nuclear renaissance and international security (pp. 19–50). Palo Alto, CA: Stanford University Press.
Grubler,, A. (1992). Diffusion: Long‐term patterns and discontinuities. In N. Nakicenovic, & A. Grubler, (Eds.), Diffusion of technologies and social behavior (pp. 451–482). Heidelberg: Springer.
Grubler,, A. (1998). Technology and global change. Cambridge, England: Cambridge University Press.
Grubler,, A. (2010). The costs of the French nuclear scale‐up: A case of negative learning by doing. Energy Policy, 38(9), 5174–5188. https://doi.org/10.1016/j.enpol.2010.05.003
Grubler,, A., Wilson,, C., Bento,, N., Boza‐Kiss,, B., Krey,, V., McCollum,, D. L., … Valin,, H. (2018). A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. Nature Energy, 3(6), 515–527. https://doi.org/10.1038/s41560-018-0172-6
Huppman,, D., Kriegler,, E., Krey,, V., Riahi,, K., Rogelj,, J., Rose,, S. K., … Zhang,, R. (2018). IAMC 1.5°C scenario explorer and data hosted by IIASA (release 1.0). Laxenburg, Austria: Integrated Assessment Modeling Consortium %26 International Institute for Applied Systems Analysis. https://doi.org/10.22022/SR15/08-2018.15429
Inchauste,, G., & Victor,, D. G. (2017). Introduction. In G. Inchauste, & D. G. Victor,, The Political Economy of Energy Subsidy Reform Public Sector Governance. Washington D.C: World Bank. Retrieved from https://openknowledge.worldbank.org/bitstream/handle/10986/26216/9781464810077.pdf
Intergovernmental Panel on Climate Change (2018). Summary for policymakers. In V. Masson‐Delmotte,, P. Zhai,, H.‐O. Pörtner,, D. Roberts,, J. Skea,, P. R. Shukla,, et al. (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Inchewon, Korea: World Meteorological Organization. https://doi.org/10.1017/CBO9781107415324
Jewell,, J. (2011). Ready for nuclear energy?: An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy, 39(3), 1041–1055. https://doi.org/10.1016/j.enpol.2010.10.041
Jewell,, J., Vetier,, M., & Garcia‐Cabrera,, D. (2019). The international technological nuclear cooperation landscape: A new dataset and network analysis. Energy Policy, 128(5), 838–852. https://doi.org/10.1016/j.enpol.2018.12.024
Jewell,, J., Vinichenko,, V., McCollum,, D., Bauer,, N., Riahi,, K., Aboumahboub,, T., … Cherp,, A. (2016). Comparison and interactions between the long‐term pursuit of energy independence and climate policies. Nature Energy, 1, 1–9. https://doi.org/10.1038/nenergy.2016.73
Jewell,, J., Vinichenko,, V., Nacke,, L., & Cherp,, A. (2019). Prospects for powering past coal. Nature Climate Change, 9, 592–597. https://doi.org/10.1038/s41558-019-0509-6
Koomey,, J., & Hultman,, N. E. (2007). A reactor‐level analysis of busbar costs for US nuclear plants, 1970‐2005. Energy Policy, 35(11), 5630–5642. https://doi.org/10.1016/j.enpol.2007.06.005
Koomey,, J., Hultman,, N. E., & Grubler,, A. (2017). A reply to “Historical construction costs of global nuclear power reactors”. Energy Policy, 102, 640–643. https://doi.org/10.1016/j.enpol.2016.03.052
Kriegler,, E., Bertram,, C., Kuramochi,, T., Jakob,, M., Pehl,, M., Stevanovi,, M., … Edenhofer,, O. (2018). Environmental Research Letters, 13, 074022.
Larson,, A. (2019, January). Natural gas and renewable energy to continue leading the market. PowerMag. Retrieved from https://www.powermag.com/natural-gas-and-renewable-energy-to-continue-leading-the-market/?printmode=1
Lawford‐Smith,, H. (2013). Understanding political feasibility. Journal of Political Philosophy, 21(3), 243–259. https://doi.org/10.1111/j.1467-9760.2012.00422.x
Lewis,, J. I. (2013). Green innovation in China: China`s wind power industry and the global transition to a low‐carbon economy. Contemporary Asia in the World, 214, 475–477. https://doi.org/10.1017/s0305741013000428
Loftus,, P. J., Cohen,, A. M., Long,, J. C. S., & Jenkins,, J. D. (2015). A critical review of global decarbonization scenarios: What do they tell us about feasibility? Wiley Interdisciplinary Reviews: Climate Change, 6(1), 93–112. https://doi.org/10.1002/wcc.324
Lovins,, A. B. (2016). Nuclear power: Deployment speed. Science, 354(6316), 1112–1113.
Lovins,, A. B., Palazzi,, T., Laemel,, R., & Goldfield,, E. (2018). Relative deployment rates of renewable and nuclear power: A cautionary tale of two metrics. Energy Research and Social Science, 38(2), 188–192. https://doi.org/10.1016/j.erss.2018.01.005
Luderer,, G., Vrontisi,, Z., Bertram,, C., Edelenbosch,, O. Y., Pietzcker,, R. C., Rogelj,, J., … Kriegler,, E. (2018). Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 8(7), 626–633. https://doi.org/10.1038/s41558-018-0198-6
Majone,, G. (1975). On the notion of political feasibility. European Journal of Political Reseach, 3, 259–274. https://doi.org/10.1007/978-94-011-3030-1_17
McCollum,, D. L., Zhou,, W., Bertram,, C., Boer,, H.‐S., de Bosetti,, V., Busch,, S., … Riahi,, K. (2018). Energy investment needs for fulfilling the Paris agreement and achieving the sustainable development goals. Nature Energy, 3, 589–599. https://doi.org/10.1038/s41560-018-0179-z
Mizuno,, E. (2014). Overview of wind energy policy and development in Japan. Renewable and Sustainable Energy Reviews, 40, 999–1018. https://doi.org/10.1016/j.rser.2014.07.184
Moe,, E. (2012). Vested interests, energy efficiency and renewables in Japan. Energy Policy, 40(1), 260–273. https://doi.org/10.1016/j.enpol.2011.09.070
Nuccitelli,, D. (2018). Natural gas killed coal—Now renewables and batteries are taking over. The Guardian, 9, 18–21. https://doi.org/10.1088/1748-9326/9/9/094008
Pahle,, M., Burtraw,, D., Flachsland,, C., Kelsey,, N., Biber,, E., Meckling,, J., … Zysman,, J. (2018). Sequencing to ratchet up climate policy stringency. Nature Climate Change, 8(10), 861–867. https://doi.org/10.1038/s41558-018-0287-6
Patt,, A., van Vliet,, O., Lilliestam,, J., & Pfenninger,, S. (2018). Will policies to promote energy efficiency help or hinder achieving a 1.5 °C climate target? Energy Efficiency, 12, 551–565. https://doi.org/10.1007/s12053-018-9715-8
Pierson,, P. (2004). Politics in time. Princeton, NJ: Princeton University Press.
Ramana,, M. V., & Mian,, Z. (2014). One size doesn`t fit all: Social priorities and technical conflicts for small modular reactors. Energy Research and Social Science, 2, 115–124. https://doi.org/10.1016/j.erss.2014.04.015
Riahi,, K., Kriegler,, E., Johnson,, N., Bertram,, C., den Elzen,, M., Eom,, J., … Edenhofer,, O. (2015). Locked into Copenhagen pledges—Implications of short‐term emission targets for the cost and feasibility of long‐term climate goals. Technological Forecasting and Social Change, 90(PA), 8–23. https://doi.org/10.1016/j.techfore.2013.09.016
Roelfsema,, M., Fekete,, H., Höhne,, N., den Elzen,, M., Forsell,, N., Kuramochi,, T., … van Vuuren,, D. P. (2018). Reducing global GHG emissions by replicating successful sector examples: The ‘good practice policies’ scenario. Climate Policy, 18(9), 1103–1113. https://doi.org/10.1080/14693062.2018.1481356
Rogelj,, J., den Elzen,, M., Höhne,, N., Fransen,, T., Fekete,, H., Winkler,, H., … Sha,, F. (2016). Paris agreement climate proposals need a boost to keep warming well below 2°C. Nature, 534, 631–639. https://doi.org/10.1038/nature18307
Rogelj,, J., Popp,, A., Calvin,, K. V., Luderer,, G., Emmerling,, J., Gernaat,, D., … Tavoni,, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8(4), 325–332. https://doi.org/10.1038/s41558-018-0091-3
Rogelj,, J., Shindell,, D., Jiang,, K., Fifita,, S., Forster,, P., Ginzburg,, V., … Vilarino,, M. V. (2018). Mitigation pathways compatible with 1.5°C in the context of sustainable development. In Special report on global warming of 1.5°C (SR15). Geneva: Intergovernmental Panel on Climate Change Retrieved from http://www.ipcc.ch/report/sr15/
Schaffer,, L. M., & Bernauer,, T. (2014). Explaining government choices for promoting renewable energy. Energy Policy, 68, 15–27. https://doi.org/10.1016/j.enpol.2013.12.064
Schmidt,, T. S. (2014). Low‐carbon investment risks and de‐risking. Nature Climate Change, 4(4), 237–239. https://doi.org/10.1038/nclimate2112
Schubert,, D. K. J., Thuß,, S., & Möst,, D. (2015). Does political and social feasibility matter in energy scenarios? Energy Research and Social Science, 7, 43–54. https://doi.org/10.1016/j.erss.2015.03.003
Shearer,, C., & Buckley,, T. (2019, Janaury). China at a crossroads: Continued support for coal power Erodes country`s clean energy leadership. Retrieved from http://ieefa.org/wp-content/uploads/2019/01/China-at-a-Crossroads_January-2019.pdf
Solecki,, W., Cartwright,, A., Cramer,, W., Ford,, J., Jiang,, K., Pereira,, J. P., … Waisman,, H. (2018). Cross‐chapter box 3: Framing feasibility: Key concepts and conditions for limiting global temperature increases to 1.5°C. In V. Masson‐Delmotte,, P. Zhai,, H.‐O. Pörtner,, D. Roberts,, J. Skea,, P. R. Shukla,, et al. (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change (pp. 71–72). Incheon, Korea: World Meteorological Organization. Retrieved from https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter1_Low_Res.pdf
Spencer,, T., Colombier,, M., Sartor,, O., Garg,, A., Tiwari,, V., Burton,, J., … Wiseman,, J. (2018). The 1.5°C target and coal sector transition: At the limits of societal feasibility. Climate Policy, 18(3), 335–351. https://doi.org/10.1080/14693062.2017.1386540
Sugiura,, E., & Okutsu,, A. (2019, November 21). Why Japan finds coal hard to quit. Nikkei Asian Review. Retrieved from https://asia.nikkei.com/Spotlight/Cover-Story/Why-Japan-finds-coal-hard-to-quit
Suzuki,, M. (2015). Identifying roles of international institutions in clean energy technology innovation and diffusion in the developing countries: Matching barriers with roles of the institutions. Journal of Cleaner Production, 98, 229–240. https://doi.org/10.1016/j.jclepro.2014.08.070
Tabeta,, S. (2019, August 2). China approves RST new nuclear reactors in 3‐plus years. Nikkei Asian Review. Retrieved from https://asia.nikkei.com/Business/Energy/China-approves-first-new-nuclear-reactors-in-3-plus-years
Tavoni,, M., Kriegler,, E., Riahi,, K., Van Vuuren,, D. P., Aboumahboub,, T., Bowen,, A., … Van Der Zwaan,, B. (2015). Post‐2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5(2), 119–126. https://doi.org/10.1038/nclimate2475
Turnheim,, B., & Geels,, F. W. (2012). Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913–1997). Energy Policy, 50, 35–49. https://doi.org/10.1016/j.enpol.2012.04.060
UN Environment. (2018). Emissions gap report 2018. Kenya: Nairobi.
Ürge‐Vorsatz,, D., Herrero,, S. T., Dubash,, N. K., & Lecocq,, F. (2014). Measuring the co‐benefits of climate change mitigation. SSRN, 39, 549–582. https://doi.org/10.1146/annurev-environ-031312-125456
van Sluisveld,, M. A. E., Harmsen,, J. H. M., Bauer,, N., McCollum,, D. L., Riahi,, K., Tavoni,, M., … van der Zwaan,, B. (2015). Comparing future patterns of energy system change in 2°C scenarios with historically observed rates of change. Global Environmental Change, 35, 436–449. https://doi.org/10.1016/j.gloenvcha.2015.09.019
Vinichenko,, V. (2018). Mechanisms of energy transitions: National cases and the worldwide uptake of wind and solar power. Budapest, Hungary: Central European University.
Wanner,, B. (2019). Is exponential growth of solar PV the obvious conclusion? Retrieved from https://www.iea.org/newsroom/news/2019/february/is-exponential-growth-of-solar-pv-the-obvious-conclusion.html?utm_campaign=IEAnewsletters%26utm_source=SendGrid%26utm_medium=Email
Watts,, J. (2015, December 3). Uruguay makes dramatic shift to nearly 95% electricity from clean energy. The Guardian, 1–6. Retrieved from http://www.theguardian.com/environment/2015/dec/03/uruguay-makes-dramatic-shift-to-nearly-95-clean-energy?CMP=Share_iOSApp_Other%5Cnpapers3://publication/uuid/55F14378-0A95-4113-BD1B-8973D3B62EC4
Wilson,, C., Grubler,, A., Bauer,, N., Krey,, V., & Riahi,, K. (2013). Future capacity growth of energy technologies: Are scenarios consistent with historical evidence? Climatic Change, 118(2), 381–395. https://doi.org/10.1007/s10584-012-0618-y
Wilson,, C. (2012). Up‐scaling, formative phases, and learning in the historical diffusion of energy technologies. Energy Policy, 50, 81–94. https://doi.org/10.1016/j.enpol.2012.04.077
Zhou,, S., Matisoff,, D. C., Kingsley,, G. A., & Brown,, M. A. (2019). Understanding renewable energy policy adoption and evolution in Europe: The impact of coercion, normative emulation, competition, and learning. Energy Research and Social Science, 51(11), 1–11. https://doi.org/10.1016/j.erss.2018.12.011