Acemoglu,, D., Aghion,, P., Bursztyn,, L., & Hemous,, D. (2012). The environment and directed technical change. The American Economic Review, 102, 131–166. https://doi.org/10.1257/aer.102.1.131
Aghion,, P., Dechezleprêtre,, A., Hémous,, D., Martin,, R., & van Reenen,, J. (2016). Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. Journal of Political Economy, 124, 1–51. https://doi.org/10.1086/684581
Akimoto,, K., Sano,, F., Homma,, T., Oda,, J., Nagashima,, M., & Kii,, M. (2010). Estimates of GHG emission reduction potential by country, sector, and cost. Energy Policy, 38(7), 3384–3393.
Anandarajah,, G., McDowall,, W., Ekins,, P. (2013). Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios, International Journal of Hydrogen Energy, 38: 8, doi.org/10.1016/j.ijhydene.2012.12.110
Anthoff,, D., & Tol,, R. S. J. (2013). The climate framework for uncertainty, negotiation and distribution (fund), tables, version 3.7. Available from Www.Fund-Model.Org
Arthur,, W. B. (1989). Competing technologies, increasing returns, and lock‐in by historical events. The Econometrics Journal, 99, 116. https://doi.org/10.2307/2234208
Azariadis,, C., & Guesnerie,, R. (1986). Sunspots and cycles. The Review of Economic Studies, 53, 725. https://doi.org/10.2307/2297716
Bashmakov,, I., Grubb,, M., Drummond,, P., Lowe,, R., & Myshak,, A. (2020). “Minus 1” and energy costs constants: empirical evidence, theory and policy implications. in review with Journal of Cleaner Production Letters.
Barker,, T., Qureshi,, M. S., & Köhler,, J. (2006). The costs of greenhouse gas mitigation with induced technological change: A meta‐analysis of estimates in the literature. (Tyndall Center Working Paper), pp. 1–63.
*BEIS. (2019). CfD allocation round 3 auction results. Available from https://www.gov.uk/government/publications/contracts-for-difference-cfd-allocation-round-3-results/contracts-for-difference-cfd-allocation-round-3-results
Benhabib,, J., & Farmer,, R. E. A. (1999). Chapter 6 Indeterminacy and sunspots in macroeconomics. In J. Taylor, & M. Woodford, (Eds.), Handbook of Macroeconomics (pp. 387–448). Elsevier.
Bento,, N., & Wilson,, C. (2016). Measuring the duration of formative phases for energy technologies. Environmental Innovation and Sustainability Transitions, 21, 95–112. https://doi.org/10.1016/j.eist.2016.04.004
Bertram,, C., Johnson,, N., Luderer,, G., Riahi,, K., Isaac,, M., & Eom,, J. (2015). Carbon lock‐in through capital stock inertia associated with weak near‐term climate policies. Technological Forecasting and Social Change, 90, 62–72. https://doi.org/10.1016/j.techfore.2013.10.001
Bettencourt,, L. M. A., Trancik,, J. E., & Kaur,, J. (2013). Determinants of the pace of global innovation in energy technologies. PLoS One, 8, e67864. https://doi.org/10.1371/journal.pone.0067864
Bloomberg New Energy Finance. (2019). New energy outlook 2019.
Bosetti,, V., Carraro,, C., Galeotti,, M., Massetti,, E., and Tavoni,, M. (2006). WITCH: A World Induced Technical Change Hybrid model. Energy J., Hybrid Modeling, Special Issue #2: https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI2-2
Bosetti,, V., Marangoni,, G., Borgonovo,, E., Diaz Anadon,, L., Barron,, R., McJeon,, H. C., Politis,, S., & Friley,, P. (2015). Sensitivity to energy technology costs: A multi‐model comparison analysis. Energy Policy, 80, 244–263. https://doi.org/10.1016/j.enpol.2014.12.012
Botzen,, W. J., & van den Bergh,, J. C. J. M. (2012). How sensitive is Nordhaus to Weitzman? Climate policy in DICE with an alternative damage function. Economics Letters, 117, 372–374. https://doi.org/10.1016/j.econlet.2012.05.032
Buonanno,, P., Carraro,, C., & Galeotti,, M. (2003). Endogenous induced technical change and the costs of Kyoto. Resource and Energy Economics, 25, 11–34. https://doi.org/10.1016/S0928-7655(02)00015-5
Calel,, R., & Dechezleprêtre,, A. (2016). Environmental policy and directed technological change: Evidence from the european carbon market. The Review of Economics and Statistics, 98, 173–191. https://doi.org/10.1162/REST_a_00470
Capros,, P., Van Regemorter,, D., Paroussos,, L., Karkatsoulis,, P., Fragkiadakis,, C., Tsani,, S., Charalampidis,, I., Revesz,, T., Perry,, M. and Abrell,, J., 2013. GEM‐E3 model documentation. JRC Scientific and Policy Reports, 26034.
Chateau,, J., Dellink,, R., & Lanzi,, E. (2014). An overview of the OECD ENV‐linkages model: Version 3.
Crassous,, R., Hourcade,, J. C., & Sassi,, O. (2006). Endogenous structural change and climate targets modeling experiments with imaclim‐R. The Energy Journal. SI2006. https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi1-13
Daniel,, K. D., Litterman,, R. B., & Wagner,, G. (2019). Declining CO2 price paths. Proceedings of the National Academy of Sciences of the United States of America, 116, 20886–20891. https://doi.org/10.1073/pnas.1817444116
Davis,, S. J., Caldeira,, K., & Matthews,, H. D. (2010). Future CO2 emissions and climate change from existing energy infrastructure. Science, 329, 1330–1333. https://doi.org/10.1126/science.1188566
Davis,, S. J., & Socolow,, R. H. (2014). Commitment accounting of CO2 emissions. Environmental Research Letters, 9. https://doi.org/10.1088/1748-9326/9/8/084018
Dietz,, S., & Stern,, N. (2015). Endogenous growth, convexity of damage and climate risk: How Nordhaus` framework supports deep cuts in carbon emissions. The Econometrics Journal, 125, 574–620. https://doi.org/10.1111/ecoj.12188
Dietz,, S., & Venmans,, F. (2019). Cumulative carbon emissions and economic policy: In search of general principles. Journal of Environmental Economics and Management, 96, 108–129. https://doi.org/10.1016/J.JEEM.2019.04.003
Dowlatabadi,, H. (1998). Sensitivity of climate change mitigation estimates to assumptions about technical change. Energy Economics, 20, 473–493. https://doi.org/10.1016/s0140-9883(98)00009-7
Edenhofer,, O., & Coauthors. (2011). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge UK: CUP.
Edenhofer,, O., Lessman,, K., Kemfert,, C., Grubb,, M., & Köhler,, J. (2006). Induced technological change: Exploring its implications for the economics of atmospheric stabilization: Synthesis report from the innovation modeling comparison project. The Energy Journal, 27. https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi1-3 SI2006.
Erickson,, P., Kartha,, S., Lazarus,, M., & Tempest,, K. (2015). Assessing carbon lock‐in. Environmental Research Letters, 10(8), 084023.
Farmer,, J. D., Hepburn,, C., Mealy,, P., & Teytelboym,, A. (2015). A third wave in the economics of climate change. Environmental and Resource Economics, 62, 329–357. https://doi.org/10.1007/s10640-015-9965-2
Farmer,, J. D., & Lafond,, F. (2016). How predictable is technological progress? Research Policy, 45, 647–665. https://doi.org/10.1016/j.respol.2015.11.001
Farmer,, R. E. A. (1993). The macroeconomics of self‐fulfilling prophecies (1st ed.). Cambridge MA: MIT Press.
Faulwasser,, T., Nydestedt,, R., Kellett,, C. M., & Weller,, S. R. (2018). Towards a FAIR‐DICE IAM: Combining DICE and FAIR models □. IFAC‐PapersOnLine, 51, 126–131. https://doi.org/10.1016/j.ifacol.2018.06.222
Fisher‐Vanden,, K., Schu,, K., Sue Wing,, I., & Calvin,, K. (2012). Decomposing the impact of alternative technology sets on future carbon emissions growth. Energy Economics, 34, S359–S365. https://doi.org/10.1016/j.eneco.2012.07.021
Fouquet,, R., and Aghion,, P. (2019). Path dependence, innovation and the economics of climate change. in Handbook on Green Growth, R. Fouquet, Ed., Edward Elgar, 67–83.
Fujii,, Y., & Komiyama,, R. (2015). Long‐term energy and environmental strategies. In Reflections on the Fukushima Daiichi nuclear accident: Toward social‐scientific literacy and engineering resilience.
Fujimori,, S., Hasegawa,, T., Masui,, T., Takahashi,, K., Herran,, D. S., Dai,, H., Hijioka,, Y., & Kainuma,, M. (2017). SSP3: AIM implementation of shared socioeconomic pathways. Global Environmental Change, 42, 268–283. https://doi.org/10.1016/j.gloenvcha.2016.06.009
Gillingham,, K., Newell,, R. G., & Pizer,, W. A. (2008). Modeling endogenous technological change for climate policy analysis. Energy Economics, 30, 2734–2753. https://doi.org/10.1016/j.eneco.2008.03.001
Glanemann,, N., Willner,, S. N., & Levermann,, A. (2020). Paris climate agreement passes the cost‐benefit test. Nature Communications, 11, 110. https://doi.org/10.1038/s41467-019-13961-1
*Global Wind Energy Council (GWEC). (2019). Global wind report 2018. Available from https://gwec.net/wp-content/uploads/2019/04/GWEC-Global-Wind-Report-2018.pdf
Goulder,, L. H., & Mathai,, K. (2000). Optimal CO2 abatement in the presence of induced technological change. Journal of Environmental Economics and Management, 39, 1–38. https://doi.org/10.1006/jeem.1999.1089
Gritsevskyi,, A., & Nakićenovi,, N. (2000). Modeling uncertainty of induced technological change. Energy Policy, 28, 907–921. https://doi.org/10.1016/S0301-4215(00)00082-3
Grubb,, M., Chapuis,, T., & Duong,, M. H. (1995). The economics of changing course. Implications of adaptability and inertia for optimal climate policy. Energy Policy, 23, 417–432. https://doi.org/10.1016/0301-4215(95)90167-6
Grubb,, M., Mercure,, J.‐F., Salas,, P., Lange,, R.‐J., & Sognnaes,, I. (2018). Systems innovation, inertia and pliability: A mathematical exploration with implications for climate change abatement. Available from https://www.eprg.group.cam.ac.uk/eprg-working-paper-1808/.
Grubb,, M., and Wieners,, C. (2020). Modeling Myths: On the Need for Dynamic Realism in DICE and other Equilibrium Models of Global Climate Mitigation. Working Paper, Institute of New Economic Thinking. https://doi.org/10.36687/inetwp112. Accessed 12 Dec 2020
Grubb,, M., Drummond,, P., Poncia,, A., McDowall,, W., Popp,, D., Samadi,, S., Penasco,, C., Gillingham,, K., Smulders,, S., Glachant,, M., Pavan,, G., Hassel,, G., Mizuno,, E., Rubin,, E., Dechezlepraitre,, A. (2021). Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO2 mitigation. Environmental Research Letters. https://doi.org/10.1088/1748-9326/abde07
Grübler,, A., Nakićenović,, N., & Victor,, D. G. (1999). Dynamics of energy technologies and global change. Energy Policy, 27, 247–280. https://doi.org/10.1016/S0301-4215(98)00067-6
Ha‐Duong,, M., Grubb,, M. J., & Hourcade,, J.‐C. (1997). Influence of socioeconomic inertia and uncertainty on optimal CO2‐emission abatement. Nature, 390, 270–273. https://doi.org/10.1038/36825
Hafeez,, S., Weller,, S. R., & Kellett,, C. M. (2017). Transient Climate Response in the DICE Integrated Assessment Model of Climate‐economy. 2016 Australian Control Conference, AuCC 2016, Engineers Australia, pp. 282–287.
Hänsel,, M. C., Drupp,, M. A., Johansson,, D. J. A., Nesje,, F., Azar,, C., Freeman,, M. C., Groom,, B., & Sterner,, T. (2020). Climate economics support for the UN climate targets. Nature Climate Change, 10, 781–789. https://doi.org/10.1038/s41558-020-0833-x
Hassler,, J., & Krusell,, P. (2012). Economics and climate change: Integrated assessment in a multi‐region world. Journal of the European Economic Association, 10, 974–1000. https://doi.org/10.1111/j.1542-4774.2012.01082.x
Heptonstall,, P. J., & Gross,, R. J. K. (2020). A systematic review of the costs and impacts of integrating variable renewables into power grids. Nature Energy. https://doi.org/10.1038/s41560-020-00695-4.
Hicks,, J. (1932). A theory of wages. MacMillan.
Hoekstra,, A., Steinbuch,, M., & Verbong,, G. (2017). Creating agent‐based energy transition management models that can uncover profitable pathways to climate change mitigation. Complexity, 2017. https://doi.org/10.1155/2017/1967645
Hope,, C. (2006). The marginal impact of CO2 from PAGE2002: An integrated assessment model incorporating the IPCC`s five reasons for concern. Integrated Assessment Journal, 6, 19–56.
Hope,, C. (2012). The social cost of Co2 from the Page09 model. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1973863
Hope,, C., Anderson,, J., & Wenman,, P. (1993). Policy analysis of the greenhouse effect. An application of the PAGE model. Energy Policy, 21, 327–338. https://doi.org/10.1016/0301-4215(93)90253-C
Hope,, C. The Social Cost of Co2 from the Page09 Model (2011). Economics Discussion Paper No. 2011‐39, Available at SSRN: https://ssrn.com/abstract=1973863 or https://doi.org/10.2139/ssrn.1973863
Howard,, P. H., & Sterner,, T. (2017). Few and not so far between: A meta‐analysis of climate damage estimates. Environmental and Resource Economics, 68, 197–225. https://doi.org/10.1007/s10640-017-0166-z
Inter‐Agency Working Group. (2016). Technical support document: Technical update of the social cost of carbon for regulatory impact analysis under executive order 12866.
IPCC. (2007). Climate change 2007 synthesis report.
IPCC (2011). In O. Edenhofer,, R. Pichs‐Madruga,, Y. Sokona,, K. Seyboth,, P. Matschoss,, S. Kadner,, T. Zwickel,, P. Eickemeier,, G. Hansen,, S. Schlömer,, & C. von Stechow, (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge, United Kingdom: Cambridge University Press.
IPCC. (2014). Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
IRENA. (2020). Renewable energy statistics 2020.
Janse,, J. H., et al. (2015). GLOBIO‐aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environmental Science %26 Policy, 48, 99–114. https://doi.org/10.1016/j.envsci.2014.12.007
Jarvis,, A. (2018). Energy Returns and The Long‐run Growth of Global Industrial Society. Ecol. Econ., 146, 722–729. https://doi.org/10.1016/j.ecolecon.2017.11.005
Jennings,, T., Tipper, T., Andrews, H., Daglish, J., Drummond, P., & Grubb, M. (2020): Policy, innovation and cost reduction in UK offshore wind. https://www.carbontrust.com/resources/policy-innovation-and-cost-reduction-in-uk-offshore-wind (Accessed 14 September 2020).
Kavlak,, G., McNerney,, J., & Trancik,, J. E. (2018). Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy, 123, 700–710. https://doi.org/10.1016/J.ENPOL.2018.08.015
Kefford,, B. M., Ballinger,, B., Schmeda‐Lopez,, D. R., Greig,, C., & Smart,, S. (2018). The early retirement challenge for fossil fuel power plants in deep decarbonisation scenarios. Energy Policy, 119, 294–306. https://doi.org/10.1016/j.enpol.2018.04.018
Keramidas,, K., Kitous,, A., Despres,, J., & Schmitz,, A. (2017). POLES‐JRC model documentation.
Kim,, K., Heo,, E., & Kim,, Y. (2017). Dynamic policy impacts on a technological‐change system of renewable energy: An empirical analysis. Environmental and Resource Economics, 66, 205–236. https://doi.org/10.1007/s10640-015-9946-5
Knittel,, C. R. (2011). Automobiles on steroids: Product attribute trade‐offs and technological progress in the automobile sector. The American Economic Review, 101, 3368–3399. https://doi.org/10.1257/aer.101.7.3368
Köhler,, J., Grubb,, M., Popp,, D., & Edenhofer,, O. (2006). The transition to endogenous technical change in climate‐economy models: A technical overview to the innovation modeling comparison project. The Energy Journal. 27, 17–55. https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi1-2
Krey,, V., Luderer,, G., Clarke,, L., & Kriegler,, E. (2014). Getting from here to there ‐ energy technology transformation pathways in the EMF27 scenarios. Climatic Change, 123, 369–382. https://doi.org/10.1007/s10584-013-0947-5
Kriegler,, E., Riahi,, K., Bosetti,, V., Capros,, P., Petermann,, N., van Vuuren,, D. P., Weyant,, J. P., & Edenhofer,, O. (2015). Introduction to the AMPERE model intercomparison studies on the economics of climate stabilization. Technological Forecasting and Social Change, 90, 1–7. https://doi.org/10.1016/j.techfore.2014.10.012
Kriegler,, E., Riahi,, K., Bauer,, N., Schwanitz,, V. J., Petermann,, N., Bosetti,, V., Marcucci,, A., Otto,, S., Paroussos,, L., Rao,, S., Arroyo Currás,, T., Ashina,, S., Bollen,, J., Eom,, J., Hamdi‐Cherif,, M., Longden,, T., Kitous,, A., Méjean,, A., Sano,, F., … Edenhofer,, O. (2015a). Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technological Forecasting and Social Change, 90, 24–44.
Kriegler,, E., Petermann,, N., Krey,, V., Schwanitz,, V. J., Luderer,, G., Ashina,, S., Bosetti,, V., Eom,, J., Kitous,, A., Méjean,, A., Paroussos,, L., Sano,, F., Turton,, H., Wilson,, C., & Van Vuuren,, D. P. (2015b). Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change, 90, 45–61.
Kriegler,, E., Bauer,, N., Popp,, A., Humpenöder,, F., Leimbach,, M., Strefler,, J., Baumstark,, L., Bodirsky,, B. L., Hilaire,, J., Klein,, D., Mouratiadou,, I., Weindl,, I., Bertram,, C., Dietrich,, J.‐P., Luderer,, G., Pehl,, M., Pietzcker,, R., Piontek,, F., Lotze‐Campen,, H., … Edenhofer,, O. (2017). Fossil‐fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Global environmental change, 42, 297–315.
Kroposki,, B., Johnson,, B., Zhang,, Y., Gevorgian,, V., Denholm,, P., Hodge,, B. M., & Hannegan,, B. (2017). Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy. IEEE Power %26 Energy Magazine, 15, 61–73. https://doi.org/10.1109/MPE.2016.2637122
Kruse,, J., & Wetzel,, H. (2016). Innovation in clean coal technologies: Empirical evidence from firm‐level patent data. (EWI Working Paper, No. 16/01).
Kurosawa,, A. (2006). Multigas mitigation: An economic analysis using GRAPE model. The Energy Journal. 3, 275–288. SI2006. https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi3-13
Kypreos,, S. (2007). A MERGE model with endogenous technological change and the cost of carbon stabilization. Energy Policy, 35, 5327–5336. https://doi.org/10.1016/j.enpol.2006.01.029
Labriet,, M., Kanudia,, A., & Loulou,, R. (2012). Climate mitigation under an uncertain technology future: A TIAM‐world analysis. Energy Economics, 34, S366–S377. https://doi.org/10.1016/j.eneco.2012.02.016
Lamperti,, F., Dosi,, G., Napoletano,, M., Roventini,, A., & Sapio,, A. (2018). Faraway, so close: Coupled climate and economic dynamics in an agent‐based integrated assessment model. Ecological Economics, 150, 315–339. https://doi.org/10.1016/j.ecolecon.2018.03.023
Lecocq,, F., & Shalizi,, Z. (2014). The economics of targeted mitigation in infrastructure. Climate Policy, 14, 187–208. https://doi.org/10.1080/14693062.2014.861657
Lehmann,, P., Creutzig,, F., Ehlers,, M. H., Friedrichsen,, N., Heuson,, C., Hirth,, L., & Pietzcker,, R. (2012). Carbon lock‐out: Advancing renewable energy policy in Europe. Energies, 5, 323–354. https://doi.org/10.3390/en5020323
Lemoine,, D., & Rudik,, I. (2017). Managing climate change under uncertainty: Recursive integrated assessment at an inflection point. Annual Review of Resource Economics, 9, 117–142. https://doi.org/10.1146/annurev-resource-100516-053516
Lichtenberg,, F. R. (1986). Energy prices and induced innovation. Research Policy, 15, 67–75. https://doi.org/10.1016/0048-7333(86)90002-8
Luderer,, G., Bosetti,, V., Jakob,, M., Leimbach,, M., Steckel,, J. C., Waisman,, H., & Edenhofer,, O. (2012). The economics of decarbonizing the energy system‐results and insights from the RECIPE model intercomparison. Climatic Change, 114, 9–37. https://doi.org/10.1007/s10584-011-0105-x
Markovic,, F., Lazarou,, S., & Dagoumas,, A. (2018). Energy and climate policy consideration using the GCAM model: Assessing energy sources and technology options. International Journal of Renewable Energy Research, 8, 2299–2309.
McKinsey%26Co, 2009: Pathways to a low carbon economy: Version 2.0 of the Global Greenhouse Gas Abatement Cost Curve. https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/sustainability/costcurvepdfs/pathways_lowcarbon_economy_version2.ashx.
Mercure,, J.‐F., Knobloch,, F., Pollitt,, H., Paroussos,, L., Scrieciu,, S. S., & Lewney,, R. (2019). Modelling innovation and the macroeconomics of low‐carbon transitions: Theory, perspectives and practical use. Climate Policy, 19, 1019–1037. https://doi.org/10.1080/14693062.2019.1617665
Mercure,, J. F., Pollitt,, H., Viñuales,, J. E., Edwards,, N. R., Holden,, P. B., Chewpreecha,, U., Salas,, P., Sognnaes,, I., Lam,, A., & Knobloch,, F. (2018). Macroeconomic impact of stranded fossil fuel assets. Nature Climate Change, 8(7), 588–593.
Mequignon,, M., Ait Haddou,, H., Thellier,, F., & Bonhomme,, M. (2013). Greenhouse gases and building lifetimes. Building and Environment, 68, 77–86. https://doi.org/10.1016/j.buildenv.2013.05.017
Moore,, F. C., & Diaz,, D. B. (2015). Temperature impacts on economic growth warrant stringent mitigation policy. Nature Climate Change, 5, 127–131. https://doi.org/10.1038/nclimate2481
National Energy Board. (2016). Canada`s energy future 2016 energy supply and demand projections to 2040.
Nemet,, G. F. (2019). How solar energy became cheap a model for low‐carbon innovation. Routledge.
Newbery,, D. (2018). Evaluating the case for supporting renewable electricity. Energy Policy, 120, 684–696. https://doi.org/10.1016/J.ENPOL.2018.05.029
Newell,, R. G., Jaffe,, A. B., & Stavins,, R. N. (1999). The induced innovation hypothesis and energy‐saving technological change. Quarterly Journal of Economics, 114, 941–975. https://doi.org/10.1162/003355399556188
Nordhaus,, W. (2013). The climate casino: Risk, uncertainty, and economics for a warming world. Yale University Press.
Nordhaus,, W., & Sztorc,, P. (2013) DICE 2013R: Introduction and user`s manual. Available from http://www.econ.yale.edu/~nordhaus/homepage/homepage/documents/DICE_Manual_100413r1.pdf.
Nordhaus,, W. D. (1969). An economic theory of technological change. The American Economic Review, 59(2), 18–28.
Nordhaus,, W. D. (1992). An optimal transition path for controlling greenhouse gases. Science (80‐.). 258(5086), 1315–1319. https://doi.org/10.1126/science.258.5086.1315
Nordhaus,, W. D. (2002a). Modeling induced innovation in climate change policy. Chapter 8. In A. Grubler,, N. Nakicenovic,, & W. Nordhaus, (Eds.), Technological change and the environment (pp. 259–290). Washington, DC: Resources for the Future Press.
Nordhaus,, W. D. (2002b). Induced technological change with applications to modeling of climate‐change policies.
Nordhaus,, W. D. (2014). The perils of the learning model for modeling endogenous technological change. The Energy Journal, 35(1). https://doi.org/10.5547/01956574.35.1.1
Nordhaus,, W. D. (2017). Revisiting the social cost of carbon. Proceedings of the National Academy of Sciences of the United States of America, 114, 1518–1523. https://doi.org/10.1073/pnas.1609244114
Parker,, S., & Liddle,, B. (2017). Economy‐wide and manufacturing energy productivity transition paths and club convergence for OECD and non‐OECD countries. Energy Economics, 62, 338–346. https://doi.org/10.1016/j.eneco.2016.07.018
Paroussos,, L., Mandel,, A., Fragkiadakis,, K., Fragkos,, P., Hinkel,, J., & Vrontisi,, Z. (2019). Climate clubs and the macro‐economic benefits of international cooperation on climate policy. Nature Climate Change, 9, 542–546. https://doi.org/10.1038/s41558-019-0501-1
Pezzey,, J. C. V. (2019). Why the social cost of carbon will always be disputed. Wiley Interdisciplinary Reviews: Climate Change, 10, e558. https://doi.org/10.1002/wcc.558
Popp,, D. (2002). Induced innovation and energy prices. The American Economic Review, 92, 160–180.
Popp,, D. (2004). ENTICE: Endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management, 48, 742–768. https://doi.org/10.1016/j.jeem.2003.09.002
Popp,, D. (2019). Environmental policy and innovation: A decade of research. International Review of Environmental and Resource Economics, 13, 265–337. https://doi.org/10.1561/101.00000111
Popp,, D., Newell,, R. G., & Jaffe,, A. B. (2010). Energy, the Environment, and Technological Change. Vol. 2 of Handbook of the Economics of Innovation, B.H. Halland and N (pp. 873–937). Rosenberg: Eds., North‐Holland.
Pottier,, A., Espagne,, E., Perrissin Fabert,, B., & Dumas,, P. (2015). The comparative impact of integrated assessment Models` structures on optimal mitigation policies. Environmental Modeling and Assessment, 20, 453–473. https://doi.org/10.1007/s10666-015-9443-9
Pottier,, A., Hourcade,, J. C., & Espagne,, E. (2014). Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy. Energy Economics, 42, 213–218. https://doi.org/10.1016/j.eneco.2013.12.003
*PV Magazine. (2019a). Brazil A‐4 auction signs 211 MW of solar for record‐low price of $0.0175 kWh. Available from https://www.pv-magazine.com/2019/07/01/Brazil-a-4-auction-signs-211-mw-of-solar-for-record-low-price-of-0-0175-kwh/.
*PV Magazine. (2019c). Portuguese auction attracts world record bid of €14.8/MWh for solar. Available from https://www.pv-magazine.com/2019/07/31/portuguese-auction-attracts-world-record-bid-of-e14-8-mwh-for-solar/?utm_source=Bibblio%26utm_campaign=Internal
Rengs,, B., Scholz‐Wäckerle,, M., & van den Bergh,, J. (2020). Evolutionary macroeconomic assessment of employment and innovation impacts of climate policy packages. Journal of Economic Behavior and Organization, 169, 332–368. https://doi.org/10.1016/j.jebo.2019.11.025
Riahi,, K., Kriegler,, E., Johnson,, N., Bertram,, C., den Elzen,, M., Eom,, J., Schaeffer,, M., Edmonds,, J., Isaac,, M., Krey,, V., Longden,, T., Luderer,, G., Méjean,, A., McCollum,, D. L., Mima,, S., Turton,, H., van Vuuren,, D. P., Wada,, K., Bosetti,, V., … Edenhofer,, O. (2015). Locked into Copenhagen pledges—implications of short‐term emission targets for the cost and feasibility of long‐term climate goals. Technological Forecasting and Social Change, 90, 8–23.
Rizvi,, S. A. T. (2006). The Sonnenschein‐mantel‐Debreu results after thirty years. History of Political Economy, 38, 228–245. https://doi.org/10.1215/00182702-2005-024
Rogelj,, J., Forster,, P. M., Kriegler,, E., Smith,, C. J., & Séférian,, R. (2019). Estimating and tracking the remaining carbon budget for stringent climate targets. Nature, 571, 335–342. https://doi.org/10.1038/s41586-019-1368-z
Rogelj,, J., Meinshausen,, M., Knutti,, R., Farag,, A. A., Abdrabbo,, M. A. A., El‐sharkawi,, H. M., …, Intergovernmental panel on Climate Change. 2000. Special report on emission scenarios. Nature Climate Change. Summary for Policymakers. https://doi.org/10.1017/CBO9781107415416.005.
Rogelj,, J., Meinshausen,, M., & Knutti,, R. (2012). Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature climate change, 2(4), 248–253.
Romer,, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98, S71–S102. https://doi.org/10.3386/w3210
Rotmans,, J. (1990). IMAGE: An integrated model to assess the greenhouse effect. Ecological Economics, 7, 262–263. https://doi.org/10.1016/0921-8009(93)90013-v
Rozenberg,, J., Vogt‐Schilb,, A., & Hallegatte,, S. (2020). Instrument choice and stranded assets in the transition to clean capital. Journal of Environmental Economics and Management, 100, 102183. https://doi.org/10.1016/j.jeem.2018.10.005
Rubin,, E. S., Azevedo,, I. M. L., Jaramillo,, P., & Yeh,, S. (2015). A review of learning rates for electricity supply technologies. Energy Policy, 86, 198–218. https://doi.org/10.1016/j.enpol.2015.06.011
Samadi,, S. (2018). The experience curve theory and its application in the field of electricity generation technologies – A literature review. Renewable and Sustainable Energy Reviews, 82, 2346–2364. https://doi.org/10.1016/j.rser.2017.08.077
Sands,, R. D., Förster,, H., Jones,, C. A., & Schumacher,, K. (2014). Bio‐electricity and land use in the future agricultural resources model (FARM). Climatic Change, 123, 719–730. https://doi.org/10.1007/s10584-013-0943-9
Schenk,, N. J., & Lensink,, S. M. (2007). Communicating uncertainty in the IPCC`s greenhouse gas emissions scenarios. Climatic Change, 82, 293–308. https://doi.org/10.1007/s10584-006-9194-3
Schumpeter,, J. A. (1932). The theory of economic development: An inquiry into profits, capital, credit, interest, and the business cycle (1912/1934). Transaction Publishers.–1982.–January, 1(1982), 244.
Seebregts,, A. J., Kram,, T., Schaeffer,, G. J., Stoffer,, A., Kypreos,, S., Barreto,, L., Messner,, S., & Schrattenholzer,, L. (1999). Endogenous technological change in energy system models. IIASA: Paul Scherrer Institut.
Selvakkumaran,, S., & Limmeechokchai,, B. (2015). Low carbon society scenario analysis of transport sector of an emerging economy‐the AIM/Enduse modelling approach. Energy Policy, 81, 199–214. https://doi.org/10.1016/j.enpol.2014.10.005
Seto,, K. C., Davis,, S. J., Mitchell,, R. B., Stokes,, E. C., Unruh,, G., & Ürge‐Vorsatz,, D. (2016). Carbon lock‐in: Types, causes, and policy implications. Annual Review of Environment and Resources, 41, 425–452. https://doi.org/10.1146/annurev-environ-110615-085934
Stehfest,, E., van Vuuren,, D., Bouwman,, L., & Kram,, T. (2014). Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications. Netherlands Environmental Assessment Agency (PBL).
Taghizadeh‐Hesary,, F., Yoshino,, N., & Inagaki,, Y. (2019). Empirical analysis of factors influencing the price of solar modules. International Journal of Energy Sector Management, 13, 77–97. https://doi.org/10.1108/IJESM-05-2018-0005
Tol,, R. S. J. (1997). On the optimal control of carbon dioxide emissions: An application of FUND. Environmental Modeling and Assessment, 2, 151–163.
Tsigaris,, P., & Wood,, J. (2016). A simple climate‐Solow model for introducing the economics of climate change to undergraduate students. International Review of Economics Education, 23, 65–81. https://doi.org/10.1016/j.iree.2016.06.002
Unruh,, G. C. (2000). Understanding carbon lock‐in. Energy Policy, 28, 817–830. https://doi.org/10.1016/S0301-4215(00)00070-7
Unruh,, G. C. (2002). Escaping carbon lock‐in. Energy Policy, 30, 317–325. https://doi.org/10.1016/S0301-4215(01)00098-2
van der Ploeg,, F., & Rezai,, A. (2019). Simple rules for climate policy and integrated assessment. Environmental and Resource Economics, 72, 77–108. https://doi.org/10.1007/s10640-018-0280-6
van Vuuren,, D. P., van der Wijst,, K.‐I., Marsman,, S., van den Berg,, M., Hof,, A. F., & Jones,, C. D. (2020). The costs of achieving climate targets and the sources of uncertainty. Nature Climate Change, 10, 329–334. https://doi.org/10.1038/s41558-020-0732-1
Verdolini,, E., & Galeotti,, M. (2011). At home and abroad: An empirical analysis of innovation and diffusion in energy technologies. Journal of Environmental Economics and Management, 61, 119–134. https://doi.org/10.1016/j.jeem.2010.08.004
Vincenzi,, M., & Ozabaci,, D. (2017). The effect of public policies on inducing technological change in solar energy. Journal of Agricultural and Resource Economics, 46, 44–72. https://doi.org/10.1017/age.2016.36
Vogt‐Schilb,, A., & Hallegatte,, S. (2014). Marginal abatement cost curves and the optimal timing of mitigation measures. Energy Policy, 66, 645–653. https://doi.org/10.1016/j.enpol.2013.11.045
Vogt‐Schilb,, A., Meunier,, G., & Hallegatte,, S. (2018). When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment. Journal of Environmental Economics and Management, 88, 210–233. https://doi.org/10.1016/J.JEEM.2017.12.001
Wei,, Y. M., Mi,, Z. F., & Huang,, Z. (2015). Climate policy modeling: An online SCI‐E and SSCI based literature review. Omega, 57, 70–84. https://doi.org/10.1016/j.omega.2014.10.011
Wei,, Y., Han,, R., Liang,, Q., Yu,, B., Yao,, Y., Xue,, M., Zhang,, K., Liu,, L., Peng,, J., Yang,, P., Mi,, Z., Du,, Y., Wang,, C., Chang,, J., Yang,, Q., Yang,, Z., Shi,, X., Xie,, W., Liu,, C., … Liao,, H. (2018). An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM. Natural Hazards, 92(2), 585–618.
Weiss,, M., Junginger,, M., Patel,, M. K., & Blok,, K. (2010). A review of experience curve analyses for energy demand technologies. Technological Forecasting and Social Change, 77, 411–428. https://doi.org/10.1016/J.TECHFORE.2009.10.009
Weitzman,, M. L. (2009). On modeling and interpreting the economics of catastrophic climate change. The Review of Economics and Statistics, 91, 1–19. https://doi.org/10.1162/rest.91.1.1
Weitzman,, M. L. (2012). GHG targets as insurance against catastrophic climate damages. Journal of Public Economics Theory, 14, 221–244. https://doi.org/10.1111/j.1467-9779.2011.01539.x
Weyant,, J. (2017). Some contributions of integrated assessment models of global climate change. Review of Environmental Economics and Policy, 11, 115–137. https://doi.org/10.1093/reep/rew018
Weyant,, J., & Kriegler,, E. (2014). Preface and introduction to EMF 27. Climatic Change, 123, 345–352. https://doi.org/10.1007/s10584-014-1102-7
Winning,, M., Price,, J., Ekins,, P., Pye,, S., Glynn,, J., Watson,, J., & McGlade,, C. (2019). Nationally determined contributions under the Paris agreement and the costs of delayed action. Climate Policy, 19, 947–958. https://doi.org/10.1080/14693062.2019.1615858
World Energy Outlook (2020) – Analysis ‐ IEA. https://www.iea.org/reports/world-energy-outlook-2020 (Accessed November 10, 2020).
Wolf,, S., Fürst,, S., Mandel,, A., Lass,, W., Lincke,, D., Pablo‐Martí,, F., & Jaeger,, C. (2013). A multi‐agent model of several economic regions. Environmental Modelling %26 Software, 44, 25–43. https://doi.org/10.1016/j.envsoft.2012.12.012
Yamamoto,, H., Sugiyama,, M., & Tsutsui,, J. (2014). Role of end‐use technologies in long‐term GHG reduction scenarios developed with the BET model. Climatic Change, 123, 583–596. https://doi.org/10.1007/s10584-013-0938-6
Yang,, P., Yao,, Y., Mi,, Z., Cao,, Y., Liao,, H., Yu,, B., Liang,, Q., Coffman,, D., & Wei,, Y. (2018). Social cost of carbon under shared socioeconomic pathways. Global Environmental Change, 53, 225–232.