Manabe, S, Smagorinsky, J, Strickler, RF. Simulated climatology of a general circulation model with a hydrologic cycle. Mon Wea Rev 1965, 93:769–798.
Sellers, PJ, Bounoua, L, Collatz, GJ, Randall, DA, Dazlich, DA, Los, SO, Berry, JA, Fung, I, Tucker, CJ, Field, CB, et al. Comparison of radiative and physiological effects of atmospheric CO2 on climate. Science 1996, 271:1402–1406.
Bonan, GB. Effects of land use on the climate of the United States. Clim Change 1995, 37:449–486.
Oleson, KW, Niu, G‐Y, Yang, Z‐L, Lawrence, DM, Thornton, PE, Lawrence, PJ, Stöckli, R, Dickinson, RE, Bonan, GB, Levis, S, et al. Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 2008, 113:G01021. doi:10.1029/2007JG000563.
Foley, JA. Numerical models of the terrestrial biosphere. J Biogeogr 1995, 22:837–842.
Ellis, EC. Earth science in the Anthropocene: New epoch, new paradigm, new responsibilities. Eos Trans AGU 2009, 90:473–473.
Schurgers, G, Mikolajewicz, U, Gröger, M, Maier‐Reimer, E, Vizcaíno, M, Winguth, A. Long‐term effects of biogeophysical and biogeochemical interactions between terrestrial biosphere and climate under anthropogenic climate change. Glob Planet Change 2008, 64:26–37.
Sagan, C, Toon, OB, Pollack, JB. Anthropogenic albedo changes and the earth`s climate. Science 1979, 206:1363–1368.
Sud, YC, Shukla, J, Mintz, Y. Influence of land surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J Appl Meteorol 1988, 27:1036–1054.
Shukla, J, Mintz, Y. Influence of land‐surface evapotranspiration on the earth`s climate. Science 1982, 215:1498–1501.
Doney, SC, Lindsay, K, Fung, I, John, J. Natural variability in a stable, 1000‐yr global coupled climate‐carbon cycle simulation. J Climate 2006, 19:3033–3054.
Schlesinger, WH. Biogeochemistry, an Analysis of Global Change. 2nd ed. San Diego, CA: Academic Press; 1997, 359 of 588.
Mahowald, NM, Muhs, DR, Levis, S, Rasch, PJ, Yoshioka, M, Zender, CS, Luo, C. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 2006, 111: D10202. doi:10.1029/2005JD006653.
Levis, S, Wiedinmyer, C, Bonan, GB, Gunther, A. Simulating biogenic volatile organic compound emissions in the Community Climate System Model. J Geophys Res 2003, 108:4659. doi:10.1029/2002JD003203.
YoshiokaM,, MahowaldNM,, ConleyAJ,, CollinsWD,, FillmoreDW,, ZenderCS,, ColemanDB,. Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J Climate 2007, 20:1445–1467.
Mercado, LM, Bellouin, N, Sitch, S, Boucher, O, Huntingford, C, Wild, M, Cox, PM. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458:1014–1017. doi:10.1038/ nature07949.
Crutzen, PJ. The effects of industrial and agricultural practices on atmospheric chemistry and climate during the anthropocene. J Environ Sci Health A Tox Hazard Subst Environ Eng 2002, 37:423–424.
Feddema, JJ, Oleson, KW, Bonan, GB, Mearns, LO, Buja, LE, Meehl, GA, Washington, WM. The importance of land‐cover change in simulating future climates. Science 2005, 310:1674–1678. doi:10.1126/ science.1118160.
Hurtt, GC, Frolking, S, Fearon, MG, Moore, B, Shevliakova, E, Malyshev, S, Pacala, SW, Houghton, RA. The underpinnings of land‐use history: three centuries of global gridded land‐use transitions, wood‐harvest activity, and resulting secondary lands. Glob Chang Biol 2006, 12:1208–1229.
Masson, V. Urban surface modeling and the meso‐scale impact of cities. Theor Appl Climatol 2006, 84:35–45. doi:10.1007/s00704‐005‐0142‐3.
Bonan, GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 2008, 320:1444–1449. doi:10.1126/science.1155121.
Dorman, JL, Sellers, PJ. A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB). J Appl Meteorol 1989, 28:833–855.
Henderson‐Sellers, A, Gornitz, V. Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Clim Change 1984, 6:231–257. doi:10.1007/BF00142475.
Ball, JT, Woodrow, IE, Berry, JA. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, J, ed. Progress in Photosynthesis Research, vol. 4. Zoetermeer, Netherlands: Martinus Nijhoff; 1987, 221–224
Olson, JS, Watts, JA, Allison, LJ. 1983. Carbon in live vegetation of major world ecosystems, ORNL‐5862. Oak Ridge National Laboratory, Oak Ridge, TN.
Prentice, IC, Cramer, W, Harrison, SP, Leemans, R, Monserud, RA, Solomon, AM. A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 1992, 19:117–134.
Holdridge, LR. Determination of world plant formations from simple climatic data. Science 1947, 105:367–368.
Bonan, GB, Levis, S, Kergoat, L, Oleson, KW. Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Global Biogeochem Cycles 2002, 16:1021 doi:10.1029/2000GB001360.
Bugmann, H. A review of forest gap models. Clim Change 2001, 51:259–305. doi:10.1023/A:10125256 26267.
Parton, WJ, Schimel, DS, Cole, CV, Ojima, DS. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 1987, 51:1173–1179.
Foley, JA, Prentice, IC, Ramankutty, N, Levis, S, Pollard, D, Sitch, S, Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeochem Cycles 1996, 10:603–628.
Levis, S, Foley, JA, Pollard, D. CO2, climate, and vegetation feedbacks at the Last Glacial Maximum. J Geophys Res 1999, 104:31191–31198.
Doherty, R, Kutzbach, J, Foley, J, Pollard, D. Fully coupled climate/dynamical vegetation model simulations over North Africa during the mid‐Holocene. Clim Dyn 2000, 16:561–573. doi:10.1007/s003820000065.
Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 2001, 7:357–373.
Shellito, CJ, Sloan, LC. Reconstructing a lost Eocene paradise: Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum. Glob Planet Change 2006, 50:1–17. doi:10.1016/j.gloplacha.2005.08.001.
Weber, S. The utility of Earth system Models of Intermediate Complexity (EMICs). WIREs Clim Change 2010, 1:243–252. doi: 10.1002/wcc.24.
Ganopolski, A, Rahmstorf, S, Petoukhov, V, Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 1998, 391:351–356.
Liu, Z, Wang, Y, Gallimore, R, Gasse, F, Johnson, T, deMenocal, P, Adkins, J, Notaro, M, Prentice, IC, Kutzbach, J, et al. Simulating the transient evolution and abrupt change of Northern Africa atmosphere‐ocean‐terrestrial ecosystem in the Holocene. Quat Sci Rev 2007, 26:1818–1837.
Claussen, M, Kubatzki, C, Brovkin, V, Ganopolski, A, Hoelzmann, P, Pachur, H‐J. Simulation of an abrupt change in Saharan vegetation in the mid‐Holocene. Geophys Res Lett 1999, 26:2037–2040.
Pitman AJ, de Noblet‐Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V, et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 2009, 36: L14814. doi:10.1029/2009GL039076.
Friedlingstein, P, Joel, G, Field, CB, Fung, IY. Toward an allocation scheme for global terrestrial carbon models. Glob Chang Biol 1999, 5:755–770. doi:10.1046/j.1999.00269.x.
Potter, CS, Randerson, JT, Field, CB, Matson, PA, Vitousek, PM, Mooney, HA, Klooster, SA. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 1993, 7:811–841.
Thonicke, K, Venevsky, S, Sitch, S, Cramer, W. The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model. Global Ecol Biogeogr 2001, 10:661–677.
Gerber, S, Hedin, LO, Oppenheimer, M, Pacala, SW, Shevliakova, E. Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochem Cycles 2010, 24: GB1001. doi:10.1029/ 2008GB003336.
Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE, Dai A, et al. 2010a. Technical description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN‐478+STR, Boulder, Colorado, 257pp.
Bonan, GB, Levis, S, Sitch, S, Vertenstein, M, Oleson, KW. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Chang Biol 2003, 9:1543–1566. doi:10.1046/j.2003.00681.x.
Koster, RD, Suarez, MJ. A comparative analysis of two land surface heterogeneity representations. J Climate 1992, 5:1379–1390.
Moorcroft, PR, Hurtt, GC, Pacala, SW. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 2001, 71:557–585.
Fisher, R, McDowell, N, Purves, D, Moorcroft, P, Sitch, S, Cox, P, Huntingford, C, Meir, P, Woodward, FI. Assessing uncertainties in a second‐generation dynamic vegetation model due to ecological scale limitations. New Phytologist 2010, 187:666–681.
Peng, CH. From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol Modell 2000, 135:33–54.
Wright, IJ, Reich, PB, Westoby, M, Ackerly, DD, Baruch, Z. The worldwide leaf economics spectrum. Nature 2004, 428:821–827.
Scheiter, S, Higgins, SI. Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Glob Chang Biol 2009, 15:2224–2246.
Higgins, PAT, Harte, J. Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience 2006, 56:407–417. doi:10.1641/0006‐3568(2006)056[04 07:BABRTC]2.0.CO;2.
Adams, HD, Macalady, AK, Breshears, DD, Allen, CD, Stephenson, NL, Saleska, SR, Huxman, TE, McDowell, NG. Climate‐induced tree mortality: Earth system consequences. Eos Trans AGU 2010, 91:153–154.
Hicke, JA, Logan, JA, Powell, J, Ojima, DS. Changing temperatures influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) outbreaks in the western United States. J Geophys Res 2006, 111:G02019. doi: 10.1029/2005JG000101.
Gutschick, VP, BassiriRad, H. Biological extreme events: a research framework. Eos Trans AGU 2010, 91:85–86.
Ramankutty, N, Foley, JA. Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem Cycles 1998, 12:667–685.
Matthews, HD, Weaver, AJ, Meissner, KJ, Gillett, NP, Eby, M. Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 2004, 22:461–479. doi:10.1007/s00382‐004‐0392‐2.
Chini LP, Hurtt G, Frolking S, Klein Goldewijk K, Stehfest E, Shevliakova E, van Vuuren DP, Betts R, Feddema J, Jones C, et al. Harmonization of global land‐use scenarios for the period 1500‐2100 for IPCC 5th assessment. Eos Trans AGU 2008, 89:Fall Meeting Supplement, Abstract B41B‐0378.
Füssel, H‐M. Modeling impacts and adaptation in global IAMs. WIREs Clim Change 2010, 1:288–303.
Shevliakova, E, Pacala, SW, Malyshev, S, Hurtt, GW, Milly, PCD, Caspersen, JP, Sentman, LT, Fisk, JP, Wirth, C, Crevoisier, C. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochem Cycles 2009, 23:GB2022. doi:10.1029/2007GB003176.
Bondeau, A, Smith, PC, Zaehle, S, Schaphoff, S, Lucht, W, Cramer, W, Gerten, D, Lotze‐Campen, H, Müller, C, Reichstein, M, et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Chang Biol 2007, 13:679–706. doi:10.1111/j.2006.01305.x.
Osborne, TM, Lawrence, DM, Challinor, AJ, Slingo, JM, Wheeler, TR. Development and assessment of a coupled crop–climate model. Glob Chang Biol 2007, 13:169–183. doi:10.1111/j.2006.01274.x.
Levis, S, Thornton, PE, Bonan, GB, Kucharik, CJ. Modeling land use and land management with the Community Land Model. iLeaps Newsletter, issue 2009, 7:10–12.
Sacks, WJ, Cook, BI, Buenning, N, Levis, S, Helkowski, JH. Effects of global irrigation on the near‐surface climate. Clim Dyn 2009, 33:159–175. doi:10.1007/ s00382‐008‐0445‐z.
Kucharik, CJ, Ramankutty, N. Trends and variability in U.S. corn yields over the twentieth century. Earth Interact 2005, 9:1–29.
Lobell, DB, Bala, G, Duffy, PB. Biogeophysical impacts of cropland management changes on climate. Geophys Res Lett 2006, 33:L06708. doi:10.1029/ 2005GL025492.
Kucharik, CJ, Twine, TE. Residue, respiration, and residuals: evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agric Forest Meteorol 2007, 146:134–158.
Potter, P, Ramankutty, N, Bennett, E, Donner, S. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact, 14:1–22. doi:10.1175/2010EI288.1.
Levis, S. Bi‐directional interactions simulated by a synchronously coupled atmosphere‐vegetation model: towards building an Earth Systems Model, University of Wisconsin‐Madison, 1999, 140.
Claussen, M, Brovkin, V, Ganopolski, A. Biogeophysical versus biogeochemical feedbacks of large‐scale land cover change. Geophys Res Lett 2001, 28:1011–1014.
Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne J‐L, Hall A, Hallegatte S, Holland MM, Ingram W, et al. How well do we understand and evaluate climate change feedback processes? J Clim 2006, 19:3445–3482.
Levis, S, Foley, JA, Pollard, D. Potential high‐latitude vegetation feedbacks on CO2‐induced climate change. Geophys Res Lett 1999, 26:747–750.
Lloyd, A. Ecological histories from Alaskan tree lines provide insight into future change. Ecology 2005, 86:1687–1695.
Laine, V, Heikinheimo, M. Estimation of surface albedo from NOAA AVHRR data in high latitudes. Tellus(A) 1996, 48:424–441.
Levis, S, Foley, JA, Pollard, D. Large‐scale vegetation feedbacks on a doubled CO2 climate. J Clim 2000, 13:1313–1325.
Kubatzki, C, Claussen, M. Simulation of the global bio‐geophysical interactions during the Last Glacial Maximum. Clim Dyn 1998, 14:461–471.
Foley, JA, Kutzbach, JE, Coe, MT, Levis, S. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 1994, 371:52–54.
Chalita, S, Le Treut, H. The albedo of temperate and boreal forest and the Northern Hemisphere climate: a sensitivity experiment using the LMD GCM. Clim Dyn 1994, 10:231–240.
Chapin, F, Mcguire, AD, Randerson, J, Pielke, R, Baldocchi, D, Hobbie, SE, Roulet, N, Eugster, W, Kasischke, E, Rastetter, EB, et al. Arctic and boreal ecosystems of western North America as components of the climate system. Glob Chang Biol 2000, 6:211–223.
Peros, MC, Gajewski, K, Viau, AE. Continental‐scale tree population response to rapid climate change, competition, and disturbance. Global Ecol Biogeogr 2008, 17:658–669.
Swann, AL, Fung, IY, Levis, S, Bonan, GB, Doney, SC. Changes in Arctic vegetation amplify high‐latitude warming through the greenhouse effect. Proc Natl Acad Sci U S A 2010, 107:1295–1300. doi:10.1073/ pnas.0913846107.
Cox, PM, Betts, RA, Jones, CD, Spall, SA, Totterdell, IJ. Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model. Nature 2000, 408:184–187.
Pitman, AJ. The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 2003, 23:479–510.
Levis, S, Bonan, GB. Simulating springtime temperature patterns in the Community Atmosphere Model coupled to the Community Land Model using prognostic leaf area. J Climate 2004, 17:4531–4540. doi:10.1175/3218.1.
Schwartz, MD, Karl, TR. Spring phenology: nature`s experiment to detect the effect of “green‐up” on surface maximum temperatures. Mon Wea Rev 1990, 118:883–890.
Jeong, S‐J, Ho, C‐H, Jeong, J‐H. Increase in vegetation greenness and decrease in springtime warming over East Asia. Geophys Res Lett 2009, 36: L02710. doi:10.1029/2008GL036583.
Jeong, S‐J, Ho, C‐H, Kim, K‐Y, Jeong, J‐H. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys Res Lett 2009, 36: L18705. doi:10.1029/2009GL039114.
Jeong, S‐J, Ho, C‐H, Park, T‐W, Kim, J, Levis, S. Clim Dyn 2010. doi:10.1007/s00382‐010‐0827‐x.
Liu, Z, Wang, Y, Gallimore, R, Notaro, M, Prentice, IC. On the cause of abrupt vegetation collapse in North Africa during the Holocene: climate variability vs. vegetation feedback. Geophys Res Lett 2006, 33: L22709. doi:10.1029/2006GL028062.
Levis, S, Bonan, GB, Bonfils, C. Soil feedback drives the mid‐Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Clim Dyn 2004, 23:791–802. doi:10.1007/s00382‐004‐0477‐y.
Liu, Z, Notaro, M, Kutzbach, J, Liu, N. Assessing global vegetation‐climate feedbacks from the observation. J Clim 2006, 19:787–814.
Wang, G, Eltahir, EAB, Foley, JA, Pollard, D, Levis, S. Decadal variability of rainfall in the Sahel: results from the coupled GENESIS‐IBIS atmosphere‐biosphere model. Clim Dyn 2004, 22:625–637. doi:10.1007/s00382‐004‐0411‐3.
Notaro, M, Liu, Z, Williams, JW. Observed vegetation–climate feedbacks in the United States. J Clim 2006, 19:763–786.
Snyder, PK, Delire, C, Foley, JA. Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 2004, 23:279–302. doi:10.1007/ s00382‐004‐0430‐0.
Meissner, KJ, Weaver, AJ, Matthews, HD, Cox, PM. The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Clim Dyn 2003, 21:515–537.
deNoblet‐Ducoudré, N, Claussen, M, Prentice, IC. Mid‐Holocene greening of the Sahara: first results of the GAIM 6000 year BP experiment with two asynchronously coupled atmosphere/biome models. Clim Dyn 2000, 16:643–659.
Gallimore, R, Jacob, R, Kutzbach, J. Coupled atmosphere‐ocean‐vegetation simulations for modern and mid‐Holocene climates: role of extratropical vegetation cover feedbacks. Clim Dyn 2005, 25:755–776. doi:10.1007/s00382‐005‐0054‐z.
Alo, CA, Wang, G. Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J Geophys Res 2008, 113: G01004. doi:10.1029/2007JG000528.
Brovkin, V, Claussen, M, Driesschaert, E, Fichefet, T, Kicklighter, D, Loutre, MF, Matthews, HD, Ramankutty, N, Schaeffer, M, Sokolov, A. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 2006, 26:587–600.
Lawrence, PJ, Chase, TN. Investigating the climate impacts of global land cover change in the community climate system model. Int J Climatol 2010. doi:10.1002/joc.2061.
Chagnon, FJF, Bras, RL. Contemporary climate change in the Amazon. Geophys Res Lett 2005, 32: L13703. doi:10.1029/2005GL022722.
Baidya Roy, S. Mesoscale vegetation‐atmosphere feedbacks in Amazonia. J Geophys Res 2009, 114: D20111. doi:10.1029/2009JD012001.
Gerten, D, Rost, S, von Bloh, W, Lucht, W. Causes of change in 20th century global river discharge. Geophys Res Lett 2008, 35: L20405. doi:10.1029/ 2008GL035258.
Gedney, N, Cox, PM, Betts, RA, Boucher, O, Huntingford, C, Stott, PA. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439:835–838. doi:10.1038/ nature04504.
Broecker, WS, Peng, T‐H, Jouzel, J, Russell, GL. The magnitude of global fresh‐water transports of importance to ocean circulation. Clim Dyn 1990, 4:73–79.
Carrington, DP, Gallimore, RG, Kutzbach, JE. Climate sensitivity to wetlands and wetland vegetation in mid‐Holocene North Africa. Clim Dyn 2001, 17:151–157.
Betts, RA. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408:187–190.
Friedlingstein, P, Cox, P, Betts, R, Bopp, L,Von Bloh, W, Brovkin, V. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 2006, 19:3337–3353. doi: 10.1175/JCLI 3800.1.
Ainsworth, EA, Long, SP. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 2005, 165:351–371.
Jones, CD, Collins, M, Cox, PM, Spall, SA. The carbon cycle response to ENSO: a coupled climate–carbon cycle model study. J Clim 2001, 14:4113–4129.
Breshears, DD, Myers, OB, Meyer, CW, Barnes, FJ, Zou, CB, Allen, CD, McDowell, NG, Pockman, WT. Tree die‐off in response to global change‐type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 2009, 7:185–189.
Sitch S, Cox PM, Collins WJ, Huntingford C. Indirect radiative forcing of climate change through ozone effects on the land‐carbon sink. Nature 2007, 448:791–794.
Kloster, S, Mahowald, NM, Randerson, JT, Thornton, PE, Hoffman, FM, Levis, S, Lawrence, PJ, Feddema, JJ, Oleson, KW, Lawrence, DM. Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences 2010, 7:1877–1902. doi:10.5194/bg‐7‐1877‐2010.
Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 2007, 104:18866–18870. doi:10.1073/pnas.0702737104.
Knorr, W. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophys Res Lett 2009, 36: L21710. doi:10.1029/2009GL040613.
Jones, CD, Cox, PM. On the significance of atmospheric CO2 growth rate anomalies in 2002–2003. Geophys Res Lett 2005, 32: L14816. doi:10.1029/ 2005GL023027.
Wania, R, Ross, I, Prentice, IC. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Global Biogeochem Cycles 2009, 23: GB3014. doi:10.1029/2008GB003412.
Lawrence, DM, Slater, AG, Tomas, RA, Holland, MM, Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett 2008, 35: L11506. doi:10.1029/2008GL033985.
Walter, KM, Smith, LC, Chapin, FS. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans R Soc A Math Phys Eng Sci 2007, 365:1657–1676.
Jain, A, Yang, X, Kheshgi, H, McGuire, AD, Post, W, Kicklighter, D. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochem Cycles 2009, 23: GB4028. doi:10.1029/2009GB003519.
Wang, YP, Houlton, B, Field, CB. A model of biogeochemical cycles of carbon, nitrogen and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem Cycles 2007, 21: GB1018. doi:10.1029/2006GB002797.
Sokolov, AP, Kicklighter, DW, Melillo, JM, Felzer, BS. Consequences of considering cargon‐nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 2008, 21: 3776–3796.
Frank, DC, Esper, J, Raible, CC, Büntgen, U, Trouet, V, Stocker, B, Joos, F. Enseble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 2010, 463:527–530. doi:10.1038/nature08769.
Zaehle, S, Friedlingstein, P, Friend, AD. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys Res Lett 2010, 37: L01401. doi:10.1029/2009GL041345.
Thornton, PE, Doney, SC, Lindsay, K, Moore, JK, Mahowald, N, Randerson, JT, Fung, I, Lamarque, J‐F, Feddema, JJ, Lee, Y‐H. Carbon‐nitrogen interactions regulate climate‐carbon cycle feedbacks: results from an atmosphere‐ocean general circulation model. Biogeosciences 2009, 6:2099–2120.
Levis, S. 2002. A review of non‐linearities and thresholds simulated by synchronously coupled climate‐vegetation models. XXVII General Assembly of the European Geophysical Society, Nice, France.
Delire, C, Foley, JA, Thompson, SL. Long‐term internal variability in a coupled atmosphere‐biosphere model. J Clim 2004, 17:3947–3959.
Bonan, GB, Levis, S. Quantifying carbon‐nitrogen feedbacks in the Community Land Model (CLM4). Geophys Res Lett 2010, 37: L07401. doi:10.1029/ 2010GL042430.
Thornton, PE, Lamarque, J‐F, Rosenbloom, NA, Mahowald, NM. Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles 2007, 21: GB4018. doi:10.1029/2006GB002868.
Ruddiman, WF. The anthropogenic greenhouse era began thousands of years ago. Clim Change 2003, 61:261–293.
Ruddiman, WF. Falsification of natural explanations for late Holocene greenhouse‐gas increases. Eos Trans AGU 2008, 89: Fall Meeting Supplement, Abstract U33B‐08.
Pongratz, J, Reick, CH, Raddatz, T, Claussen, M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochem Cycles 2009, 23: GB4001. doi:10.1029/ 2009GB003488.
Raupach, MR, Marland, G, Ciais, P, Le Quéré, C, Canadell, JG, Klepper, G, Field, CB. Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci U S A 2007, 104:10288–10293. doi:10.1073/pnas.0700609104.
Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA. Indirect emissions from biofuels: how important? Science 2009, 326:1397–1399.
Keeling, CD, Bacastow, RB, Carter, AF, Piper, SC, Whorf, TP, Heimann, M, Mook, WG, Roeloffzen, H. A three‐dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. AGU Geophys Monogr 1989, 55:165–236.
Brovkin, V, Sitch, S, von Bloh, W, Claussen, M, Bauer, E, Cramer, W. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Glob Chang Biol 2004, 10:1253–1266.
Donner, SD, Kucharik, CJ. Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. Global Biogeochem Cycles 2003, 17: 1085, doi:10.1029/2001GB001808.
Bouwman, AF, Boumans, LJM, Batjes, NH. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 2002, 16: Article Number 1080, doi:10.1029/2001GB001812.
Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A. Combined climate and carbon‐cycle effects of large‐scale deforestation. Proc Natl Acad Sci U S A 2007, 104:6550–6555.
Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganopolski A. Impacts of future land cover changes on atmospheric CO2 and climate. Glob Biogeochem Cycles 2005, 19: GB2013. doi:10.1029/2004GB002311.
Burkett, VR, Wilcox, DA, Stottlemyer, R, Barrow, W, Fagre, D, Baron, J, Price, J, Nielsen, JL, Allen, CD, Peterson, DL, et al. Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications. Ecol Complex 2005, 2:357–394.
Brovkin, V, Claussen, M, Petoukhov, V, Ganopolski, A. On the stability of the atmosphere‐vegetation system in the Sahara/Sahel region. J Geophys Res 1998, 103, 31613–31624.
Claussen, M. On multiple solutions of the atmosphere‐vegetation system in present‐day climate. Glob Chang Biol 1998, 4:549–559.
Wang, G, Eltahir, EAB. Biosphere‐atmosphere interactions over West Africa. II: Multiple climate equilibria. Q J R Meteorol Soc 2000, 126:1261–1280.
Brovkin, V, Levis, S, Loutre, MF, Crucifix, M, Claussen, M, Ganopolski, A, Kubatzki, C, Petoukhov, V. Stability analysis of the climate‐vegetation system in the northern high latitudes. Clim Change 2003, 57:119–138.
Thornton, PE, Rosenbloom, N. Ecosystem model spin‐up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Modell 2005, 189:25–48.
Le Quéré, C, Raupach, M, Canadell, JG, Marland, G, Bopp, L, Ciais, P, Conway, TJ, Doney, SC, Feely, RA, Foster, P, et al. Trends in the sources and sinks of carbon dioxide. Nat Geosci 2009, 2:831–836. doi:10.1038/NGEO689.
Henderson‐Sellers, A, McGuffie, K, Pitman, AJ. The project for intercomparison of land‐surface parametrization schemes (PILPS): 1992 to 1995. Clim Dyn 1996, 12:849–859. doi:10.1007/s0038200 50147.
Delire, C, deNoblet‐Ducoudré, N, Sima, A, Gouirand, I. Effect of vegetation dynamics on climate variability: contrasting results from two modeling studies. J Clim. In revision.
Bonan, GB, Levis, S. Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a dynamic global vegetation model. J Clim 2006, 19:2290–2301.
Sitch, S, Huntingford, C, Gedney, N, Levy, PE, Lomas, M, Piao, S, Betts, R, Ciais, P, Cox, PM, Friedlingstein, P, et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using 5 dynamic global vegetation models (DGVMs). Glob Chang Biol 2008, 14:2015–2039. doi:10.1111/j.1365‐2486.2008.01626.x.
Bonan, GB, Pollard, D, Thompson, SL. Effects of boreal forest vegetation on global climate. Nature 1992, 359:716–718.
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, et al. Nitrogen cycles: past, present, and future. Biogeochemistry 2004, 70:153–226. doi:10.1007/s10533‐004‐0370‐0.
Voldoire, A, Eickhout, B, Schaeffer, M, Royer, J‐F, Chauvin, F. Climate simulation of the twenty‐first century with interactive land‐use changes. Clim Dyn 2007, 29:177–193.
Oleson, KW, Bonan, GB, Feddema, J. Effects of white roofs on urban temperature in a global climate model. Geophys Res Lett 2010, 37:3. doi:10.1029/ 2009GL042194.