Shavitt, I.The method of configuration interaction, in methods of electronic structure theory. In:Schaefer, HF, ed.Modern Theoretical Chemistry.New York:Plenum Press;1977, 189–275.

Roos, B,Siegbahn, P.The direct configuration interaction method from molecular integrals. In:Schaefer, HF ed.Modern Theoretical Chemistry.New York:Plenum Press;1977, Vol. 3, Chap. 7, pp.277–318.

Meyer, W.Configuration expansion by means of pseudonatural orbitals, in methods of electronic structure theory. In:Schaefer, HF, ed.Modern Theoretical Chemistry.New York:Plenum Press;1977, 413–455.

Čársky, P.Configuration interaction. In:Schleyer, P,Allinger, NL,Clark, T,Gasteiger, J,Kollman, PA,Schaefer, HF,Schreiner, PR. eds.Encyclopedia of Computational Chemistry.Chichester, UK:John Wiley and Sons;1998, Vol. 1, 485–497.

Sherrill, CD,Schaefer, HF III.The configuration interaction method: advances in highly correlated approaches.Adv Quant Chem1999, 34:143–269.

Szabo, A,Ostlund, NS.Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory.New York:McGraw‐Hill,1989.

Löwdin, P‐O.Quantum theory of many‐particle systems. III. extension of the hartree–fock scheme to include degenerate systems and correlation effects.Phys Rev1955, 97:1509–1520.

Seabra, GM,Kaplan, IG,Zakrzewski, VG,Ortiz, JV.Electron propagator theory calculations of molecular photoionization cross sections: the first‐row hydrides.J Chem Phys2004, 121:4143.

Brillouin, L.La méthode du champ self‐consistent.Actual Scie Ind1933, 71:46.

Slater, JC.The theory of complex spectra.Phys Rev1929, 34:1293–1322.

Slater, JC.Molecular energy levels and valence bonds.Phys Rev1931, 38:1109–1144.

Weyl, H.Gruppentheorie und Quantenmechanik.Leipzig, Germany:Hirzel;

Paldus, J.Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems.J Chem Phys1974, 61:5321–5330.

Cremer, D.Møller‐Plesset perturbation theory. In:Schleyer, P,Allinger, NL,Clark, T,Gasteiger, J,Kollman, PA,Schaefer, HF,Schreiner, PR, eds.Encyclopedia of Computational Chemistry.Chichester, UK:John Wiley %26 Sons;1998, Vol. 3, 1706–1735.

Cremer, D.Møller‐Plesset perturbation theory, from small molecule methods to methods for thousand of atoms.Wiley Interdiscip Reviews: Comput Mol Sci2011, 1:509–530.

Crawford, TD,Schaefer, HF.An introduction to coupled cluster theory for computational chemists. In:Lipkowics, KB,Boyd, DB, eds.Reviews in Computational Chemistry.New York:John Wiley %26 Sons;2000, Vol. 14, 33–136.

Bartlett, RJ, ed.Recent Advances in Computational Chemistry – Volume 3: Recent Advances in Coupled Cluster Methods.Singapore:World Scientific;1997.

Parr, RG,Yang, W.International Series of Monographs on Chemistry – 16. Density Functional Theory of Atoms and Molecules.New York: Oxford University Press;1989.

Hylleraas, EA.Über den grundzustand des heliumatoms.Physik Z1928, 48:469–494.

Hylleraas, EA.Neue berechnung der energie des heliums in grundzustande, sowie des tiefsten terms von orthohelium.Physik Z1929, 54:347–366.

Boys, SF.Electronic wave functions. II. A calculation for the ground state of the beryllium atom.Proc Roy Soc A (London)1950, 201: 125–137.

Taylor, GR,Parr, RG.Superposition of configurations: the helium atom.Proc USA Natl Acad Sci1952, 38:154–160.

Löwdin, PO.Quantum theory of many‐particle systems. 1. Physical interpretations by means of density matrices, natural spin‐orbitals, and convergence problems in the method of configuration interaction.Phys Rev1955, 97:1474–1489.

Shull, H,Löwdin, PO.Natural spin orbitals for helium.J Chem Phys1955, 23:1565–1573.

Bender, CF,Davidson, ER.A natural orbital based energy calculation for helium hydride and lithium hydride.J Phys Chem1966, 70:2675–2685.

Bender, CF,Davidson, ER.Studies in configuration interaction: the first‐row diatomic hydrides.Phys Rev1969, 183:23–30.

Edmiston, C,Krauss, M.Pseudonatural orbitals as a basis for the superposition of configurations. I. He_{2}.J Chem Phys1966, 45:1833–1839.

Meyer, W.Ionization energies of water from pno‐ci calculations.Int J Quant Chem Symp1990, 5:341–348.

Meyer, W.Pno‐ci studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals and application to the ground state and ionized states of methane.J Chem Phys1973, 58:1017.

Almlöf, J,Taylor, PR.General contraction of gaussian basis sets. I. Atomic natural orbitals for first and second row atoms.J Chem Phys1987, 86:4070–4077.

Almlöf, J,Taylor, PR.Atomic natural orbital (ANO) basis sets for quantum chemical calculations.Adv Quant Chem1991, 22:301–373.

Nesbet, RK.Configuration interaction in orbital theories.Proc Roy Soc A (London)1955, 230: 312–318.

Boys, SF,Cook, GB,Reeves, CM,Shavitt, I.Automatic fundamental calculations of molecular structure.Nature (London)1956, 178:1207–1209.

Csizmadia, IG,Harrison, MC,Moskowitz, JW,Sutcliffe, BT.Nonempirical LCAO‐MO‐SCF‐CI calculations on organic molecules with gaussian‐type functions. Introductory review and mathematical formalism.Theor Chim Acta1966, 6:191–216.

Davies, DR,Clementi, E.IBMOL: Computation of Wave Functions of General Geometry.San Jose, CA: Special IBM‐Research Report,1965.

Pendergast, P,Hayes, EF,Liedtke, RC,Schwartz, ME,Rothenberg, S,Kollman, PA.MOLE: a system for quantum chemistry. II. recent developments.Int J Quant Chem1976, 10:77–83.

Hehre, WJ,Lathan, WA,Ditchfield, R,Newton, MD,Pople, JA.Gaussian 70, quantum chemistry program exchange, program no. 237,1970.

Nesbet, RK.Computer programs for electronic wave‐function calculations.Rev Mod Phys1963, 35:552–557.

Nesbet, RK.Algorithm for diagonalization of large matrices.J Chem Phys1965, 43:311–312.

Bender, CF.A bottleneck in molecular quantum mechanical calculations.Comput Phys1972, 9:547–554.

Shavitt, I,Bender, CF,Pipano, A,Hosteny, RP.The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices.J Comput Phys1973, 11:90–108.

Davidson, ER.The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real‐symmetric matrices.J Comput Phys1975, 17:87–94.

Lancoz, C.An iteration method for the solution of the eigenvalue problem of lineal differential and integral operators.J Res Nat Bur Stand1950, 45:255–282.

Roos, B.A new method for large‐scale CI calculations.Chem Phys Lett1972, 15:153–159.

Gel`fand, IM,Tsetlin, ML.Finite‐dimensional representations of the group of unimodular matrices.Doklady Akad Nauk SSSR (N S)1950, 71:825–828.

Gel`fand, IM,Tsetlin, ML.Finite‐dimensional representations of groups of orthogonal matrices.Doklady Akad Nauk SSSR (N S )1950, 71:1017–1020.

Moshinsky, M.Group Theory and the Many‐Body Problem.New York:Gordon and Breach;1968.

Matsen, FA,Pauncz, R.The Unitary Group in Quantum Chemistry.Amsterdam, the Netherlands:Elsevier;1986.

Paldus, J.Many‐electron correlation problem: a group theoretical approach. In:Eyring, H,Henderson, D, eds.Theoretical Chemistry: Advances and Perspectives.New York: Academic Press;1976, Vol. 2, 131–290.

Pauncz, R.Spin Eigenfunctions, Construction and Use.New York:Plenum Press;1979.

Shavitt, I.Graph theoretical concepts for the unitary group approach to the many‐electron correlation problem.Int J Quantum Chem Symp1977, 11:131–148.

Shavitt, I.Matrix element evaluation in the unitary group approach to the electron correlation problem.Int J Quantum Chem Symp1978, 12:5–32.

Shavitt, I.The graphical unitary group approach and its application to direct configuration interaction calculations. In:Hinze, J, ed.The Unitary Group for the Evaluation of Electronic Energy Matrix Elements (Lecture Notes in Chemistry, Vol. 22),Berlin: Springer‐Verlag;1981, 51–99.

Brooks, BR,Schaefer, HF.The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications.J Chem Phys1979, 70:5092–5106.

Brooks, BR,Laidig, WD,Saxe, P,Goddard, JD,Yamaguchi, Y,Schaefer, HF.Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach.J Chem Phys1980, 72:4652–4653.

Siegbahn, PEM.Generalizations of the direct CI method based on the graphical unitary group approach. I. Single replacements from a complete CI root function of any spin, first order wave functions.J Chem Phys1979, 70:5391–5393.

Siegbahn, PEM.Generalizations of the direct CI method based on the graphical unitary group approach. II. single and double replacements from any set of reference configurations.J Chem Phys1980, 72:1647–1656.

Siegbahn, PEM.The direct CI method. In:Dierksen, GHF,Wilson, S, eds.Methods in Computational Molecular Physics.Dordrecht, the Netherlands:D. Reidel;1983, 189–207.

Landau, L,Lifschitz, EM.Quantum Mechanics: Non‐relativistic Theory, Volume III.3rd ed.Amsterdam, the Netherlands:Butterworth‐Heineman;2003.

Krishnan, R,Schlegel, HB,Pople, JA.Derivative studies in configuration‐interaction theory.J Chem Phys1980, 72:7654–7655.

Yamaguchi, Y,Osamura, Y,Goddard, JD,Schaefer, HF.A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory.New York:Oxford University Press;1994.

Shepard, R.The analytic gradient method for configuration interaction wave functions. In:Yarkony, DR, ed.Modern Electronic Structure Theory, Part 1.Singapore: World Scientific;1995, 345–458.

Pople, JA.Theoretical models for chemistry. In:Smith, DW,McRae, WB, eds.Energy, Structure and Reactivity.New York:John Wiley %26 Sons;1973, 51–61.

Pople, JA,Seeger, R,Krishnan, R.Variational configuration interaction methods and comparison with perturbation‐theory.Int J Quant Chem1977, 12:149–163.

Lindgren, I,Morrison, J.Atomic Many‐Body Theory.2nd ed.Berlin:Springer;1986.

Langhoff, SR,Davidson, ER.Configuration interaction calculations on the nitrogen molecule.Int J Quant Chem1974, 8:61–72.

Davidson, ER,Silver, DW.Size consistency in dilute helium gas electronic‐structure.Chem Phys Lett52, 1977:403–406.

Duch, W,Diercksen, GHF.Size‐extensivity corrections in configuration interaction methods.J Chem Phys1994, 101:3018–3030.

Bartlett, RJ,Shavitt, I.Determination of size‐consistency error in single and double excitation configuration interaction‐model.Int J Quant Chem1977, 12:165–173.

Ahlrichs, R,Scharf, P,Ehrhardt, C.The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional.J Chem Phys1985, 82:890–898.

Harrison, RJ,Handy, NC.Full CI results for Be_{2} and (H_{2})_{2} in large basis‐sets.Chem Phys Lett1983, 98:97–101.

Grev, RS,Schaefer, HF.Natural orbitals from single and double excitation configuration interaction wave functions: their use in second order configuration interaction and wave functions incorporating limited triple and quadruple excitations.J Chem Phys1992, 96:6850–6856.

Sherrill, CD,Schaefer, HF III.Compact variational wave functions incorporating limited triple and quadruple substitutions.J Chem Phys1996, 100:6069–6075.

Bunge, CF,Carbó‐Dorca, R.Select‐divide‐and‐conquer method for large‐scale configuration interaction.J Chem Phys2006, 125:014108–014114.

Bunge, CF.Selected configuration interaction with truncation energy error and application to the Ne atom.J Chem Phys2006, 125:014107–014110.

Saxe, P,Schaefer, III HF,Handy, NC.Exact solution (within a double‐zeta basis set) of the schrodinger electronic equation for water.Chem Phys Lett1981, 79:202–204.

Knowles, PJ,Handy, NC.A new determinant‐based full configuration‐interaction method.Chem Phys Lett1984, 111:315–321.

Siegbahn, PEM.A new direct CI method for large CI expansions in a small orbital space.Chem Phys Lett1984, 109:417–423.

Olsen, J,Roos, BO,Jørgensen, P,Jensen, HJA.Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces.J Chem Phys1988, 89:2185–2192.

Bauschlicher, CW Jr,Taylor, PR.Benchmark full configuration‐interaction calculations on H_{2}O, F, and F^{−}.J Chem Phys1986, 85:2779–2783.

Knowles, PJ,Handy, NC.Unlimited full configuration‐interaction calculations.J Chem Phys1989, 91:2396–2398.

Olsen, J,Jørgensen, P,Simons, J.Passing the one‐billion limit in full configuration‐interacfion (FCI) calculations.Chem Phys Lett1990, 169:463–472.

Rossi, E,Bendazzoli, G,Evangelisti, S,Maynau, D.Passing the one‐billion limit in full configuration‐interacfion (FCI) calculations.Chem Phys Lett1999, 310:530–536.

Thøgersen, LOlsen, J.A coupled cluster and full configuration interaction study of CN and CN^{−}.Chem Phys Lett2004, 393:36–43.

Gan, Z,Grant, DJ,Harrison, RJ,Dixon, DA.The lowest energy states of the group‐IIIA–group‐VA heteronuclear diatomics: BN, BP, AlN, and AlP from full configuration interaction calculations.J Chem Phys2006, 125:124311.

Gan, Z,Harrison, RJ.Calibrating quantum chemistry: a multi‐teraflop, parallel‐vector, full‐configuration interaction program for the cray‐X1. In:Proceedings of the 2005 ACM/IEEE conference on Supercomputing.Washington, DC, USA:IEEE Computer Society;2005 22.

Rolik, Z,Szabados, A,Surján, PR.A sparse matrix based full‐configuration interaction algorithm.J Chem Phys2008, 128:144101.

Bartlett, RJ.Coupled‐cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry.J Phys Chem1989, 93:1697–1708.

Paldus, J,Pittner, J,Čársky, P.New developments in many body perturbation theory and coupled cluster theory. In:Čársky, P,Paldus, J,Pittner, J, eds.Recent Progress in Coupled‐Cluster Methods: Theory and Applications.Berlin:Springer;2010, 455–489.

Pople, JA,Head‐Gordon, M,Raghavachari, K.Quadratic configuration interaction. A general technique for determining electron correlation energies.J Chem Phys1987, 87:5968–5975.

Frisch, MJ,Trucks, GW,Schlegel, HB,Scuseria, GE,Robb, MA,Cheeseman, JR,Scalmani, G,Barone, V,Mennucci, B,Petersson, GA., et al.,Gaussian 09 Revision A.1.Wallingford CT: Gaussian Inc.; 2009.

Raghavachari, K,Trucks, GW,Pople, JA,Head‐Gordon, M.Fifth‐order perturbation comparison of electron correlation theories.Chem Phys Lett1989, 157:479–483.

Raghavachari, K,Trucks, GW,Pople, JA,Replogle, E.Highly correlated systems: Structure, binding energy and harmonic vibrational frequencies of ozone.Chem Phys Lett1989, 158:207–212.

Raghavachari, KTrucks, GW.Highly correlated systems. Excitation energies of first row transition metals Sc–Cu.J Chem Phys1989, 91:1062–1065.

Raghavachari, KTrucks, GW.Highly correlated systems. Ionization energies of first row transition metals Sc‐Zn.J Chem Phys1989, 91:2457–2460.

Raghavachari, KTrucks, GW.Highly correlated systems. Structure and harmonic force field of F_{2}O_{2}.Chem Phys Lett1989, 162:511–516.

Pople, JA,Head‐Gordon, M,Fox, DJ,Raghavachari, K,Curtiss, LA.Gaussian1 theory: A general procedure for prediction of molecular energies.J Chem Phys1989, 90:5622–5629.

Curtiss, LA.Gaussian‐4 theory.J Chem Phys2007, 126:084108.

Gauss, J,Cremer, D.Analytical evaluation of energy gradients in quadratic interaction theory.Chem Phys Lett1988, 150:280–286.

Gauss, J,Cremer, D.Analytical differentiation of the energy contribution due to triple excitations in quadratic configuration interaction theory.Chem Phys Lett1989, 163:549–554.

Gauss, J,Cremer, D.Analytical energy gradients in Møller‐Plesset perturbation and quadratic configuration interaction methods: theory and application.Adv Quant Chem1992, 23:205–299.

Gauss, J,Cremer, D.Implementation of analytical energy gradients at third and fourth Order Møller‐Plesset perturbation theory.Chem Phys Lett1987, 138:131–140.

Gauss, J,Cremer, D.Analytical differentiation of the energy contribution due to triple excitations in fourth‐order Møller‐Plesset perturbation theory.Chem Phys Lett1989, 153:303–308.

Kraka, E,Gauss, J,Cremer, D.Determination and use of response‐densities.J Mol Struct (Theochem)1991, 234:95–126.

Cremer, D,Krüger, M.Electric field gradients and nuclear quadrupole coupling constants of isonitriles obtained from Møller‐Plesset and quadratic configuration interaction calculations.J Phys Chem1992, 96:3239–3245.

Paldus, J,Čížek, J,Jeziorski, B.Coupled cluster approach or quadratic configuration interaction?J Chem Phys1989, 90:4356–4362.

Pople, JA,Head‐Gordon, M,Raghavachari, K.Quadratic configuration interaction: Reply to comment by Paldus, Čížek, and Jeziorski.J Chem Phys1989, 90:4635–4636.

Paldus, J,Čížek, J,Jeziorski, B.Coupled cluster approach or quadratic–configuration interaction?: Reply to comment by Pople, Head‐Gordon, and Raghavachari.J Chem Phys1990, 93:1485–1486.

Raghavachari, K,Head‐Gordon, M,Pople, JA.Reply to comment on: Coupled cluster approach or quadratic configuration interaction?.J Chem Phys1990, 93:1486–1487.

Paldus, J,Čížek, J,Shavitt, I.Correlation problems in atomic and molecular systems. IV. extended coupled‐pair many‐electron theory and Its application to the BH_{3} molecule.A PhysRev1972, 5:50–67.

Purvis, GD,Bartlett, RJ.The reduced linear equation method in coupled cluster theory.J Chem Phys1981, 75:1284–1292.

Scuseria, GE,Schaefer, HF.Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?J Chem Phys1989, 90:3700–3703.

Watts, JD,Urban, M,Bartlett, RJ.Accurate electrical and spectroscopic properties of X^{1}Σ^{+} BeO from coupled‐cluster methods.Theor Chim Acta1995, 90:341–355.

He, Z,Cremer, D.Analysis of coupled cluster and quadratic configuration interaction theory in terms of sixth‐order perturbation theory.Int J Quant Chem1991, 25:43–70.

He, Z,Cremer, D.Analysis of coupled cluster methods. II. what is the best way to account for triple excitations in coupled cluster theory?Theor Chim Acta1993, 85:305–323.

He, Z,Cremer, D.Sixth‐order many‐body perturbation theory I. basic theory and derivation of the energy formula.Int J Quant Chem1996, 59:15–29.

He, Z,Cremer, D.Sixth‐order many‐body perturbation theory II. implementation and application.Int J Quant Chem1996, 59:31–55.

Cremer, D,He, Z.Analysis of coupled cluster methods. IV. size‐extensive quadratic CI methods – quadratic CI with triple and quadruple excitations.Theor Chim Acta1994, 88:47–67.

Cremer, D,He, Z.New developments in many body perturbation theory and coupled cluster theory. In:Calais, J‐L,Kryachko, E, eds.Conceptual Perspectives in Quantum Chemistry, Volume III.Dordrecht, the Netherlands:Kluwer;1997, 239–318.

Raghavachari, K,Pople, JA,Replogle, E, Head‐Gordon, M.Fifth order Møller‐Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order. *J Phys Chem* 1990, 94:5579–5586.

Cremer, D,He, Z.Size‐extensive QCISDT – implementation and application.Chem Phys Lett1994, 222:40–45.

He, Z,Kraka, E,Cremer, D.Application of quadratic CI with singles, doubles, and triples (QCISDT): an attractive alternative to CCSDT.Int J Quant Chem1996, 57:157–172.

He, Y,He, Z,Cremer, D.Size‐extensive quadratic CI methods including quadruple excitations: QCISDTQ and QCISDTQ(6) ‐ On the importance of four‐electron correlation effects.Chem Phys Lett2000, 317:535–544.

Booth, GH,Alavi, A.Approaching chemical accuracy using full configuration‐interaction quantum Monte Carlo: A study of ionization potentials.J Chem Phys2010, 132:1741041–1741047.

Alekseyev, AB,Liebermann, HP,Buenker, RJ.Spin‐orbit multireference configuration interaction method and applications to systems containing heavy atoms. In:Hirao, K,Ishikawa, M, eds.Relativistic Molecular Calculations.Singapore:World Scientific;2003, 65–105.

Paldus, J.QCI and related CC approaches: a retrospection.Mol Phys2010, 108:2941–2950.

Bartlett, RJ,Musial, M.Addition by subtraction in coupled‐cluster theory: A reconsideration of the CC and CI interface and the nCC hierarchy.J Chem Phys2006, 125:204105.