Yamaguchi, Y, Schaefer, HF. A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Electronic Structure Theory. New York: Oxford University Press; 1994.

Janowski, T, Wolinski, K, Pulay, P. Ultrafast quantum mechanics/molecular mechanics Monte Carlo simulations using generalized multipole polarizabilities. Chem Phys Lett 2012, 530:1–9.

Jacobi, CGJ. Über ein leichtes Verfahren, die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen. Crelle, J Reine Angew Math 1846, 30:51–94.

Schrödinger, E. Quantisierung als Eigenwertproblem. Ann Phys 1926, 80:437–490.

Wigner, EP. On a modification of the Rayleigh–Schrödinger perturbation theory. Math Naturw Anz (Budapest) 1935, 53:477–482.

Hellmann, J. Einführung in die Quantenchemie. Leipzig: Deuticke; 1937, 285–286.

Feynman, RP. Forces in molecules. Phys Rev 1939, 56:340–343.

Bratoz, S, Allavena, M. Electronic calculation on NH_{3}. Harmonic force constants, infrared and ultraviolet spectra. J Chem Phys 1962, 37:2138–2143.

Pulay, P, Török, F. Untersuchung der Struktur des Monosilans mit der Methode der einzentriger Molekülbahnen. Acta Chim Hung 1964, 41:257–263.

Bratož, S. Le Calcul Non Empirique des constants de force et des derives du moment dipolaire. Colloq Int C N R S 1958, 82:287–301.

Bratož, S, Daudel, R., Roux, M, Allavena, M. Some recent results concerning the electronic density and the force constants of small molecules. Rev Mod Phys 1960, 32:412–417.

Gerratt, J, Mills, IM. Force constants and dipole moment derivatives of molecules from perturbed Hartree‐Fock calculations I, II. J Chem Phys 1968, 49:1719–1729, 1730–1739.

Pulay, P. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. Mol Phys 1969, 17:197–204.

Rys, J, Dupuis, M, King, HF. Computation of electron repulsion integrals using the Rys quadrature method. J Comput Chem 1983, 4:154–161.

McIver, JW, Komornicki, A. Rapid geometry optimization for semiempirical molecular orbital methods. Chem Phys Lett 1971, 10:303–306.

Pulay, P. *Ab initio* calculation of force constants and equilibrium geometries in polyatomic molecules. II. The force constants of water. Mol Phys 1970, 18:473–480.

Pulay, P, Meyer, W. *Ab initio* calculation of the force field of ethylene. J Mol Spectrosc 1971, 40:59–70.

Meyer, W, Pulay, P. Generalization of the force method to open‐shell wavefunctions. In: Proceedings of the Second Seminar on Computational Problems in Quantum Chemistry, Strasbourg, France; September 1972, 44–48.

Pulay, P. Direct use of the gradient for investigating molecular energy surfaces. In: Schaefer, HF, ed. Applications of Electronic Structure Theory. New York: Plenum; 1977, 153–185.

Lee,, TJ, Allen,, WD, Schaefer, HF III. The analytic evaluation of energy first derivatives for two‐configuration self‐consistent field (TCSCF) wavefunctions. Applications to ozone and ethylene. J Chem Phys 1987, 87:7062–7065.

Moccia, R. Variable bases in SCF MO calculations. Chem Phys Lett 1970, 5:260–268.

Pulay, P. Second and third derivatives of variational energy expressions: application to multiconfigurational SCF wave functions. J Chem Phys 1983, 78:5043–5051.

Pople, JA, Raghavachari, K, Schlegel, HB, Binkley, JS. Derivative studies in Hartree–Fock and Møller–Plesset theories, Int J Quantum Chem Symp 1979, 13:225–241.

Osamura, Y, Yamaguchi, Y, Saxe, P, Vincent, MA, Gaw, JF, Schaefer, HF III. Analytic second derivative techniques for self‐consistent field wave functions. A new approach to the solution of the coupled perturbed Hartree–Fock equations. J Mol Struct 1983, 103:183–196.

Stevens, RM, Pitzer, RM, Lipscomb, WN. Perturbed Hartree–Fock calculations. Magnetic susceptibility and shielding in the LiH Molecule. J Chem Phys 1963, 38:550–560.

Pulay, P. Analytical derivative methods in quantum chemistry. Adv Chem Phys 1987, 69:241–286.

King, HF, Komornicki, A. Analytic computation of energy derivatives. Relationships among partial derivatives of a variationally determined function. J Chem Phys 1986, 84:5645–5650.

Sellers, HL. Analytical force constant calculation as a minimization problem. Int J Quantum Chem 1986, 30:433–438.

Simons, J, Jørgensen, P. First and second anharmonicities of the MC‐SCF energy. J Chem Phys 1983, 79:3599–3540.

Gaw, JF, Yamaguchi, Y, Schaefer, HF. Analytic third derivatives for self‐consistent field wave functions. J Chem Phys 1984, 81:6395–6396.

Johnson, BG, Gill, PMW, Pople, JA. The performance of a family of density‐functional methods. J Chem Phys 1993, 98:5612–5626.

Becke, AD. A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 1988, 88:2547–2553.

Krishnan, R, Schlegel, HB, Pople, JA. Derivative studies in configuration‐interaction theory. J Chem Phys 1980, 72:4654–4655.

Brooks, BR, Laidig, WD, Saxe, P, Goddard, JD, Yamaguchi, Y, Schaefer, HF III. Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach. J Chem Phys 1980, 72:4652–4653.

Meyer, W. Theory of self‐consistent electron pairs. An iterative method for correlated many‐electron wavefunctions. J Chem Phys 1976, 64:2901–2907.

Handy, NC, Schaefer, HF III. On the evaluation of analytic energy derivatives for correlated wave functions. J Chem Phys 1984, 81:5031–5033.

Adamowicz, L, Laidig, WD, Bartlett, RJ. Analytical gradients for the coupled‐cluster method. Int J Quantum Chem Symp 1984, 18:245–254.

Bartlett, RJ. Analytical evaluation of gradients in coupled‐cluster and many‐body perturbation theory. In: Jørgensen, P, Simons, J, eds. Geometrical Derivatives of Energy Surfaces and Molecular Properties. NATO ASI Series C, Vol. 166, Dordrecht: D. Reidel; 1985, 35–61.

Kállay, M, Gauss, J, Szalay, PG. Analytic first derivatives for general coupled‐cluster and configuration interaction models. J Chem Phys 2004, 119:2991–3004.

Stanton, JF, Gauss, J. Analytic second derivatives in high‐order many‐body perturbation and coupled‐cluster theories: computational considerations and applications. Int Rev Phys Chem 2000, 19:61–95.

El‐Azhary, A, Rauhut, G, Pulay, P, Werner, HJ. Analytical energy gradients for local second‐order Moller–Plesset perturbation theory. J Chem Phys 1988, 108:5185‐

Rauhut, G, Werner, HJ. Analytical energy gradients for local coupled‐cluster methods. Phys Chem Chem Phys 2001, 3:4853–4862.

Shepard, R, Lischka, H, Szalay, PG, Kovar, T, Ernzerhof, M. A general multireference configuration interaction gradient program. J Chem Phys 1992, 96:2086–2089.

Shiozaki, T, Győrffy, W, Celani, P, Werner, HJ. Extended multi‐state complete active space second order perturbation theory: energy and nuclear gradients. J Chem Phys 2011, 135:081106.

Stanton, JF, Gauss, J, Harding, ME, Szalay, PG, with contributions from others, CFOUR. Coupled cluster techniques for computational chemistry. Available at: http://www.cfour.de (Accessed August 26, 2013).

Werner, HJ, Knowles, PJ, Knizia, G, Manby, FR, Schütz, M. MOLPRO, a general purpose quantum chemistry program. WIREs Comput Mol Sci 2012, 2:242–253.

Bast, R, Ekström,, Gao, B, Helgaker, T, Ruud, K, Thorvaldsen, AJ. The *ab initio* calculation of molecular electric, magnetic and geomeric properties. Phys Chem Chem Phys 2011, 13:2627–2651.

Lischka, H, Müller, T, Szalay, PG, Shavitt, I, Pitzer, RM, Shepard, R. Columbus—a program system for advanced multireference calculations. WIREs Comput Mol Sci 2011, 1:191–199.

Köhn, A, Hättig, C. Analytic gradients for excited states in the coupled‐cluster model CC2 employing the resolution‐of‐the‐identity approximation. J Chem Phys 2003, 119:5021–5036.

Deumens, E, Lotrich, VF, Perera, A, Ponton, MJ, Sanders, BA, Bartlett, RJ. Software design of ACES III with the super instruction architecture. WIREs Comput Mol Sci 2011, 1:895–901.

Turney, JM, Simonett, AC, Parrish, RM, Hohenstein, EG, Evangelista, F, Fermann, JT, Mintz, BJ, Burns, LA, Wilke, JJ, Abrams, ML, et al. PSI4—an open source *ab initio* electronic structure program. WIREs Comput Mol Sci 2012, 2:556–565.

London, F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J Phys Radium 1937, 8:397–409.

Ditchfield, R. Molecular orbital theory of magnetic shielding and magnetic susceptibility. J Chem Phys 1972, 56:5688–5691.

Ditchfield, R. Theoretical studies of proton magnetic shielding anisotropies. Chem Phys 1973, 2:400–406.

Wolinski, K, Hinton, JF, Pulay, P. Efficient implementation of the gauge‐independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 1992, 112:8251–8260.

Kutzelnigg, W. Theory of magnetic susceptibilities and NMR chemical shifts in term of localized quantities. Israel J Chem 1980, 19:193–200.

Hansen, AE, Bouman, TD. Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors. J Chem Phys 1985, 82:5035–5047.

Helgaker, T, Jaszuński, M, Ruud, K. *Ab initio* methods for the calculation of NMR shielding and indirect spin−spin coupling constants. Chem Rev 1999, 99:293–352.

Kaupp, M, Bühl, M, Malkin, VG. Calculation of NMR and EPR parameters. Theory and Applications. Weinheim: Wiley‐VCH; 2004.

Magyarfalvi, G, Tarczay, G, Vass, E. Vibrational circular dichroism. WIREs Comput Mol Sci 2011, 1:403–425.

Olsen, J, Jørgensen, P. Linear and nonlinear response functions for an exact state and for an MCSCF state. J Chem Phys 1985, 82:3235–3264.

Pulay,, P Saebo, S. Orbital‐invariant formulation and gradient evaluation in Moller‐Plesset perturbation theory. Theor Chim Acta 1986, 69:356–368.

Bofill, JM, Pulay, P. The unrestricted natural orbital ‐ complete active space (UNO‐CAS) method. An inexpensive alternative to the complete active space ‐ self‐consistent field (CAS‐SCF) method. J Chem Phys 1989, 90:3637–3646.

Helgaker, T, Jørgensen, P. Configuration‐interaction energy derivatives in a fully variational formulation. Theor Chim Acta 1989, 75:111–127.

Rice, JE, Amos, RD. On the efficient evaluation of analytic energy gradients. Chem Phys Lett 1985, 122:585–590.

Autschbach, J, Zheng, S. Relativistic computations of NMR parameters from first principles: theory and applications. Ann Rep NMR Spectr 2009, 67:1–95.