Dyall, KG, Fægri, K. Introduction to Relativistic Quantum Chemistry. Oxford: Oxford University Press; 2007.

Grant, IP. Relativistic Quantum Theory of Atoms and Molecules, Theory and Computation. New York: Springer; 2007.

Reiher, M, Wolf, A. Relativistic Quantum Chemistry, The Fundamental Theory of Molecular Science. Weinheim: Wiley‐VCH; 2009.

Pyykkö, P. Relativistic Theory of Atoms and Molecules, A Bibliography 1916–1985. Lecture Notes in Chemistry, vol. 41. Berlin: Springer; 1986.

Pyykkö, P. Relativistic effects in structural chemistry. Chem Rev 1988, 88:563.

Pyykkö, P. Relativistic Theory of Atoms and Molecules, A Bibliography 1986–1992. Lecture Notes in Chemistry, vol. 60. Berlin: Springer; 1993.

Pyykkö, P. Lecture Notes in Chemistry, vol. 76. Berlin: Springer; 2000.

Pyykkö, P. The rtam electronic bibliography, version 17.0, on relativistic theory of atoms and molecules. J Comput Chem 2013, 34:2667.

Almlöf, J, Gropen, O. Reviews in Computational Chemistry, Vol. 8, Lipkowitz, KB, Boyd, DB. (ed.) JVCH Publishers, New York; 1996, 203–244.

Schwerdtfeger, P, Seth, M. Encyclopedia of Computational Chemistry, Vol. 4, Schleyer, PVR, Allinger, NL, Clark, T, Gasteiger, J, Kollman, PA, Schaefer, HF III, and Schreiner, PR. John Wiley, Chichester (1998), 2480.

Hess, BA, Marian, CM. In: Jensen, P, Bunker, PR, eds. Computational Molecular Spectroscopy. Sussex: Wiley; 2000, 152–278.

Liu, W. Ideas of relativistic quantum chemistry. Mol Phys 2010, 108:1679.

Saue, T. Relativistic Hamiltonians for chemistry: a primer. Chem Phys Chem 2011, 12:3077.

Peng, D, Reiher, M. Exact decoupling of the relativistic fock operator. Theor Chem Acc 2012, 131:1081.

Pyykkö, P. Relativistic effects in chemistry: more common than you thought. Ann Rev Phys Chem 2012, 63:45.

Einstein, A. On the electrodynamics of moving bodies. Ann Phys 1905, 17:891.

NIST. Codata internationally recommended values. 2010. Available at: http://physics.nist.gov/cgi‐bin/cuu/Value?alphinv.

Pyykkö, P. In: Löwdin, P‐O, ed. Advances in Quantum Chemistry, vol. 11. New York: Academic Press; 1978, 353–409.

Greenwood, NN, Earnshaw, A. Chemistry of the Elements. Oxford: Butterworth‐Heinemann; 1997.

Porterfield, WW. Inorganic Chemistry, A Unified Approach. San Diego: Academic Press; 1993.

Ziegler, T, Snijders, JG, Baerends, EJ. On the origin of relativistic bond contraction. Chem Phys Lett 1980, 75:1.

Ziegler, T, Snijders, JG, Baerends, EJ. Relativistic effects on bonding. J Chem Phys 1981, 74:1271.

Snijders, JG, Pyykkö, P. Is the relativistic contraction of bond lengths an orbital‐contraction effect? Chem Phys Lett 1980, 75:5.

Marian, CM. Spin‐orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2012, 2:187.

Christensen, NE, Seraphin, BO. Relativistic band calculation and the optical properties of gold. Phys Rev B 1971, 4:3321.

Romaniello, P, de Boeij, PL. The role of relativity in the optical response of gold within the time‐dependent current‐density‐functional theory. J Chem Phys 2005, 122:164303.

Glantschnig, K, Ambrosch‐Draxl, C. Relativistic effects on the linear optical properties of Au, Pt, Pb and W. New J Phys 2010, 12:103048.

Filatov, M, Cremer, D. Revision of the dissociation energies of mercury chalcogendies—unusual types of mercury bonding. Chem Phys Chem 2004, 121:1547.

Cremer, D, Kraka, E, Filatov, M. Bonding in mercury molecules described by the normalized elimination of the small component and coupled cluster theory. Chem Phys Chem 2008, 9:2510.

Desclaux, JP. Relativistic Dirac‐Fock expectation values for atoms with atomic numbers z = 1 ‐120. Atomic Data Nuclear Data Tables 1973, 311:891.

Pyykkö, P, Desclaux, JP. Relativity and the periodic system of elements. Acc Chem Res 1979, 12:276.

Calvo, F, Pahl, E, Wormit, M, Schwerdtfeger, P. Evidence for low‐temperature melting of mercury owing to relativity. Angew Chem Int Ed Engl 2013, 52:7583.

Lamb, WE, Retherford, RC. Fine structure of the hydrogen atom by a microwave method. Phys Rev 1947, 72:241.

Feynman, R. QED: The Strange Theory of Light and Matter. Princeton, NJ: Princeton University Press; 1985.

Pyykkö, P, Tokman, M, Labzowsky, LN. Estimated valence‐level Lamb shifts for group 1 and group 11 metal atoms. Phys Rev A 1998, 57:R689.

Pyykkö, P. The physics behind chemistry and the periodic table. Chem Rev 2012, 112:371.

Dirac, PAM. The quantum theory of the electron. Proc R Soc Lond 1928, A117:610.

Dirac, PAM. Quantum mechanics of many‐electron systems. Proc R Soc Lond 1929, A123:714.

Swirles, B. The relativistic self‐consistent field. Proc R Soc Lond 1935, A152:625.

Hafner, P. The Kramers restricted Hartree‐Fock approach. J Phys B At Mol Phys 1980, 13:3297.

Breit, G. The effect of retardation on the interaction of two electrons. Phys Rev A 1929, 34:553.

Stanton, RE, Havriliak, S. Kinetic balance: a partial solution to the problem of variational safety in Dirac calculations. J Chem Phys 1984, 81:1910.

Dyall, KG, Fægri, K. Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set. Chem Phys Lett 1990, 174:25.

Zou, W, Filatov, M, Cremer, D. An improved algorithm for the normalized elimination of the small‐component method. Theor Chem Acc 2011, 130:633.

Liu, W, Kutzelnigg, W. Quasirelativistic theory. II. Theory at matrix level. J Chem Phys 2007, 126:114107.

Brown, GE, Ravenhall, DG. On the interaction of two electrons. Proc R Soc Lond 1951, A208:552.

Sucher, J. Foundations of the relativistic theory of many‐electron atoms. Phys Rev A 1980, 22:348.

Foldy, LL, Wouthuysen, SA. On the Dirac theory of spin 1/2 particles and its non‐relativistic limit. Phys Rev 1950, 78:29.

Douglas, M, Kroll, NM. Quantum electrodynamical corrections to the fine structure of helium. Ann Phys 1974, 82:89.

Hess, BA. Applicability of the no‐pair equation with free‐particle projection operators to atomic and molecular structure calculations. Phys Rev A 1985, 32:756.

Hess, BA. Relativistic electronic‐structure calculations employing a two‐component no‐pair formalism with external‐field projection operators. Phys Rev A 1986, 33:3742.

Jansen, G, Hess, BA. Revision of the Douglas‐Kroll transformation. Phys Rev A 1989, 39:6016.

Samzow, R, Hess, BA, Jansen, G. The two‐electron terms of the no‐pair Hamiltonian. J Chem Phys 1992, 96:1227.

Nakajima, T, Hirao, K. The higher‐order Douglas‐Kroll transformation. J Chem Phys 2000, 113:7786.

van Wuellen, C. Relation between different variants of the generalized Douglas‐Kroll transformation through sixth order. J Chem Phys 2003, 120:7307.

Chang, C, Pelissier, M, Durand, P. Regular two‐component Pauli‐like effective Hamiltonians in Dirac theory. Phys Script 1986, 34:394.

van Lenthe, E, Baerends, E‐J, Snijders, JG. Relativistic regular two‐component Hamiltonians. J Chem Phys 1993, 99:4597.

van Lenthe, E, Baerends, EJ, Snijders, JG. Relativistic total energy using regular approximations. J Chem Phys 1994, 101:9783.

van Lenthe, E, Ehlers, A, Baerends, E‐J. Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 1999, 110:8943.

Dyall, KG, van Lenthe, E. Relativistic regular approximations revisited: an infinite‐order relativistic approximation. J Chem Phys 1999, 111:1366.

Filatov, M. On representation of the Hamiltonian matrix elements in relativistic regular approximation. Chem Phys Lett 2002, 365:222.

Filatov, M, Cremer, D. On the physical meaning of the Zora Hamiltonian. Mol Phys 2003, 101:2295.

Filatov, M, Cremer, D. Analytic energy derivatives for regular approximations of relativistic effects applicable to methods with and without correlation corrections. J Chem Phys 2003, 118:6741.

Filatov, M, Cremer, D. Calculation of electric properties using regular approximations to relativistic effects: the polarizabilities of RuO_{4}, OsO_{4}, and HsO_{4} (z=108). J Chem Phys 2003, 119:1412.

Filatov, M, Cremer, D. Representation of the exact relativistic electronic Hamiltonian within the regular approximation. J Chem Phys 2003, 119:11526.

Filatov, M, Cremer, D. A gauge‐independent zeroth‐order regular approximation to the exact relativistic Hamiltonian‐formulation and applications. J Chem Phys 2005, 122:044104.

Filatov, M, Cremer, D. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory. J Chem Phys 2005, 122:064104.

Dyall, KG. Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation. J Chem Phys 1997, 106:9618.

Dyall, KG, Enevoldsen, T. Interfacing relativistic and nonrelativistic methods. III. Atomic 4‐spinor expansions and integral approximations. J Chem Phys 1999, 111:10000.

Dyall, KG. A systematic sequence of relativistic approximations. J Comput Chem 2002, 23:786.

Wolf, M, Reiher, M, Hess, BA. The generalized Douglas‐Kroll transformation. J Chem Phys 2002, 117:9215.

Wolf, M, Reiher, M, Hess, BA. Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher‐order generalized Douglas‐Kroll transformation. J Chem Phys 2004, 120.

Reiher, M, Wolf, A. Exact decoupling of the Dirac Hamiltonian. I. General theory. J Chem Phys 2004, 121:2037.

Reiher, M, Wolf, A. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas‐Kroll‐Hess transformation up to arbitrary order. J Chem Phys 2004, 121:10945.

Seino, J, Uesugi, W, Haeda, M. Expectation values in two‐component theories. J Chem Phys 2010, 132:164108.

Kutzelnigg, W, Liu, W. Quasirelativistic theory equivalent to fully relativistic theory. J Chem Phys 2005, 123:241102.

Kutzelnigg, W, Liu, W. Quasirelativistic theory. I. Theory in terms of a quasi‐relativistic operator. Mol Phys 2006, 104:2225.

Liu, W, Peng, D. Exact two‐component Hamiltonians revisited. J Chem Phys 2009, 131:031104.

Barysz, M, Sadlej, AJ, Snijders, JG. Nonsingular two/one‐component relativistic Hamiltonians accurate through arbitrary high order in α^{2}. Int J Quantum Chem 1997, 65:225.

Barysz, M, Sadlej, AJ. Infinite‐order two‐component theory for relativistic quantum chemistry. J Chem Phys 2002, 116:2696.

Kedziera, D, Barysz, M. Spin‐orbit interactions and supersymmetry in two‐component relativistic methods. Chem Phys Lett 2004, 393:521.

Kedziera, D. Convergence of approximate two‐component Hamiltonians: How far is the Dirac limit. J Chem Phys 2005, 123:074109.

Kedziera, D, Barysz, M. Non‐iterative approach to the infinite‐order two‐component (IOTC) relativistic theory and the non‐symmetric algebraic Riccati equation. Chem Phys Lett 2007, 446:176.

Iliaš, M, Jensen, HJA, Roos, BO, Urban, M. Theoretical study of PbO and the PbO anion. Chem Phys Lett 2005, 408:210.

Iliaš, M, Saue, T. An infinite‐order two‐component relativistic Hamiltonian by a simple one‐step transformation. J Chem Phys 2007, 126:064102.

Barysz, M, Mentel, L, Leszczynski, J. Recovering four‐component solutions by the inverse transformation of the infinite‐order two‐component wave functions. J Chem Phys 2009, 130:164114.

Filatov, M. Comment on ‘Quasirelativistic theory equivalent to fully relativistic theory’. J Chem Phys 123, 241102 (2005). J Chem Phys 2006, 125:107101.

Filatov, M, Dyall, KG. On convergence of the normalized elimination of the small component (NESC) method. Theor Chem Acc 2007, 117:333.

Kutzelnigg, W, Liu, W. Response to Comment on ‘Quasirelativistic theory equivalent to fully relativistic theory’ J Chem Phys 123, 241102 (2005). J Chem Phys 2006, 125:107102.

Filatov, M, Cremer, D. A variationally stable quasi‐relativistic method: low‐order approximation to the normalized elimination of the small component using an effective potential. Theor Chem Acc 2002, 108:168.

Filatov, M, Cremer, D. A new quasi‐relativistic approach for density functional theory based on the normalized elimination of the small component. Chem Phys Lett 2002, 351:259.

Zou, W, Filatov, M, Cremer, D. Development and application of the analytical energy gradient for the normalized elimination of the small component method. J Chem Phys 2011, 134:244117.

Zou, W, Filatov, M, Atwood, D, Cremer, D. Removal of mercury from the environment—a quantum chemical study with the normalized elimination of the small component (NESC) method. Inorg Chem 2013, 52:2497.

Kraka, E, Zou, W, Freindorf, M, Cremer, D. Energetics and mechanism of the hydrogenation of XH_{n} for group IV to group VII elements X. J Chem Theory Comput 2012, 8:4931.

Zou, W, Filatov, M, Cremer, D. Analytic calculation of second‐order electric response properties with the normalized elimination of the small component (NESC) method. J Chem Phys 2012, 137:084108.

Filatov, M, Zou, W, Cremer, D. Relativistically corrected electric field gradients calculated with the normalized elimination of the small component formalism. J Chem Phys 2012, 137:054113.

Filatov, M, Zou, W, Cremer, D. Analytic calculation of isotropic hyperfine structure constant using the normalized elimination of the small component formalism. J Phys Chem A 2012, 116:3481.

Filatov, M, Zou, W, Cremer, D. Analytic calculation of contact densities and Mössbauer isomer shifts using the normalized elimination of the small component formalism. J Chem Theory Comput 2012, 8:875.

Zou, W, Filatov, M, Cremer, D. Development, implementation, and application of an analytic second derivative formalism for the normalized elimination of the small component method. J Chem Theory Comput 2012, 8:2617.

Cheng, L, Gauss, J. Analytic energy gradients for the spin‐free exact two‐component theory using an exact block diagonalization for the one‐electron Dirac Hamiltonian. J Chem Phys 2011, 135:084114.

Cheng, L, Gauss, J. Analytic second derivatives for the spin‐free exact two‐component theory. J Chem Phys 2011, 135:244104.

Cheng, L, Gauss, J, Stanton, JF. Treatment of scalar‐relativistic effects on nuclear magnetic shieldings using a spin‐free exact‐two‐component approach. J Chem Phys 2013, 139:054105.

Filatov, M, Zou, W, Cremer, D. Spin‐orbit coupling calculations with the two‐component normalized elimination of the small component method. J Chem Phys 2013, 139:014106.

Kutzelnigg, W. Basis set expansion of the Dirac operator without variational collapse. Int J Quantum Chem 1984, 25:107.

Dyall, K. An exact separation of the spin‐free and spin‐dependent terms of the Dirac‐Coulomb‐Breit Hamiltonian. J Chem Phys 1994, 100:2118.

Lancaster, P, Rodman, L. Algebraic Riccati Equations. Oxford: Oxford University Press; 1995.

Dyall, KG. Interfacing relativistic and nonrelativistic methods. IV. One‐ and two‐electron scalar approximations. J Chem Phys 2001, 115:9136.

Visscher, L, Visser, O, Aerts, PJC, Nieuwpoort, WC. Kinetic balance in contracted basis sets for relativistic calculations. Int J Quantum Chem Quantum Chem Symp 1991, 25:131.

Andrea, D. In: Schwerdtfeger, P, ed. Relativistic Electronic Structure Theory, Volume 11, Part 1. Fundamentals. Amsterdam: Elsevier; 2002, 203–258.

Visser, O, Aerts, PJC, Hegarty, D, Nieuwpoort, WC. The use of Gaussian nuclear charge distributions for the calculation of relativistic electronic wavefunctions using basis set expansions. Chem Phys Lett 1987, 134:34.

Visscher, L, Dyall, KG. Dirac‐Fock atomic electronic structure calculations using different nuclear charge distributions. At. Data Nuc. Data Tables 1997, 67:207.

Zemach, A. Proton structure and the hyperfine shift in hydrogen. Phys Rev 1956, 104:1771.

Yamaguchi, Y, Goddard, JD, Osamura, Y, Schaefer, HFS. A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory. Oxford: Oxford University Press; 1994.

Pulay, P. Ab initio calculation of force constants and equilibrium geometries. I. Theory. Mol Phys 1969, 17:197.

Filatov, M, Cremer, D. Calculation of indirect nuclear spin‐spin coupling constants within the regular approximation for relativistic effects. J Chem Phys 2004, 120:11407.

Herzberg, G, Huber, K‐P. Molecular Spectra and Molecular Structure, vol. IV. New York: Van Nostrand; 1979.

Shepler, C, Balabanov, NB, Peterson, KA. Ab initio thermochemistry involving heavy atoms: an investigation of the reactions Hg + Ix (X = I, Br, Cl, O). J Phys Chem A 2005, 109:10363.

Rai, AK, Rai, SB, Rai, DK. Spectral study of the D‐X system of the diatomic mercury chloride molecule. J Phys B At Mol Phys 1982, 15:3239.

Tellinghuisen, J, Tellinghuisen, PC, Davies, SA, Berwanger, P, Viswanathan, KS. B – X transitions in HgCl and HgI. Appl Phys Lett 1982, 41:789.

Wilcomb, E, Bernstein, RB. Dissociation energies of ground‐state HgX molecules (X = I, Br, Cl) from analysis of vibrational level spacings. J Mol Spectrosc 1976, 62:442.

Ullas, G, Rai, SB, Rai, DK. Two‐photon optogalvanic spectrum of the C–X system of HgBr. J Phys B At Mol Phys 1992, 25:4497.

Tellinghuisen, J, Ashmore, JG. The B – X transition in ^{200}Hg^{79}Br. Appl Phys Lett 1982, 40:867.

Tellinghuisen, J, Ashmore, JG. Mixed representations for diatomic spectroscopic data: application to HgBr. Chem Phys Lett 1983, 102:10.

Salter, PC, Ashmore, JG, Tellinghuisen, J. The emission spectrum of ^{200}Hg^{127}I. J Mol Spectrosc 1986, 120:334.

Filatov, M, Cremer, D. Relativistically corrected hyperfine structure constants calculated with the regular approximation applied to correlation corrected ab initio theory. J Chem Phys 2004, 121:5618.

Hellmann, H. Einführung in die Quantenchemie. Leipzig: F. Deuticke; 1937.

Feynman, RP. Forces in molecules. Phys Rev 1939, 56:340.

Goll, E, Stoll, H, Tierfelder, C, Schwerdtfeger, P. Improved dipole moments by combining short‐range gradient‐corrected density‐functional theory with long‐range wave‐function methods. Phys Rev A 2007, 76:032507.

Okabayashi, T, Nakaoka, Y, Yamazaki, E, Tanimoto, M. Millimeter‐ and submillimeter‐wave spectroscopy of auf in the ground X^{1}σ^{+} state. Chem Phys Lett 2002, 366:406.

Steimle, TC, Zhang, R, Qin, C, Varberg, TD. Molecular‐beam optical Stark and Zeeman study of the [17.8]0^{+}‐X^{1}σ^{+} (0,0) band system of AuF. J Phys Chem A 2013, 117:11737.

Reynard, LM, Evans, CJ, Gerry, MCL. The pure rotational spectrum of AuI. J Mol Spectrosc 2001, 205:344.

Pyykkö, P, Xiong, X‐G, Li, J. Aurophilic attractions between a closed‐shell molecule and a gold cluster. Faraday Discuss 2011, 152:169.

Dufayard, J, Majournat, B, Nedelec, O. Predissociation of HgH A^{2}π_{1/2} by inner crossing with X^{2}σ^{+}. Chem Phys 1988, 128:537.

Nedelec, O, Majournat, B, Dufayard, J. Configuration mixings and line intensities in cdh and HgH A^{2}π–x^{2}σ^{+} transitions. Chem Phys 1989, 134:137.

Abragam, A, Bleaney, B. Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon Press; 1970.

Weil, JA, Bolton, JR. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Hoboken, NJ: John Wiley %26 Sons, Inc.; 2007.

Belanzoni, P, Van Lenthe, E, Baerends, E‐J. An evaluation of the density functional approach in the zero order regular approximation for relativistic effects: magnetic interactions in small metal compounds. J Chem Phys 2001, 114:4421.

Malkin, E, Repiský, M, Komorovský, S, Mach, P, Malkina, OL, Malkin, VG. Effects of finite size nuclei in relativistic four‐component calculations of hyperfine structure. J Chem Phys 2011, 134:044111.

Stowe, AC, Knight, LB Jr. Electron spin resonance studies of ^{199}HgH, ^{201}HgH, ^{199}HgD, and ^{201}HgD isolated in neon and argon matrices at 4 K: an electronic structure investigation. Mol Phys 2002, 100:353.

Knight, LB Jr, Fisher, TA, Wise, MB. Photolytic codeposition generation of the HgF radical in an argon matrix at 12 K: an ESR investigation. J Chem Phys 1981, 74:6009.

Knight, LB Jr, Lin, KC. ESR spectroscopy and chemical bonding in CdCN and HgCN molecules. J Chem Phys 1972, 56:6044.

Karakyriakos, E, McKinley, AJ. Matrix isolated HgCH_{3} radical: an ESR investigation. J Phys Chem A 2004, 108:4619.

Weltner, W Jr. Magnetic Atoms and Molecules. New York: Van Nostrand Reinhold; 1983.

Lucken, EAC. Nuclear Quadrupole Coupling Constants. London: Academic Press; 1969.

Gütlich, P, Bill, E, Trautwein, A. Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications. Heidelberg: Springer; 2011.

Lucken, EAC. In: Smith, JAS, ed. Advances in Nuclear Quadrupole Resonance, vol. 5. New York: John Wiley; 1983, 86.

Parish, RV. NMR, NQR, EPR, and Mössbauer Spectroscopy in Inorganic Chemistry. Ellis Horwood series in inorganic chemistry. Chichester: E. Horwood; 1990.

Haas, H, Shirley, DA. Nuclear quadrupole interaction studies by perturbed angular correlations. J Chem Phys 1973, 58:3339.

Neese, F. In: Gilbert, BC, Davies, MJ, Murphy, DM, eds. Electron Paramagnetic Resonance, vol. 20. Cambridge: The Royal Society of Chemistry; 2007, 73–95.

Pernpointner, M, Schwerdtfeger, P, Hess, BA. Accurate electric field gradients for the coinage metal chlorides using the PCNQM method. Int J Quantum Chem 2000, 76:371.

Arcisauskaite, V, Knecht, S, Sauer, SPA, Hemmingsen, L. Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in ^{199}Hg compounds. Phys Chem Chem Phys 2012, 14:2651.

Kaufmann, EN, Vianden, RJ. The electric field gradient in noncubic metals. Rev Mod Phys 1979, 51:161.

Cremer, D, Krüger, F. Electrlc fieid gradients and nuclear quadrupole coupling constants of isonitriles obtained from Møller‐Plesset and quadratic configuration interaction calculations. J Phys Chem 1991, 96:3239.

Mastalerz, R, Barone, G, Lindh, R, Reiher, M. Analytic high‐order Douglas‐Kroll‐Hess electric field gradients. J Chem Phys 2007, 127:074105.

Pyykkö, P. Effect of nuclear volume on nuclear quadrupole coupling in molecules. Chem Phys Lett 1970, 6:479.

Filatov, M, Zou, W, Cremer, D. On the isotope anomaly of nuclear quadrupole coupling in molecules. J Chem Phys 2012, 137:131102.

Mössbauer, RL. Kernresonanzfluoreszenz von Gammastrahlung in Ir^{191}. Z Phys 1958, 151:124.

DeBenedetti, S, Lang, G, Ingalls, R. Electric quadrupole splitting and the nuclear volume effect in the ions of Fe^{57}. Phys Rev Lett 1961, 6:60.

Shirley, DA. Application and interpretation of isomer shifts. Rev Mod Phys 1964, 36:339.

Filatov, M. First principles calculation of Mössbauer isomer shift. Coord Chem Rev 2009, 253:594.

Tucek, J, Miglierini, M, eds. Mössbauer Spectroscopy in Materials Science. Melville, NY: American Inst. of Physics; 2010.

Dyar, MD, Argesti, DG, Schaefer, MW, Grant, CA, Sklute, E. Mössbauer spectroscopy of earth and planetary materials. Annu Rev Earth Planet Sci 2006, 34:83.

Münck, E, Stubna, A. In: McCleverty, JA, Meyer, TB, Lever, ABP, eds. Comprehensive Coordination Chemistry II, Fundamentals: Physical Methods, Theoretical analysis and Case Studies, vol. 2. New York: Elsevier; 2003, 279–286.

Filatov, M. On the calculation of Mössbauer isomer shift. J Chem Phys 2007, 127:084101.

Wilson, EB, Decius, JC, Cross, PC. Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra. New York: McGraw‐Hill; 1955.

Visscher, L, Saue, T, Oddershede, J. The 4‐component random phase approximation method applied to the calculation of frequency‐dependent dipole polarizabilities. Chem Phys Lett 1997, 274:181.

Norman, P, Schimmelpfennig, B, Ruud, K, Jensen, HJA, Ågren, H. Relativistic effects on linear and nonlinear polarizabilities studied by effective‐core potential, Douglas‐Kroll, and Dirac‐Hartree‐Fock response theory. J Chem Phys 2002, 116:6914.

Pecul, M, Rizzo, A. Relativistic effects on the electric polarizabilities and their geometric derivatives for hydrogen halides and dihalogens—a Dirac‐Hartree‐Fock study. Chem Phys Lett 2003, 370:578.

Schwerdtfeger, P. The CTCP table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements. 2012. Available at: http://ctcp.massey.ac.nz/dipole‐polarizabilities and references cited therein.

Pople, JA, Krishnan, R, Schlegel, HB, Binkley, JS. Derivative studies in Hartree‐Fock and Møller‐Plesset theories. Int J Quantum Chem Quantum Chem Symp 1979, 13:225.

G. Zerbi,. Vibrational Intensities in Infrared and Raman Spectroscopy W. Person, and G. Zerbi,. Elsevier, Amsterdam (1982), 23.

Andrews, L, Wang, X. Infrared spectra and structures of the stable CuH$2\u2212$, AgH$2\u2212$, AuH$2\u2212$, and AuH$4\u2212$ anions and the AuH_{2} molecule. J Am Chem Soc 2003, 125:11751.

Leary, K, Bartlett, N. A new oxidation state of gold: the preparation and some properties of [AuF^{6}]^{−} salts. J Chem Soc Chem Commun 1972, 1972:903.

Goncharov, V, Heaven, MC. Spectroscopy of the ground and low‐lying excited states of ThO^{+}. J Chem Phys 2006, 124:064312.

Andrews, L, Gong, Y, Liang, B, Jackson, VE, Flamerich, R, Li, S, Dixon, DA. Matrix infrared spectra and theoretical studies of thorium oxide species: ThO_{x} and Th_{2}O_{y}. J Phys Chem A 2011, 115:14407.

Claassen, H, Goodman, GL, Holloway, JH, Selig, H. Raman spectra of MoF_{6}, TcF_{6}, ReF_{6}, UF_{6}, SF_{6}, SeF_{6}, and TeF_{6} in the vapor state. J Chem Phys 1970, 53:341.

Person, WB, Kim, KC, Campbell, GM, Dewey, HJ. Absolute intensities of infrared‐active fundamentals and combination bands of gaseous PuF_{6} and NpF_{6}. J Chem Phys 1986, 85:5524.

Krebs, B, Hasse, K‐D. Refinements of the crystal structures of KTcO_{4}, KReO_{4} and OsO_{4}. the bond lengths in tetrahedral oxoanions and oxides of d^{0} transition metals. Acta Crystallogr B 1976, 32:1334.

Huston, L, Claassen, HH. Raman spectra and force constants for OsO_{4} and XeO_{4}. J Chem Phys 1970, 52:5646.

Cremer, D, Larsson, JA, Kraka, E. Theoretical and Computational Chemistry, Volume 5, Theoretical Organic Chemistry. C Parkanyi, Elsevier, Amsterdam (1998), 259.

Boettcher, CJE. Theory of Electric Polarization. Amsterdam: Elsevier; 1973.

Kellö, V, Antušel, A, Urban, M. Quasi‐relativistic coupled cluster calculations of electric dipole moments and dipole polarizabilities of GeO, SnO, and PbO. J Comp Meth Sci Eng 2004, 4:753.

Lide, DR. CRC Handbook of Chemistry and Physics. 90th ed. Boca Raton, FL: CRC; 2009‐2010.

Maryott, AA, Buckley, F. (1953) *U. S. National Bureau of Standards Circular No. 537*.

Furlani, TR, King, HF. Theory of spinorbit coupling. application to singlet‐triplet interaction in the trimethylene biradical. J Chem Phys 1985, 82:5577.

Fedorov, DG, Koseki, S, Schmidt, MW, Gordon, MS. Spin‐orbit coupling in molecules: chemistry beyond the adiabatic approximation. Int Rev Phys Chem 2003, 22:551.

Fleig, T. Invited review: relativistic wave‐function based electron correlation methods. Chem Phys 2012, 395:2.

Fedorov, DG, Gordon, MS. A study of the relative importance of one and two‐electron contributions to spin‐orbit coupling. J Chem Phys 2000, 112:5611.

King, HF, Furlani, TR. Computation of one and two electron spin‐orbit integrals. J Comput Chem 1988, 9:771.

Boettger, C. Approximate two‐electron spin‐orbit coupling term for density‐functional‐theory DFT calculations using the Douglas‐Kroll‐Hess transformation. Phys Rev B 2000, 62:7809.

Majumder, S, Matveev, AV, Rösch, N. Spin‐orbit interaction in the Douglas‐Kroll approach to relativistic density functional theory. Chem Phys Lett 2003, 382:186.

Peralta, JE, Scuseria, GE. Relativistic all‐electron two‐component self‐consistent density functional calculations including one‐electron scalar and spin‐orbit effects. J Chem Phys 2004, 120:5875.

van Wüllen, C, Michauk, C. Accurate and efficient treatment of two‐electron contributions in quasirelativistic high‐order Douglas‐Kroll density‐functional calculations. J Chem Phys 2005, 123:204113.

Seeger, R, Pople, JA. Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree‐Fock theory. J Chem Phys 1977, 66:–3045.

Hammes‐Schiffer, S, Andersen, HC. The advantages of the general Hartree‐Fock method for future computer simulation of materials. J Chem Phys 1993, 99:1901.

Jimez‐Hoyos, CA, Henderson, TM, Scuseria, GE. Generalized Hartree‐Fock description of molecular dissociation. J Chem Theory Comput 2011, 7:2667.