Ōsawa, E. Superaromaticity. Kagaku (Chem) 1970, 25:854–863.

Ōsawa, E, Kroto, HW, Fowler, PW, Wasserman, E. The evolution of the football structure for the C_{60} molecule: a retrospective [and discussion]. Phil Trans R Soc Lond A 1993, 343:1–8. doi: 10.1098/rsta.1993.0035.

Bochvar, DA, Gal`pern, EG. Electronic structure of the molecules C_{20} and C_{60}. Proc Acad Sci SSSR 1973, 209:239–241.

Stankevich, I, Nikerov, M, Bochvar, D. Structural chemistry of crystalline carbon: geometry, stability, electronic spectrum. Russ Chem Rev 1984, 53:640–655. doi: 10.1070/RC1984v053n07ABEH003084.

Kroto, HW, Heath, JR, O`Brien, SC, Curl, RF, Smalley, RE. C_{60}: Buckminsterfullerene. Nature 1985, 318:162–163. doi: 10.1038/318162a0.

Kroto, HW. C_{60}: Buckminsterfullerene, the celestial sphere that fell to earth. Angew Chem Int Ed 1992, 31:111–129. doi: 10.1002/anie.199201113.

Hare, JP, Kroto, HW. A postbuckminsterfullerene view of carbon in the galaxy. Acc Chem Res 1992, 25:106–112. doi: 10.1021/ar00015a002.

Kroto, H. Symmetry, space, stars, and C_{60} (Nobel lecture). Angew Chem Int Ed 1997, 36:1578–1593. doi: 10.1002/anie.199715781.

Krätschmer, W, Lamb, LD, Fostiropoulos, K, Huffman, DR. Solid C_{60}: a new form of carbon. Nature 1990, 347:354–358. doi: 10.1038/347354a0.

Mattauch, J, Ewald, H, Hahn, O, Strassmann, F. Hat ein Caesium‐Isotop langer Halbwertszeit existiert? Ein Beitrag zur Deutung ungewöhnlicher Linien in der Massenspektrographie. Z Physik 1943, 120:598–617.

Iijima, S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 1980, 50:675–683. doi: 10.1016/0022-0248(80)90013-5.

Buseck, PR, Tsipursky, SJ, Hettich, R. Fullerenes from the geological environment. Science 1992, 257:215–217. doi: 10.1126/science.257.5067.215.

Cami, J, Bernard‐Salas, J, Peeters, E, Malek, SE. Detection of C_{60} and C_{70} in a young planetary nebula. Science 2010, 329:1180–1182. doi: 10.1126/science.1192035.

Berné, O, Tielens, AGGM. Formation of buckminsterfullerene (C_{60}) in interstellar space. Proc Natl Acad Sci U S A 2012, 109:401–406. doi: 10.1073/pnas.1114207108.

Schultz, HP. Topological organic chemistry. polyhedranes and prismanes. J Org Chem 1965, 30:1361–1364. doi: 10.1021/jo01016a005.

Prinzbach, H, Weiler, A, Landenberger, P, Wahl, F, Worth, J, Scott, LT, Gelmont, M, Olevano, D, v Issendorff, B. Gas‐phase production and photoelectron spectroscopy of the smallest fullerene C_{20}. Nature 2000, 407:60–63. doi: 10.1038/35024037.

Sutton, D. Platonic and Archimedean Solids. New York: Wooden Books; 2002.

Kroto, HW. The stability of the fullerenes C_{n}, with *n* = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329:529–531. doi: 10.1038/329529a0.

Thurston, WP. Shapes of polyhedra and triangulations of the sphere. Geo Topol Mono 1998, 1:511–549.

Zhao, G, Perilla, JR, Yufenyuy, EL, Meng, X, Chen, B, Ning, J, Ahn, J, Gronenborn, AM, Schulten, K, Aiken, C, et al. Mature HIV‐1 capsid structure by cryo‐electron microscopy and all‐atom molecular dynamics. Nature 2013, 497:643–646. doi: 10.1038/nature12162.

Tagmatarchis, N, Okada, K, Tomiyama, T, Yoshida, T, Kobayashi, Y, Shinohara, H. A catalytic synthesis and structural characterization of a new [84]fullerene isomer. Chem Commun 2001, 1366–1367. doi: 10.1039/B103679N.

Popov, AA, Yang, S, Dunsch, L. Endohedral fullerenes. Chem Rev 2013, 113:5989–6113. doi: 10.1021/cr300297r.

Yamada, M, Akasaka, T, Nagase, S. Carbene additions to fullerenes. Chem Rev 2013, 113:7209–7264. doi: 10.1021/cr3004955.

Franco, JU, Hammons, JC, Rios, D, Olmstead, MM. New tetraazaannulene hosts for fullerenes. Inorg Chem 2010, 49:5120–5125. doi: 10.1021/ic1002513.

York, APE. Inorganic fullerenes, onions, and tubes. J Chem Educ 2004, 81:673. doi: 10.1021/ed081p673.

Scott, LT, Boorum, MM, McMahon, BJ, Hagen, S, Mack, J, Blank, J, Wegner, H, de Meijere, A. A rational chemical synthesis of C_{60}. Science 2002, 295:1500–1503. doi: 10.1126/science.1068427.

Kabdulov, M, Jansen, M, Amsharov, KY. Bottom‐up C_{60} fullerene construction from a fluorinated C_{60}H_{21}F_{9} precursor by laser‐induced tandem cyclization. Chem Eur J 2013, 19:17262–17266. doi: 10.1002/chem.201303838.

Cioslowski, J. Electronic Structure Calculations on Fullerenes and Their Derivatives. New York: Wooden Books; 1995.

Balaban, AT, Liu, X, Klein, DJ, Babić, D, Schmalz, TG, Seitz, WA, Randic, M. Graph invariants for fullerenes. J Chem Inf Comput Sci 1995, 35:396–404. doi: 10.1021/ci00025a007.

Zhu, HY, Klein, DJ. Graph‐geometric invariants for molecular structures. J Chem Inf Comput Sci 1996, 36:1067–1075. doi: 10.1021/ci960025a.

Fowler, PW, Manolopoulos, DE. An Atlas of Fullerenes. 2nd ed. Mineola, NY: Dover Publications Inc.; 2006.

Alcamí, M, Sánchez, G, Díaz‐Tendero, S, Wang, Y, Martín, F. Structural patterns in fullerenes showing adjacent pentagons: C_{20} to C_{72}. J Nanosci Nanotechnol 2007, 7:1329–1338. doi: 10.1166/jnn.2007.311.

Cioslowski, J, Rao, N, Moncrieff, D. Standard enthalpies of formation of fullerenes and their dependence on structural motifs. J Am Chem Soc 2000, 122:8265–8270. doi: 10.1021/ja001109+.

Brinkmann, G, Goedgebeur, J, Mélot, H, Coolsaet, K. House of graphs: a database of interesting graphs. Discrete Appl Math 2013, 161:311–314.

Schwerdtfeger, P, Wirz, L, Avery, J. Program fullerene: a software package for constructing and analyzing structures of regular fullerenes. J Comput Chem 2013, 34:1508–1526. doi: 10.1002/jcc.23278.

Fowler, PW. Fullerene stability and structure. Contemp Phys 1996, 37:235–247. doi: 10.1080/00107519608217530.

Baldridge, KK, Siegel, JS. Of graphs and graphenes: molecular design and chemical studies of aromatic compounds. Angew Chem Int Ed 2013, 52:5436–5438. doi: 10.1002/anie.201300625.

Trinajstic, N. Chemical Graph Theory. Boca Raton, FL: CRC Press; 1983.

Kotschik, D. The topology and combinatorics of soccer balls. Am Sci 2006, 94:350–357. doi: 10.1511/2006.60.1001.

Cataldo, F, Graovac, A, Ori, O. The mathematics and topology of fullerenes. Berlin: Springer; 2011.

Dresselhaus, MS, Dresselhaus, G, Eklund, PC. Science of Fullerenes and Carbon Nanotubes. New York: Academic Press; 1995.

Curl, RF. Dawn of the fullerenes: experiment and conjecture. Rev Mod Phys 1997, 69:691–702. doi: 10.1103/RevModPhys.69.691.

Kadish, KM, Ruoff, RS, eds. Fullerenes: Chemistry, Physics, and Technology. New York: Wiley‐Interscience; 2000.

Hirsch, A, Brettreich, M, Wudl, F. Fullerenes: Chemistry and Reactions. Weinheim: Wiley‐VCH; 2005.

Rodríguez‐Fortea, A, Irle, S, Poblet, JM. Fullerenes: formation, stability, and reactivity. WIREs Comput Mol Sci 2011, 1:350–367. doi: 10.1002/wcms.21.

Sheka, EF. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. Boca Radon, FL: CRC Press, Taylor %26 Francis; 2011.

Darwish, AD. Fullerenes. Annu Rep Prog Chem, Sect A Inorg Chem 2012, 108:464–477. doi: 10.1039/C2IC90017C.

Whitney, H. Non‐separable and planar graphs. Trans Am Math Soc 1932, 34:339–362. doi: 10.1090/S0002-9947-1932-1501641-2.

Steinitz, E. Polyeder und Raumeinteilungen. In: Klein, F, Meyer, W, eds. Encyclopädie der mathematischen Wissenschaften. Geometrie, vol. 3. Leipzig: B.G. Teubner Verlag; 1922, 1–139.

Schmalz, TG, Seitz, WA, Klein, DJ, Hite, GE. Elemental carbon cages. J Am Chem Soc 1988, 110:1113–1127. doi: 10.1021/ja00212a020.

Grünbaum, G, Motzkin, TS. The number of hexagons and the simplicity of geodesics on certain polyhedra. Can J Math 1963, 15:744–751. doi: 10.4153/CJM-1963-071-3.

Killblane, C, Gao, Y, Shao, N, Zeng, XC. Search for lowest‐energy nonclassical fullerenes III: C_{22}. J Phys Chem A 2009, 113:8839–8844. doi: 10.1021/jp9016745.

Janežič, D, Miličević, A, Nikolić, S. Trinajstić N. In: Gutman, I, ed. Graph Theoretical Matrices in Chemistry. Mathematical Chemistry Monographs, vol. 3. Kragujevac, Serbia: University of Kragujevac; 2007.

Tutte, WT. How to draw a graph. Proc Lond Math Soc 1963, 13:743–767.

Brandenburg, FJ, Himsolt, M, Rohrer, C. An experimental comparison of force‐directed and randomized graph drawing algorithms. In: Brandenburg, FJ, ed. Graph Drawing. Lecture Notes in Computer Science, vol. 1027. Berlin Heidelberg: Springer; 1996, 76–87.

Fruchterman, TMJ, Reingold, EM. Graph drawing by force‐directed placement. Softw Pract Exp 1991, 21:1129–1164. doi: 10.1002/spe.4380211102.

Plestenjak, B. An algorithm for drawing Schlegel diagrams. Available at: http://www-lp.fmf.uni-lj.si/plestenjak/Papers/NICEGR.pdf 1996, 1–10. (Accessed July 1, 2014)

Manolopoulos, DE, May, JC, Down, SE. Theoretical studies of the fullerenes: C_{34} to C_{70}. Chem Phys Lett 1991, 181:105–111. doi: 10.1016/0009-2614(91)90340-F.

Wirz, LN, Avery, JE, Schwerdtfeger, P. Structure and properties of the non‐face‐spiral fullerenes T‐C_{380}, *D*_{3}‐C_{384}, *D*_{3}‐C_{440} and *D*_{3}‐C_{672} and their halma and leapfrog transforms. J Chem Inf Model 2014, 54:121–130. doi: 10.1021/ci4005578.

Manolopoulos, DE, Fowler, PW. A fullerene without a spiral. Chem Phys Lett 1993, 204:1–7. doi: 10.1016/0009-2614(93)85597-H.

Brinkmann, G, Goedgebeur, J, McKay, BD. The smallest fullerene without a spiral. Chem Phys Lett 2012, 522:54–55. doi: 10.1016/j.cplett.2011.11.056.

Fowler, P, Cremona, J. Fullerenes containing fused triples of pentagonal rings. J Chem Soc Faraday Trans 1997, 93:2255–2262. doi: 10.1039/A701271C.

Yoshida, M, Fowler, PW. Dihedral fullerenes of threefold symmetry with and without face spirals. J Chem Soc Faraday Trans 1997, 93:3289–3294. doi: 10.1039/A702351K.

Brinkmann, G, Fowler, PW, Yoshida, M. New non‐spiral fullerenes from old: generalised truncations of isolated‐pentagon‐triple carbon cages. MATCH Commun Math Comput Chem 1998, 7–17.

Brinkmann, G. Problems and scope of spiral algorithms and spiral codes for polyhedral cages. Chem Phys Lett 1997, 272:193–198. doi: 10.1016/S0009-2614(97)88009-8.

Fowler, PW, Graovac, A, Žerovnik, J, Pisanski, T. A generalized ring spiral algorithm for coding fullerenes and other cubic polyhedra. Preprint series/Institute of Mathematics, Physics and Mechanics, Department of Mathematics, University of Ljubljana, 1998.

Fowler, PW, Horspool, D, Myrvold, W. Vertex spirals in fullerenes and their implications for nomenclature of fullerene derivatives. Chem Eur J 2007, 13:2208–2217. doi: 10.1002/chem.200601107.

Cozzi, F, Powell, WH, Thilgen, C. Numbering of fullerenes (IUPAC recommendations 2005). Pure Appl Chem 2005, 77:843–923. doi: 10.1351/pac200577050843.

Liu, X, Klein, DJ, Schmalz, TG, Seitz, WA. Generation of carbon‐cage polyhedra. J Comput Chem 1991, 12:1252–1259. doi: 10.1002/jcc.540121013.

Brinkmann, G, Dress, AW. A constructive enumeration of fullerenes. J Algor 1997, 23:345–358. doi: 10.1006/jagm.1996.0806.

Brinkmann, G, Franceus, D, Fowler, PW, Graver, JE. Growing fullerenes from seed: growth transformations of fullerene polyhedra. Chem Phys Lett 2006, 428:386–393. doi: 10.1016/j.cplett.2006.07.040.

Hasheminezhad, M, Fleischner, H, McKay, BD. A universal set of growth operations for fullerenes. Chem Phys Lett 2008, 464:118–121. doi: 10.1016/j.cplett.2008.09.005.

Balaban, AT, Schmalz, TG, Zhu, H, Klein, DJ. Generalizations of the Stone‐Wales rearrangement for cage compounds, including fullerenes. J Mol Struct THEOCHEM 1996, 363:291–301. doi: 10.1016/0166-1280(95)04448-5.

Graver, JE, Graves, CM, Graves, SJ. Fullerene patches II. Ars Math Contemp 2014, 7:405–421.

Brinkmann, G, Goedgebeur, J, McKay, BD. The generation of fullerenes. J Chem Inf Model 2012, 52:2910–2918. doi: 10.1021/ci3003107.

Brinkmann, G, Goedgebeur, J, Van Cleemput, N. The history of the generation of cubic graphs. J Chem Inf Model 2013, 5:67–89.

Goldberg, M. A class of multi‐symmetric polyhedra. Tohoku Math J 1937, 43:104–108.

Coxeter, HSM. Virus macromolecules and geodesic domes. In: Butcher, JC, ed. A Spectrum of mathematics—Essays Presented to H. G. Forder. Oxford, UK: Oxford University Press; 1971, 98–107.

Guo, X, Hansen, P, Zheng, M. Boundary uniqueness of fusenes. Discrete Appl Math 2002, 118:209–222. doi: 10.1016/S0166-218X(01)00180-9.

Graver, JE. The (m,k)‐patch boundary code problem. MATCH Commun Math Comput Chem 2003, 48:189–196.

Brinkmann, G, Graver, JE, Justus, C. Numbers of faces in disordered patches. J Math Chem 2009, 45:263–278. doi: 10.1007/s10910-008-9403-6.

Graver, JE, Graves, CM. Fullerene patches I. Ars Math Contemp 2010, 3:109–120.

Brinkmann, G, Fowler, PW, Justus, C. A catalogue of isomerization transformations of fullerene polyhedra. J Chem Inf Comput Sci 2003, 43:917–927. doi: 10.1021/ci020069l.

Brinkmann, G, Fowler, PW. A catalogue of growth transformations of fullerene polyhedra. J Chem Inf Comput Sci 2003, 43:1837–1843. doi: 10.1021/ci030017b.

Bornhöft, J, Brinkmann, G, Greinus, J. Pentagon–hexagon‐patches with short boundaries. Eur J Comb 2003, 24:517–529. doi: 10.1016/S0195-6698(03)00034-9.

Stone, AJ, Wales, DJ. Theoretical studies of icosahedral C_{60} and some related species. Chem Phys Lett 1986, 128:501–503. doi: 10.1016/0009-2614(86)80661-3.

Babić, D, Bassoli, S, Casartelli, M, Cataldo, F, Graovac, A, Ori, O, York, B. Generalized Stone‐Wales transformations. Mol Simulat 1995, 14:395–401. doi: 10.1080/08927029508022032.

Astakhova, TY, Vinogradov, GA. New isomerization operations for fullerene graphs. J Mol Struct THEOCHEM 1998, 430:259–268. doi: 10.1016/S0166-1280(98)90253-6.

Ori, O, Putz, MV, Gutman, I, Schwerdtfeger, P. Generalized Stone‐Wales transformations for fullerene graphs derived from Berge`s switching theorem. In: Gutman, I, Pokric, B, Vukicevic, D, eds. Ante Graovac—Life and Works. Mathematical Chemistry Monographs, vol. 16. Kragujevac, Serbia: University of Kragujevac; 2014, 259–272.

Berge, C. Graphs and Hypergraphs. New York: Elsevier; 1973.

Endo, M, Kroto, HW. Formation of carbon nanofibers. J Phys Chem 1992, 96:6941–6944. doi: 10.1021/j100196a017.

Yoshida, M, Fowler, PW. Systematic relationships between fullerenes without spirals. Chem Phys Lett 1997, 278:256–261. doi: 10.1016/S0009-2614(97)00980-9.

Podlivaev, A, Openov, L. Stone‐Wales transformation paths in fullerene C_{60}. J Exp Theoret Phys Lett 2005, 81:533–537. doi: 10.1134/1.1996764.

Ori, O, Cataldo, F, Putz, MV. Topological anisotropy of Stone‐Wales waves in graphenic fragments. Int J Mol Sci 2011, 12:7934–7949. doi: 10.3390/ijms12117934.

Saha, B, Irle, S, Morokuma, K. Hot giant fullerenes eject and capture C_{2} molecules: QM/MD simulations with constant density. J Phys Chem C 2011, 115:22707–22716. doi: 10.1021/jp203614e.

Murry, RL, Strout, DL, Odom, GK, Scuseria, GE. Role of sp^{3} carbon and 7‐membered rings in fullerene annealing and fragmentation. Nature 1993, 366:665–667. doi: 10.1038/366665a0.

Walsh, TR, Wales, DJ. Relaxation dynamics of C_{60}. J Chem Phys 1998, 109:6691–6700. doi: 10.1063/1.477319.

Dunk, PW, Kaiser, NK, Hendrickson, CL, Quinn, JP, Ewels, CP, Nakanishi, Y, Sasaki, Y, Shinohara, H, Marshall, AG, Kroto, HW. Closed network growth of fullerenes. Nature Commun 2012, 3:855. doi: 10.1038/ncomms1853.

Irle, S, Zheng, G, Wang, Z, Morokuma, K. The C_{60} formation puzzle “solved”: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self‐assembly mechanism. J Phys Chem B 2006, 110:14531–14545. doi: 10.1021/jp061173z.

Tan, YZ, Chen, RT, Liao, ZJ, Li, J, Zhu, F, Lu, X, Xie, SY, Li, J, Huang, RB, Zheng, LS. Carbon arc production of heptagon‐containing fullerene[68]. Nature Commun 2011, 2:420. doi: 10.1038/ncomms1431.

Austin, SJ, Fowler, PW, Manolopoulos, DE, Zerbetto, F. The Stone‐Wales map for C_{60}. Chem Phys Lett 1995, 235:146–151. doi: 10.1016/0009-2614(95)00082-F.

Budyka, MF, Zyubina, TS, Ryabenko, AG, Muradyan, VE, Esipov, SE, Cherepanova, NI. Is C_{2} cluster ingested by fullerene C_{60}? Chem Phys Lett 2002, 354:93–99. doi: 10.1016/S0009-2614(02)00113-6.

Dutour, M, Deza, M. Goldberg‐Coxeter construction for 3‐ and 4‐valent plane graphs. Electron J Comb 2004, 11:1–49.

Bakowies, D, Bühl, M, Thiel, W. Can large fullerenes be spherical? J Am Chem Soc 1995, 117:10113–10118. doi: 10.1021/ja00145a025.

Bakowies, D, Bühl, M, Thiel, W. A density functional study on the shape of C_{180} and C_{240} fullerenes. Chem Phys Lett 1995, 247:491–493. doi: 10.1016/S0009-2614(95)01222-2.

Senn, P. Computation of the cartesian coordinates of buckminsterfullerene. J Chem Educ 1995, 72:302–303. doi: 10.1021/ed072p302.

Manolopoulos, DE, Fowler, PW. Molecular graphs, point groups, and fullerenes. J Chem Phys 1992, 96:7603–7614. doi: 10.1063/1.462413.

Cvetković, D, Fowler, P, Rowlinson, P, Stevanović, D. Constructing fullerene graphs from their eigenvalues and angles. Linear Algebra Appl 2002, 356:37–56. doi: 10.1016/S0024-3795(02)00280-X.

Pisanski, T, Shawe‐Taylor, J. Characterizing graph drawing with eigenvectors. J Chem Inf Comput Sci 2000, 40:567–571. doi: 10.1021/ci9900938.

Fowler, P, Pisanski, T, Shawe‐Taylor, J. Graph drawing. In: Tamassia, R, Tollis, I, eds. Lecture Notes in Computer Science, vol. 894. Berlin: Springer; 1995, 282–285.

László, I, Graovac, A, Pisanski, T, Plavšić, D. Graph drawing with eigenvectors. In: Putz, MV, ed. Carbon Bonding and Structures, Vol. 5: Carbon Materials: Chemistry and Physics. Netherlands: Springer; 2011, 95–115. doi: 10.1007/978-94-007-1733-6_6.

Graver, JE. Kekulé structures and the face independence number of a fullerene. Europ J Combin 2007, 28:1115–1130. doi: 10.1016/j.ejc.2006.03.003.

Kardoš, F, Král`, D, Miškuf, J, Sereni, JS. Fullerene graphs have exponentially many perfect matchings. J Math Chem 2009, 46:443–447. doi: 10.1007/s10910-008-9471-7.

Wu, Z, Jelski, DA, George, TF. Vibrational motions of buckminsterfullerene. Chem Phys Lett 1987, 137:291–294. doi: 10.1016/0009-2614(87)80221-X.

Weeks, DE, Harter, WG. Rotation‐vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencles, and normal modes of buckminsterfullerene. J Chem Phys 1989, 90:4744–4771. doi: 10.1063/1.456571.

Cyvin, SJ, Brendsdal, E, Cyvin, BN, Brunvoll, J. Molecular vibrations of footballene. Chem Phys Lett 1988, 143:377–380. doi: 10.1016/0009-2614(88)87050-7.

Jishi, RA, Mirie, RM, Dresselhaus, MS. Force‐constant model for the vibrational modes in C_{60}. Phys Rev B 1992, 45:13685–13689. doi: 10.1103/PhysRevB.45.13685.

Feldman, JL, Broughton, JQ, Boyer, LL, Reich, DE, Kluge, MD. Intramolecular‐force‐constant model for C_{60}. Phys Rev B 1992, 46:12731–12736. doi: 10.1103/PhysRevB.46.12731.

Ceulemans, A, Fowler, PW, Vos, I. C_{60} vibrates as a hollow sphere. J Chem Phys 1994, 100:5491–5500. doi: 10.1063/1.467167.

Hands, ID, Dunn, JL, Bates, CA. A complete nearest‐neighbor force field model for C_{60}. J Chem Phys 2004, 120:6912–6923. doi: 10.1063/1.1683105.

Ceulemans, A, Titeca, BC, Chibotaru, LF, Vos, I, Fowler, PW. Complete bond force field for trivalent and deltahedral cages: group theory and applications to cubane, closo‐dodecahedrane, and buckminsterfullerene. J Phys Chem A 2001, 105:8284–8295. doi: 10.1021/jp0036792.

Zheng, G, Irle, S, Morokuma, K. Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C_{20}–C_{86} fullerene isomers. Chem Phys Lett 2005, 412:210–216. doi: 10.1016/j.cplett.2005.06.105.

Mani, P. Automorphismen von polyedrischen Graphen. Math Ann 1971, 192:279–303. doi: 10.1007/BF02075357.

Deza, M, Dutour‐Sikirić, M, Fowler, PW. The symmetries of cubic polyhedral graphs with face size no larger than 6. MATCH Commun Math Comput Chem 2009, 61:589–602.

Balasubramanian, K. Applications of combinatorics and graph theory to spectroscopy and quantum chemistry. Chem Rev 1985, 85:599–618. doi: 10.1021/cr00070a005.

Faghani, M. Symmetry of a toroidal fullerene. Optoelectron Adv Mater Rapid Commun 2010, 4:1844–1846.

Fujita, S. Application of coset representations to the construction of symmetry adapted functions. Theoret Chim Acta 1990, 78:45–63. doi: 10.1007/BF01112352.

King, RB, Diudea, MV. The chirality of icosahedral fullerenes: a comparison of the tripling (leapfrog), quadrupling (chamfering), and septupling (capra) transformations. J Math Chem 2006, 39:597–604. doi: 10.1007/s10910-005-9048-7.

David, WIF, Ibberson, RM, Matthewman, JC, Prassides, K, Dennis, TJS, Hare, JP, Kroto, HW, Taylor, R, Walton, DRM. Crystal structure and bonding of ordered C_{60}. Nature 1991, 353:147–149. doi: 10.1038/353147a0.

Devadoss, SL, O`Rourke, J. Discrete and Computational Geometry. Princeton, NJ: Princeton University Press; 2011.

Pisanski, T, Kaufman, M, Bokal, D, Kirby, EC, Graovac, A. Isoperimetric quotient for fullerenes and other polyhedral cages. J Chem Inf Comput Sci 1997, 37:1028–1032. doi: 10.1021/ci970228e.

Sylvester, JJ. A question in the geometry of situation. Q J Pure Appl Math 1857, 1:79.

Elzinga, DJ, Hearn, DW. The minimum covering sphere problem. Manag Sci 1972, 19:96–104.

Hopp, TH, Reeve, CP. An algorithm for computing the minimum covering sphere in any dimension. In: COMMERCE UDO ed. NIST IR5381, Gaithersburg, MD: NIST; 1996, 1–8.

Nielsen, F, Nock, R. Approximating smallest enclosing balls. In: Laganá, A, Gavrilova, M, Kumar, V, Mun, Y, Tan, C, Gervasi, O, eds. Computational Science and Its Applications – ICCSA 2004. Lecture Notes in Computer Science, vol. 3045. Berlin Heidelberg: Springer; 2004, 147–157.

Yıldırım, E. Two algorithms for the minimum enclosing ball problem. SIAM J Optimiz 2008, 19:1368–1391. doi: 10.1137/070690419.

Fowler, P. Cylindrical fullerenes: the smallest nanotubes? J Phys Chem Solids 1993, 54:1825–1833. doi: 10.1016/0022-3697(93)90295-3.

Kumar, P, Yıldırım, E. Minimum‐volume enclosing ellipsoids and core sets. J Optim Theory Appl 2005, 126:1–21. doi: 10.1007/s10957-005-2653-6.

Kumar, P, Yıldırım, E. Computing minimum‐volume enclosing axis‐aligned ellipsoids. J Optim Theory Appl 2008, 136:211–228. doi: 10.1007/s10957-007-9295-9.

Sun, P, Freund, RM. Computation of minimum‐volume covering ellipsoids. Oper Res 2004, 52:690–706. doi: 10.1287/opre.1040.0115.

Todd, MJ, Yıldırım, E. On Khachiyan`s algorithm for the computation of minimum‐volume enclosing ellipsoids. Discrete Appl Math 2007, 155:1731–1744. doi: 10.1016/j.dam.2007.02.013.

Nasu, K, Taketsugu, T, Nakano, T, Nagashima, U, Hosoya, H. Stability of small fullerenes C_{n} (*n* = 36, 40 and 60): a topological and molecular orbital approach. Theoret Chim Acta 1995, 90:75–86. doi: 10.1007/BF01113841.

Díaz‐Tendero, S, Martín, F, Alcamí, M. Structure and electronic properties of fullerenes C_{52}^{q+}: is C_{52}^{2+} an exception to the pentagon adjacency penalty rule? ChemPhysChem 2005, 6:92–100. doi: 10.1002/cphc.200400273.

Díaz‐Tendero, S, Alcamí, M, Martín, F. Fullerene C_{50}: sphericity takes over, not strain. Chem Phys Lett 2005, 407:153–158. doi: 10.1016/j.cplett.2005.03.065.

Fowler, PW, Heine, T, Zerbetto, F. Competition between even and odd fullerenes: C_{118}, C_{119}, and C_{120}. J Phys Chem A 2000, 104:9625–9629. doi: 10.1021/jp0019815.

Fischer, JE, Heiney, PA, Smith, AB. Solid‐state chemistry of fullerene‐based materials. Acc Chem Res 1992, 25:112–118. doi: 10.1021/ar00015a003.

Heiney, PA, Fischer, JE, McGhie, AR, Romanow, WJ, Denenstein, AM, McCauley, JP Jr, Smith, AB, Cox, DE. Orientational ordering transition in solid C_{60}. Phys Rev Lett 1991, 66:2911–2914. doi: 10.1103/PhysRevLett.66.2911.

Liu, S, Lu, YJ, Kappes, MM, Ibers, JA. The structure of the C_{60} molecule: X‐ray crystal structure determination of a twin at 110 K. Science 1991, 254:408–410. doi: 10.1126/science.254.5030.408.

Vaughan, GBM, Heiney, PA, Fischer, JE, Luzzi, DE, Ricketts‐Foot, DA, McGhie, AR, Hui, YW, Smith, AL, Cox, DE, Romanow, WJ, et al. Orientational disorder in solvent‐free solid C_{70}. Science 1991, 254:1350–1353. doi: 10.1126/science.254.5036.1350.

Kauczor, J, Norman, P, Saidi, WA. Non‐additivity of polarizabilities and van der Waals C_{6} coefficients of fullerenes. J Chem Phys 2013, 138:114107. doi: 10.1063/1.4795158.

Lundin, A, Sundqvist, B, Skoglund, P, Fransson, A, Pettersson, S. Compressibility, specific heat capacity, and Grüneisen parameter for C_{60}/C_{70}. Solid State Commun 1992, 84:879–883. doi: 10.1016/0038-1098(92)90451-E.

Kawamura, H, Akahama, Y, Kobayashi, M, Shinohara, H, Sato, H, Saito, Y, Kikegawa, T, Shimomura, O, Aoki, K. Solid C_{70} high pressure and high temperature. J Phys Chem Solids 1993, 54:1675–1678. doi: 10.1016/0022-3697(93)90281-U.

Zettl, A, Cumings, J. Elastic properties of fullerenes. In: Levy, M, Bass, H, Stern, R, eds. Handbook of Elastic Properties of Solids, Liquids, and Gases. Lecture Notes in Computer Science, vol. 2. San Diego, CA: Academic Press; 2001, 163–170.

Schwerdtfeger, P, Gaston, N, Krawczyk, RP, Tonner, R, Moyano, GE. Extension of the Lennard‐Jones potential: theoretical investigations into rare‐gas clusters and crystal lattices of He, Ne, Ar, and Kr using many‐body interaction expansions. Phys Rev B 2006, 73:064112. doi: 10.1103/PhysRevB.73.064112.

Cohen, ML. Calculation of bulk moduli of diamond and zinc‐blende solids. Phys Rev B 1985, 32:7988–7991. doi: 10.1103/PhysRevB.32.7988.

Faccio, R, Denis, PA, Pardo, H, Goyenola, C, Mombrú, AW. Mechanical properties of graphene nanoribbons. J Phys Condens Mat 2009, 21:285304. doi: 10.1088/0953-8984/21/28/285304.

Milyavskiy, VV, Borodina, TI, Sokolov, SN. Phase transitions of C_{70} fullerite with hexagonal closed‐packed structure under shock‐wave loading. Fuller Nanotub Carbon Nanostruct 2008, 16:494–498. doi: 10.1080/15363830802282433.

Hales, TC. A computer verification of the Kepler conjecture. In: Proceedings of the International Congress of Mathematicians, vol. III. Beijing: Higher Ed. Press; 2002, 795–804.

Hales, TC. A proof of the Kepler conjecture. Ann Math 2005:1065–1185. doi: 10.4007/annals.2005.162.1065.

Stoyan, Y, Gil, N, Scheithauer, G, Pankratov, A, Magdalina, I. Packing of convex polytopes into a parallelepiped. Tech. Rep. MATH‐NM‐04‐2004, Technische Universität Dresden, 2003.

Stoyan, Y, Gil, N, Pankratov, A. Packing of non‐convex polytopes into a parallelepiped. Tech. Rep. MATH‐NM‐06‐2004, Technische Universität Dresden, 2004.

Yıldırım, E. On the minimum volume covering ellipsoid of ellipsoids. SIAM J Optimiz 2006, 17:621–641. doi: 10.1137/050622560.

Donev, A, Stillinger, FH, Chaikin, PM, Torquato, S. Unusually dense crystal packings of ellipsoids. Phys Rev Lett 2004, 92:255506. doi: 10.1103/PhysRevLett.92.255506.

Wiener, H. Structural determination of paraffin boiling points. J Am Chem Soc 1947, 69:17–20. doi: 10.1021/ja01193a005.

Ori, O, D`Mello, M. A topological study of the structure of the C_{76} fullerene. Chem Phys Lett 1992, 197:49–54. doi: 10.1016/0009-2614(92)86020-I.

Ori, O, Cataldo, F, Vukičević, D, Graovac, A. Wiener way to dimensionality. Iranian J Math Chem 2010, 1:5–15.

Graovac, A, Ori, O, Faghani, M, Ashrafi, A. Distance property of fullerenes. Iranian J Math Chem 2011, 2:99–107.

Koorepazan‐Moftakhar, F, Ashrafi, AR, Ori, O, Putz, MV. Sphericality of some classes of fullerenes measured by topology. In: Fullerenes: Chemistry, Natural Sources and Technological Applications. New York: NIST. Nova Publications; 2014.

Vukičević, D, Cataldo, F, Ori, O, Graovac, A. Topological efficiency of C_{66} fullerene. Chem Phys Lett 2011, 501:442–445. doi: 10.1016/j.cplett.2010.11.055.

Ori, O, Cataldo, F, Graovac, A. Topological ranking of C_{28} fullerenes reactivity. Fuller Nanotub Carbon Nanostruct 2009, 17:308–323. doi: 10.1080/15363830902782332.

Wang, CR, Kai, T, Tomiyama, T, Yoshida, T, Kobayashi, Y, Nishibori, E, Takata, M, Sakata, M, Shinohara, H. Materials science: C_{66} fullerene encaging a scandium dimer. Nature 2000, 408:426–427. doi: 10.1038/35044195.

Katritzky, AR, Karelson, M, Petrukhin, R. The CODESSA PRO project, 2005.

Fowler, PW, Caporossi, G, Hansen, P. Distance matrices, Wiener indices, and related invariants of fullerenes. J Phys Chem A 2001, 105:6232–6242. doi: 10.1021/jp0104379.

Hosoya, H. On some counting polynomials in chemistry. Discrete Appl Math 1988, 19:239–257. doi: 10.1016/0166-218X(88)90017-0.

Gutman, I. A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes NY 1994, 27:9–15.

Balaban, AT. Topological indices based on topological distances in molecular graphs. Pure Appl Chem 1983, 55:199–206. doi: 10.1351/pac198855020199.

Balaban, AT. Chemical graphs: looking back and glimpsing ahead. J Chem Inf Comput Sci 1995, 35:339–350. doi: 10.1021/ci00025a001.

Zhang, H, Balasubramanian, K. Spectral moments of fullerene cages. Mol Phys 1993, 79:727–745. doi: 10.1080/00268979300101581.

Estrada, E. Characterization of 3D molecular structure. Chem Phys Lett 2000, 319:713–718. doi: 10.1016/S0009-2614(00)00158-5.

de la Peña, JA, Gutman, I, Rada, J. Estimating the Estrada index. Linear Algebra Appl 2007, 427:70–76. doi: 10.1016/j.laa.2007.06.020.

Diudea, MV, Gutman, I, Jantschi, L. Molecular Topolgy. New York: Nova Science; 2001.

Ju, Y, Liang, H, Zhang, J, Bai, F. A note on Fowler‐Manolopoulos predictor of fullerene stability. MATCH Commun Math Comput Chem 2010, 64:419–424.

Austin, SJ, Fowler, PW, Manolopoulos, DE, Orlandi, G, Zerbetto, F. Structural motifs and the stability of fullerenes. J Phys Chem 1995, 99:8076–8081. doi: 10.1021/j100020a035.

Stevanović, D. Remarks on Fowler‐Manolopoulos predictor of fullerene stability. MATCH Commun Math Comput Chem 2011, 66:285–292.

Karton, A, Chan, B, Raghavachari, K, Radom, L. Evaluation of the heats of formation of corannulene and C_{60} by means of high‐level theoretical procedures. J Phys Chem A 2013, 117:1834–1842. doi: 10.1021/jp312585r.

Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett 1996, 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865.

Weigend, F, Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 2005, 7:3297–3305. doi: 10.1039/B508541A.

Iranmanesh, A, Alizadeh, Y, Mirzaie, S. Computing Wiener polynomial, Wiener index and Hyper Wiener index of C_{80} fullerene by GAP program. Fuller Nanotub Carbon Nanostruct 2009, 17:560–566. doi: 10.1080/15363830903133204.

Charlier, JC, Eklund, P, Zhu, J, Ferrari, A. Electron and phonon properties of graphene: their relationship with carbon nanotubes. In: Jorio, A, Dresselhaus, G, Dresselhaus, M, eds. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Berlin: Springer; 2008.

Khamatgalimov, AR, Kovalenko, VI. Electronic structure and stability of C_{80} fullerene IPR isomers. Fuller Nanotub Carbon Nanostruct 2011, 19:599–604. doi: 10.1080/1536383X.2010.504951.

Xu, L, Cai, W, Shao, X. Prediction of low‐energy isomers of large fullerenes from C_{132} to C_{160}. J Phys Chem A 2006, 110:9247–9253. doi: 10.1021/jp057181h.

Shao, N, Gao, Y, Yoo, S, An, W, Zeng, XC. Search for lowest‐energy fullerenes: C_{98} to C_{110}. J Phys Chem A 2006, 110:7672–7676. doi: 10.1021/jp0624092.

Shao, N, Gao, Y, Zeng, XC. Search for lowest‐energy fullerenes 2: C_{38} to C_{80} and C_{112} to C_{120}. J Phys Chem C 2007, 111:17671–17677. doi: 10.1021/jp0701082.

Klein, DJ, Balaban, AT. Clarology for conjugated carbon nano‐structures: molecules, polymers, graphene, defected graphene, fractal benzenoids, fullerenes, nano‐tubes, nano‐cones, nano‐tori, etc. Open Org Chem J 2011, 5:27–61. doi: 10.2174/1874364101105010027.

Klein, DJ, Schmalz, TG, Hite, GE, Seitz, WA. Resonance in C_{60} buckminsterfullerene. J Am Chem Soc 1986, 108:1301–1302. doi: 10.1021/ja00266a032.

Vukičević, D, Kroto, HW, Randić, M. Atlas of Kekulé valence structures of buckminsterfullerene. Croat Chem Acta 2005, 78:223–234.

Randić, M, Kroto, HW, Vukičević, D. Numerical Kekulé structures of fullerenes and partitioning of π‐electrons to pentagonal and hexagonal rings. J Chem Inf Model 2007, 47:897–904. doi: 10.1021/ci600484u.

Austin, S, Fowler, P, Hansen, P, Monolopoulos, D, Zheng, M. Fullerene isomers of C_{60}. Kekulé counts versus stability. Chem Phys Lett 1994, 228:478–484. doi: 10.1016/0009-2614(94)00965-1.

Esperet, L, Kardoš, F, King, AD, Král`, D, Norine, S. Exponentially many perfect matchings in cubic graphs. Adv Math 2011, 227:1646–1664. doi: 10.1016/j.aim.2011.03.015.

Lovász, L, Plummer, MD. Matching Theory. Amsterdam: Elsevier; 1986.

Pauling, L, Brockway, LO, Beach, J. The dependence of interatomic distance on single bond‐double bond resonance. J Am Chem Soc 1935, 57:2705–2709. doi: 10.1021/ja01315a105.

Narita, S, Morikawa, T, Shibuya, T. Linear relationship between the bond lengths and the Pauling bond orders in fullerene molecules. J Mol Struct THEOCHEM 2000, 532:37–40. doi: 10.1016/S0166-1280(00)00563-7.

Rogers, KM, Fowler, PW. Leapfrog fullerenes, Hückel bond order and Kekulé structures. J Chem Soc, Perkin Trans 2 2001:18–22. doi: 10.1039/B007520P.

Gross, L, Mohn, F, Moll, N, Schuler, B, Criado, A, Guitián, E, Peña, D, Gourdon, A, Meyer, G. Bond‐order discrimination by atomic force microscopy. Science 2012, 337:1326–1329. doi: 10.1126/science.1225621.

Graver, JE, Hartung, EJ, Souid, AY. Clar and Fries numbers for benzenoids. J Math Chem 2013, 51:1981–1989. doi: 10.1007/s10910-013-0193-0.

Bernáth, A, Kovács, ER. NP‐hardness of the Clar number in general plane graphs. Available at http://www.cseltehu/egres/qp/egresqp‐11‐07ps 2011, 1–3.

Ye, D, Zhang, H. Extremal fullerene graphs with the maximum Clar number. Discrete Appl Math 2009, 157:3152–3173. doi: 10.1016/j.dam.2009.06.007.

Zhang, H, Ye, D, Liu, Y. A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of C_{60}. J Math Chem 2010, 48:733–740. doi: 10.1007/s10910-010-9706-2.

Fowler, PW. Localised models and leapfrog structures of fullerenes. J Chem Soc, Perkin Trans 2 1992:145–146. doi: 10.1039/P29920000145.

Došlić, T. Leapfrog fullerenes have many perfect matchings. J Math Chem 2008, 44:1–4. doi: 10.1007/s10910-007-9287-x.

Hartung, E. Fullerenes with complete Clar structure. Discrete Appl Math 2013, 161:2952–2957. doi: 10.1016/j.dam.2013.06.009.

Fowler, PW, Austin, SJ, Dunning, OJ, Dias, JR. Symmetry properties of the leapfrog transformation for fullerenes and benzenoids. Chem Phys Lett 1994, 224:123–130. doi: 10.1016/0009-2614(94)00525-7.

Zhang, H, Ye, D. An upper bound for the Clar number of fullerene graphs. J Math Chem 2007, 41:123–133. doi: 10.1007/s10910-006-9061-5.

Herndon, WC. Resonance energies of aromatic hydrocarbons. Quantitative test of resonance theory. J Am Chem Soc 1973, 95:2404–2406. doi: 10.1021/ja00788a073.

Herndon, WC, Ellzey, JM. Lawrence. Resonance theory. V. Resonance energies of benzenoid and nonbenzenoid pi systems. J Am Chem Soc 1974, 96:6631–6642. doi: 10.1021/ja00828a015.

Babić, D, Balaban, AT, Klein, DJ. Nomenclature and coding of fullerenes. J Chem Inf Comput Sci 1995, 35:515–526. doi: 10.1021/ci00025a020.

Liu, Y, O`Brien, S, Zhang, Q, Heath, J, Tittel, F, Curl, R, Kroto, H, Smalley, R. Negative carbon cluster ion beams: new evidence for the special nature of C_{60}. Chem Phys Lett 1986, 126:215–217. doi: 10.1016/S0009-2614(86)80042-2.

Slanina, Z, Uhlík, F, Zhao, X, Adamowicz, L, Nagase, S. Relative stabilities of C_{74} isomers. Fuller Nanotub Carbon Nanostruct 2007, 15:195–205. doi: 10.1080/15363830701236423.

Beckhaus, HD, Verevkin, S, Rüchardt, C, Diederich, F, Thilgen, C, Meer, HUT, Mohn, H, Müller, W. C_{70} ist stabiler als C_{60}: experimentelle Bestimmung der Bildungswärme von C_{70}. Angew Chem 1994, 33:996–998. doi: 10.1002/ange.19941060916.

Wang, Z, Ke, X, Zhu, Z, Zhu, F, Ruan, M, Chen, H, Huang, R, Zheng, L. A new carbon solid made of the world`s smallest caged fullerene C_{20}. Phys Lett A 2001, 280:351–356. doi: 10.1016/S0375-9601(00)00847-1.

Lin, F, Sorensen, ES, Kallin, C, Berlinsky, AJ. C_{20}, the smallest fullerene. In: Sattler, KD, ed. Handbook of Nanophysics: Clusters and Fullerenes, Handbook of Nanophysics, chap. 29. Boca Raton, FL: CRC Press; 2010.

Babić, D, Brinkmann, G, Dress, A. Topological resonance energy of fullerenes. J Chem Inf Comput Sci 1997, 37:920–923. doi: 10.1021/ci9700283.

Bühl, M, Hirsch, A. Spherical aromaticity of fullerenes. Chem Rev 2001, 101:1153–1184. doi: 10.1021/cr990332q.

Haddon, R, Brus, L, Raghavachari, K. Electronic structure and bonding in icosahedral C_{60}. Chem Phys Lett 1986, 125:459–464. doi: 10.1016/0009-2614(86)87079-8.

Haddon, R, Brus, L, Raghavachari, K. Rehybridization and π‐orbital alignment: the key to the existence of spheroidal carbon clusters. Chem Phys Lett 1986, 131:165–169. doi: 10.1016/0009-2614(86)80538-3.

Bakowies, D, Thiel, W. MNDO study of large carbon clusters. J Am Chem Soc 1991, 113:3704–3714. doi: 10.1021/ja00010a012.

Fowler, PW, Hansen, P, Stevanović, D. A note on the smallest eigenvalue of fullerenes. MATCH Commun Math Comput Chem 2003, 48:37–48.

Došlić, T. The smallest eigenvalue of fullerene graphs – closing the gap. MATCH Commun Math Comput Chem 2013, 70:73–78.

Randić, M, Trinajstić, N, Živković, T. Molecular graphs having identical spectra. J Chem Soc, Faraday Trans 2 1976, 72:244–256. doi: 10.1039/F29767200244.

Aihara, J. A new definition of Dewar‐type resonance energies. J Am Chem Soc 1976, 98:2750–2758. doi: 10.1021/ja00426a013.

Gutman, I, Milun, M, Trinajstic, N. Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems. J Am Chem Soc 1977, 99:1692–1704. doi: 10.1021/ja00448a002.

Balasubramanian, K. Exhaustive generation and analytical expressions of matching polynomials of fullerenes C_{20}‐C_{50}. J Chem Inf Comput Sci 1994, 34:421–427. doi: 10.1021/ci00018a032.

Salvador, JM, Hernandez, A, Beltran, A, Duran, R, Mactutis, A. Fast partial‐differential synthesis of the matching polynomial of C_{72‐100}. J Chem Inf Comput Sci 1998, 38:1105–1110. doi: 10.1021/ci9800155.

Randić, M. Novel insight into Clar`s aromatic π‐sextets. Chem Phys Lett 2014, 601:1–5. doi: 10.1016/j.cplett.2014.03.073.

Lu, X, Chen, Z. Curved π‐conjugation, aromaticity, and the related chemistry of small fullerenes (%3CC_{60}) and single‐walled carbon nanotubes. Chem Rev 2005, 105:3643–3696. doi: 10.1021/cr030093d.

Chen, Z, Wu, JI, Corminboeuf, C, Bohmann, J, Lu, X, Hirsch, A, Schleyer, PR. Is C_{60} buckminsterfullerene aromatic? Phys Chem Chem Phys 2012, 14:14886–14891. doi: 10.1039/C2CP42146A.

Hirsch, A, Ruoff, Z, Jiao, H. Spherical aromaticity in I_{h} symmetrical fullerenes: the 2(*n*+1)2 rule. Angew Chem Int Ed 2000, 39:3915–3917. doi: 10.1002/1521‐3773(20001103)39:21<3915::AID-ANIE3915>3.0.CO;2-O.

Fedorov, AS, Fedorov, DA, Kuzubov, AA, Avramov, PV, Nishimura, Y, Irle, S, Witek, HA. Relative isomer abundance of fullerenes and carbon nanotubes correlates with kinetic stability. Phys Rev Lett 2011, 107:175506. doi: 10.1103/PhysRevLett.107.175506.

Fowler, PW. Fullerene graphs with more negative than positive eigenvalues: the exceptions that prove the rule of electron deficiency? J Chem Soc Faraday Trans 1997, 93:1–3. doi: 10.1039/A605413G.

Manolopoulos, DE, Woodall, DR, Fowler, PW. Electronic stability of fullerenes: eigenvalue theorems for leapfrog carbon clusters. J Chem Soc Faraday Trans 1992, 88:2427–2435. doi: 10.1039/FT9928802427.

Fowler, PW, Austin, SJ. Closed‐shell carbon frameworks: leapfrog fullerenes and decorated spheriphane hydrocarbons. J Chem Inf Comput Sci 1994, 34:264–269. doi: 10.1021/ci00018a006.

Deza, M, Fowler, PW, Rassat, A, Rogers, KM. Fullerenes as tilings of surfaces. J Chem Inf Comput Sci 2000, 40:550–558. doi: 10.1021/ci990066h.

Fowler, P, Rogers, K, Fajtlowicz, S, Hansen, P, Caporossi, G. Facts and conjectures about fullerene graphs: leapfrog, cylinder and Ramanujan fullerenes. In: Betten, A, Kohnert, A, Laue, R, Wassermann, A, eds. Algebraic Combinatorics and Applications. Berlin Heidelberg: Springer; 2001, 134–146.

Bakowies, D, Gelessus, A, Thiel, W. Quantum‐chemical study of C_{78} fullerene isomers. Chem Phys Lett 1992, 197:324–329. doi: 10.1016/0009-2614(92)85777-8.

Bakowies, D, Kolb, M, Thiel, W, Richard, S, Ahlrichs, R, Kappes, MM. Quantum‐chemical study of C_{84} fullerene isomers. Chem Phys Lett 1992, 200:411–417. doi: 10.1016/0009-2614(92)87013-F.

Chen, Z, Thiel, W. Performance of semiempirical methods in fullerene chemistry: relative energies and nucleus‐independent chemical shifts. Chem Phys Lett 2003, 367:15–25. doi: 10.1016/S0009-2614(02)01660-3.

Noël, Y, De La Pierre, M, Zicovich‐Wilson, CM, Orlando, R, Dovesi, R. Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: insights from an ab initio hybrid DFT study. Phys Chem Chem Phys 2014, 16:13390–13401. doi: 10.1039/C4CP01442A.

Lu, X, Chen, Z, Thiel, W, Schleyer, PR, Huang, R, Zheng, L. Properties of fullerene[50] and D_{5h} decachlorofullerene[50]: a computational study. J Am Chem Soc 2004, 126:14871–14878. doi: 10.1021/ja046725a.

Fowler, PW, Sandall, JPB. Predictions of special signatures of fullerenes. Second‐order Jahn‐Teller effects on the structures of C_{44}, C_{56}, C_{68} and C_{92}. J Chem Soc, Perkin Trans 2 1994:1917–1921. doi: 10.1039/P29940001917.

Paulus, B. Electronic and structural properties of the cage‐like molecules C_{20} to C_{36}. Phys Chem Chem Phys 2003, 5:3364–3367. doi: 10.1039/B304539K.

Grossman, JC, Mitas, L, Raghavachari, K. Structure and stability of molecular carbon: importance of electron correlation. Phys Rev Lett 1995, 75:3870–3873. doi: 10.1103/PhysRevLett.75.3870.

Zhang, BL, Wang, CZ, Ho, KM, Xu, CH, Chan, CT. The geometry of small fullerene cages: C_{20} to C_{70}. J Chem Phys 1992, 97:5007–5011. doi: 10.1063/1.463854.

Chen, Z, Jiao, H, Bühl, M, Hirsch, A, Thiel, W. Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues. Theoret Chem Acc 2001, 106:352–363. doi: 10.1007/s002140100284.

Chen, Z, Heine, T, Jiao, H, Hirsch, A, Thiel, W, Schleyer, PR. Theoretical studies on the smallest fullerene: from monomer to oligomers and solid states. Chem Eur J 2004, 10:963–970. doi: 10.1002/chem.200305538.

Gerhardt, P, Löffler, S, Homann, KH. Polyhedral carbon ions in hydrocarbon flames. Chem Phys Lett 1987, 137:306–310. doi: 10.1016/0009-2614(87)80889-8.

Zhang, QL, O`Brien, SC, Heath, JR, Liu, Y, Curl, RF, Kroto, HW, Smalley, RE. Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot. J Phys Chem 1986, 90:525–528. doi: 10.1021/j100276a001.

Smalley, RE. Self‐assembly of the fullerenes. Acc Chem Res 1992, 25:98–105. doi: 10.1021/ar00015a001.

Wakabayashi, T, Achiba, Y. A model for the C_{60} and C_{70} growth mechanism. Chem Phys Lett 1992, 190:465–468. doi: 10.1016/0009-2614(92)85174-9.

Wakabayashi, T, Kikuchi, K, Shiromaru, H, Suzuki, S, Achiba, Y. Ring‐stacking considerations on higher fullerene growth. Z Phys D 1993, 26:258–260. doi: 10.1007/BF01425683.

von Helden, G, Gotts, NG, Bowers, MT. Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature 1993, 363:60–63. doi: 10.1038/363060a0.

George, S, Hammond, VJK, eds. Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters. ACS Symposium Series. Washington DC: ACS; 1992.

Ōsawa, E. Formation mechanism of C_{60} under nonequilibrium and irreversible conditions – an annotation. Fuller Nanotub Carbon Nanostruct 2012, 20:299–309. doi: 10.1080/1536383X.2012.655104.

Sasaki, K, Wakasaki, T, Matsui, S, Kadota, K. Distributions of C_{2} and C_{3} radical densities in laser‐ablation carbon plumes measured by laser‐induced fluorescence imaging spectroscopy. J Appl Phys 2002, 91:4033–4039. doi: 10.1063/1.1455151.

Curl, RF, Lee, MK, Scuseria, GE. C_{60} buckminsterfullerene high yields unraveled. J Phys Chem A 2008, 112:11951–11955. doi: 10.1021/jp806951v.

Zhang, J, Bowles, FL, Bearden, DW, Ray, WK, Fuhrer, T, Ye, Y, Dixon, C, Harich, K, Helm, RF, Olmstead, MM, et al. A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top‐down fullerene formation mechanism. Nature Chem 2013, 5:880–885. doi: 10.1038/NCHEM.1748.

Shinohara, H. Endohedral metallofullerenes. Rep Prog Phys 2000, 63:843–892. doi: 10.1088/0034-4885/63/6/201.

Chaur, MN, Melin, F, Ortiz, AL, Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 2009, 48:7514–7538. doi: 10.1002/anie.200901746.

Kobayashi, K, Nagase, S, Yoshida, M, Ōsawa, E. Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J Am Chem Soc 1997, 119:12693–12694. doi: 10.1021/ja9733088.

Beavers, CM, Zuo, T, Duchamp, JC, Harich, K, Dorn, HC, Olmstead, MM, Balch, AL. Tb_{3}N@C_{84}: an improbable, egg‐shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 2006, 128:11352–11353. doi: 10.1021/ja063636k.

Rodríguez‐Fortea, A, Alegret, N, Balch, AL, Poblet, JM. The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nature Chem 2010, 2:955–961. doi: 10.1038/nchem.837.

Ugarte, D. Curling and closure of graphitic networks under electron‐beam irradiation. Nature 1992, 359:707–709. doi: 10.1038/359707a0.

Ugarte, D. Canonical structure of large carbon clusters: C_{n}, *n* %3E 100. Europhys Lett 1993, 22:45–50. doi: 10.1209/0295-5075/22/1/009.

Bühl, M, Thiel, W. Ab initio helium NMR chemical shifts of endohedral fullerene compounds He@C_{n} (*n* = 32–180). Chem Phys Lett 1995, 233:585–589. doi: 10.1016/0009-2614(94)01459-9.

Ugarte, D. Onion‐like graphitic particles. Carbon 1995, 33:989–993. doi: 10.1016/0008-6223(95)00027-B.

Bühl, M, Patchkovskii, S, Thiel, W. Interaction energies and NMR chemical shifts of noble gases in C_{60}. Chem Phys Lett 1997, 275:14–18. doi: 10.1016/S0009-2614(97)00733-1.

Heggie, MI, Terrones, M, Eggen, BR, Jungnickel, G, Jones, R, Latham, CD, Briddon, PR, Terrones, H. Quantitative density‐functional study of nested fullerenes. Phys Rev B 1998, 57:13339–13342. doi: 10.1103/PhysRevB.57.13339.

Zhang, M, He, D, Ji, L, Wei, B, Wu, D, Zhang, X, Xu, Y, Wang, W. Macroscopic synthesis of onion‐like graphitic particles. Nanostruc Mat 1998, 10:291–297. doi: 10.1016/S0965-9773(98)00069-5.

Tomita, S, Fujii, M, Hayashi, S, Yamamoto, K. Electron energy‐loss spectroscopy of carbon onions. Chem Phys Lett 1999, 305:225–229. doi: 10.1016/S0009-2614(99)00374-7.

Iglesias‐Groth, S. Fullerenes and buckyonions in the interstellar medium. Astrophys J Lett 2004, 608:L37. doi: 10.1086/422216.

Grimme, S, Mück‐Lichtenfeld, C, Antony, J. Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes. J Phys Chem C 2007, 111:11199–11207. doi: 10.1021/jp0720791.

Yamada, M, Akasaka, T, Nagase, S. Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 2010, 43:92–102. doi: 10.1021/ar900140n.

Korona, T, Dodziuk, H. Small molecules in C_{60} and C_{70}: which complexes could be stabilized? J Chem Theory Comput 2011, 7:1476–1483. doi: 10.1021/ct200111a.

Botkin, N, Turova‐Botkina, V. An algorithm for finding the Chebyshev center of a convex polyhedron. Appl Math Optim 1994, 29:211–222. doi: 10.1007/BF01204183.

Mantina, M, Chamberlin, AC, Valero, R, Cramer, CJ, Truhlar, DG. Consistent van der Waals radii for the whole main group. J Phys Chem A 2009, 113:5806–5812. doi: 10.1021/jp8111556.

Weiske, T, Böhme, DK, Hrušák, J, Krätschmer, W, Schwarz, H. Endohedral cluster compounds: inclusion of helium within C_{60}^{+} and C_{70}^{+} through collision experiments. Angew Chem Int Ed 1991, 30:884–886. doi: 10.1002/anie.199108841.

Weiske, T, Hrusak, J, Böhme, DK, Schwarz, H. Formation of endohedral carbon‐cluster noble‐gas compounds with high‐energy bimolecular reactions: C_{60}He^{n+} (*n* = 1,2). Chem Phys Lett 1991, 186:459–462. doi: 10.1016/0009-2614(91)90209-R.

Weiske, T, Schwarz, H. Sequential insertion of ^{3}He and ^{4}He in C_{60}^{+}. Angew Chem Int Ed 1992, 31:605–606. doi: 10.1002/anie.199206051.

Weiske, T, Wong, T, Krätschmer, W, Terlouw, JK, Schwarz, H. The neutralization of He@C_{60}^{+} in the gas phase: compelling evidence for the existence of an endohedral structure for He@C_{60}. Angew Chem Int Ed 1992, 31:183–185. doi: 10.1002/anie.199201831.

Weiske, T, Hrušák, J, Böhme, DK, Schwarz, H. Endohedral fullerene‐noble gas clusters formed with high‐energy bimolecular reactions of C_{x}^{n+} (*x* = 60, 70; *n* = 1, 2, 3). Helvet Chim Acta 1992, 75:79–89. doi: 10.1002/hlca.19920750106.

Weiske, T, Schwarz, H, Giblin, DE, Gross, ML. High‐energy collisions of Kr@C_{60}^{+}. with helium. Evidence for the formation of HeKr@C_{60}^{+}. Chem Phys Lett 1994, 227:87–90. doi: 10.1016/0009-2614(94)00786-1.

Saunders, M, Jimenez‐Vazquez, HA, Cross, RJ, Mroczkowski, S, Gross, ML, Giblin, DE, Poreda, RJ. Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure. J Am Chem Soc 1994, 116:2193–2194. doi: 10.1021/ja00084a089.

Son, MS, Sung, YK. The atom‐atom potential. exohedral and endohedral complexation energies of complexes of X@C_{60} between fullerene and rare‐gas atoms (X = He, Ne, Ar, Kr, and Xe). Chem Phys Lett 1995, 245:113–118. doi: 10.1016/0009-2614(95)00952-Z.

Straka, M, Lantto, P, Vaara, J. Toward calculations of the ^{129}Xe chemical shift in Xe@C_{60} at experimental conditions: relativity, correlation, and dynamics. J Phys Chem A 2008, 112:2658–2668. doi: 10.1021/jp711674y.

Autschbach, J, Zurek, E. Relativistic density‐functional computations of the chemical shift of ^{129}Xe in Xe@C_{60}. J Phys Chem A 2003, 107:4967–4972. doi: 10.1021/jp0346559.

Kurotobi, K, Murata, Y. A single molecule of water encapsulated in fullerene C_{60}. Science 2011, 333:613–616. doi: 10.1126/science.1206376.

Thilgen, C. A single water molecule trapped inside hydrophobic C_{60}. Angew Chem Int Ed 2012, 51:587–589. doi: 10.1002/anie.201107379.

Zhang, RQ, Ma, WY, Han, KL, Lee, CS. A thermodynamic and kinetic study of the formation of C_{20} compounds encapsulating H, He and Ne atoms. Theoret Chem Acc 2003, 109:278–283. doi: 10.1007/s00214-003-0438-2.

Breslavskaya, N, Levin, A, Buchachenko, A. Endofullerenes: size effects on structure and energy. Russian Chem Bull 2004, 53:18–23. doi: 10.1023/B:RUCB.0000024824.35542.0e.

Pyykkö, P, Wang, C, Straka, M, Vaara, J. A London‐type formula for the dispersion interactions of endohedral A@B systems. Phys Chem Chem Phys 2007, 9:2954–2958. doi: 10.1039/B704695B.

Ruoff, RS, Ruoff, AL. The bulk modulus of C_{60} molecules and crystals: a molecular mechanics approach. Appl Phys Lett 1991, 59:1553–1555. doi: 10.1063/1.106280.

Tonner, R, Frenking, G, Lein, M, Schwerdtfeger, P. Packed to the rafters: filling up C_{60} with rare gas atoms. ChemPhysChem 2011, 12:2081–2084. doi: 10.1002/cphc.201100360.

Tomańek, D, Zhong, W, Krastev, E. Stability of multishell fullerenes. Phys Rev B 1993, 48:15461–15464. doi: 10.1103/PhysRevB.48.15461.

Bates, KR, Scuseria, GE. Why are buckyonions round? Theoret Chem Acc 1998, 99:29–33. doi: 10.1007/s002140050299.

Casella, G, Bagno, A, Saielli, G. Spectroscopic signatures of the carbon buckyonions C_{60}@C_{180} and C_{60}@C_{240}: a dispersion‐corrected DFT study. Phys Chem Chem Phys 2013, 15:18030–18038. doi: 10.1039/C3CP53273A.

Mackay, AL, Terrones, H. Diamond from graphite. Nature 1991, 352:762. doi: 10.1038/352762a0.

Vanderbilt, D, Tersoff, J. Negative‐curvature fullerene analog of C_{60}. Phys Rev Lett 1992, 68:511–513. doi: 10.1103/PhysRevLett.68.511.

Ching, WY, Huang, MZ, Yn, X. Electronic and optical properties of the Vanderbilt‐Tersoff model of negative‐curvature fullerene. Phys Rev B 1992, 46:9910–9912. doi: 10.1103/PhysRevB.46.9910.

Ceulemans, A, Fowler, PW. Symmetry extensions of Euler`s theorem for polyhedral, toroidal and benzenoid molecules. J Chem Soc Faraday Trans 1995, 91:3089–3093. doi: 10.1039/FT9959103089.

Chuang, C, Fan, Y, Jin, B. Systematics of toroidal, helically‐coiled carbon nanotubes, high‐genus fullerenes, and other exotic graphitic materials. Procedia Eng 2011, 14:2373–2385. doi: 10.1016/j.proeng.2011.07.299.

Schein, S, Gayed, JM. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses. Proc Natl Acad Sci U S A 2014, 111:2920–2925. doi: 10.1073/pnas.1310939111.

Terrones, H, Mackay, A. The geometry of hypothetical curved graphite structures. Carbon 1992, 30:1251–1260. doi: 10.1016/0008-6223(92)90066-6.

Ayuela, A, Fowler, PW, Mitchell, D, Schmidt, R, Seifert, G, Zerbetto, F. C_{62}: theoretical evidence for a nonclassical fullerene with a heptagonal ring. J Phys Chem 1996, 100:15634–15636. doi: 10.1021/jp961306o.

Charlier, JC, Ebbesen, TW, Lambin, P. Structural and electronic properties of pentagon‐heptagon pair defects in carbon nanotubes. Phys Rev B 1996, 53:11108–11113. doi: 10.1103/PhysRevB.53.11108.

Kirby, E, Pisanski, T. Aspects of topology, genus and isomerism in closed 3‐valent networks. J Math Chem 1998, 23:151–167. doi: 10.1023/A%1019104804788.

An, J, Gan, LH, Zhao, JQ, Li, R. A global search for the lowest energy isomer of C_{26}. J Chem Phys 2010, 132:154304. doi: 10.1063/1.3364801.

Vizitiu, AE, Diudea, MV. C_{60} structural relatives – an omega‐aided topological study. In: Cataldo, F, Graovac, A, Ori, O, eds. The Mathematics and Topology of Fullerenes, vol. 16. Berlin: Springer; 2011, 39–60.

Terrones, H, Terrones, M. The transformation of polyhedral particles into graphitic onions. J Phys Chem Solids 1997, 58:1789–1796. doi: 10.1016/S0022-3697(97)00067-X.

Avron, JE, Berger, J. Tiling rules for toroidal molecules. Phys Rev A 1995, 51:1146–1149. doi: 10.1103/PhysRevA.51.1146.

Berger, J, Avron, JE. Classification scheme for toroidal molecules. J Chem Soc Faraday Trans 1995, 91:4037–4045. doi: 10.1039/FT9959104037.

Tamura, R, Ikuta, M, Hirahara, T, Tsukada, M. Positive magnetic susceptibility in polygonal nanotube tori. Phys Rev B 2005, 71:045418. doi: 10.1103/PhysRevB.71.045418.

Borštnik, B, Lukman, D. Molecular mechanics of toroidal carbon molecules. Chem Phys Lett 1994, 228:312–316. doi: 10.1016/0009-2614(94)00944-9.

Diudea, MV, Kirby, EC. The energetic stability of tori and single‐wall tubes. Fuller Sci Technol 2001, 9:445–465. doi: 10.1081/FST-100107148.

Kang, MH. Toroidal fullerenes with the Cayley graph structures. Discrete Math 2011, 311:2384–2395. doi: 10.1016/j.disc.2011.06.018.

Yoshida, M, Fujita, M, Fowler, PW, Kirby, EC. Non‐bonding orbitals in graphite, carbon tubules, toroids and fullerenes. J Chem Soc Faraday Trans 1997, 93:1037–1043. doi: 10.1039/A607401D.

Iijima, S, Ichihashi, T, Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992, 356:776–778. doi: 10.1038/356776a0.

Diudea, MV, Nagy, CL, Silaghi‐Dumitrescu, I, Graovac, A, Janežić, D, Vikic‐Topiić, D. Periodic cages. J Chem Inf Model 2005, 45:293–299. doi: 10.1021/ci049738g.

Diudea, MV, Bende, A, Nagy, CL. Carbon multi‐shell cages. Phys Chem Chem Phys 2014, 16:5260–5269. doi: 10.1039/C3CP55309D.

Terrones, H, Terrones, M. Quasiperiodic icosahedral graphite sheets and high‐genus fullerenes with nonpositive Gaussian curvature. Phys Rev B 1997, 55:9969–9974. doi: 10.1103/PhysRevB.55.9969.

Ricardo‐Chávez, JL, Dorantes‐Dávila, J, Terrones, M, Terrones, H. Electronic properties of fullerenes with nonpositive Gaussian curvature: finite zeolites. Phys Rev B 1997, 56:12143–12146. doi: 10.1103/PhysRevB.56.12143.

Bandow, S, Takizawa, M, Hirahara, K, Yudasaka, M, Iijima, S. Raman scattering study of double‐wall carbon nanotubes derived from the chains of fullerenes in single‐wall carbon nanotubes. Chem Phys Lett 2001, 337:48–54. doi: 10.1016/S0009-2614(01)00192-0.

Terrones, H. Beyond carbon nanopeapods. ChemPhysChem 2012, 13:2273–2276. doi: 10.1002/cphc.201200321.

Donadio, D, Colombo, L, Milani, P, Benedek, G. Growth of nanostructured carbon films by cluster assembly. Phys Rev Lett 1999, 83:776–779. doi: 10.1103/PhysRevLett.83.776.

Barborini, E, Piseri, P, Milani, P, Benedek, G, Ducati, C, Robertson, J. Negatively curved spongy carbon. Appl Phys Lett 2002, 81:3359–3361. doi: 10.1063/1.1516635.

Benedek, G, Vahedi‐Tafreshi, H, Barborini, E, Piseri, P, Milani, P, Ducati, C, Robertson, J. The structure of negatively curved spongy carbon. Diamond Relat Mater 2003, 12:768–773. doi: 10.1016/S0925-9635(03)00082-7.

Benedek, G. The topological background of schwarzite physics. In: Cataldo, F, Graovac, A, Ori, O, eds. The Mathematics and Topology of Fullerenes, vol. 16. Berlin: Springer; 2011, 214–247.

Schwarz, HA. Sur une définition erronée de l`aire d`une surface courbe. In: Gesammelte Mathematische Abhandlungen. Berlin: Springer; 1933.

Dierkes, U, Hildebrandt, S. Global Analysis of Minimal Surfaces, vol. 341. Berlin: Springer; 2010.

Terrones, H, Terrones, M. Curved nanostructured materials. New J Phys 2003, 5:126.1–126.37. doi: 10.1088/1367-2630/5/1/126.

Lenosky, T, Gonze, X, Teter, M, Elser, V. Energetics of negatively curved graphitic carbon. Nature 1992, 355:333–335. doi: 10.1038/355333a0.

Weierstrass, K. Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist. Monatsber Akad Wiss Berlin 1866, 612–625.

Terrones, H, Mackay, A. Negatively curved graphite and triply periodic minimal surfaces. J Math Chem 1994, 15:183–195. doi: 10.1007/BF01277558.

Gonzalez Szwacki, N, Sadrzadeh, A, Yakobson, BI. B_{80} fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 2007, 98:166804. doi: 10.1103/PhysRevLett.98.166804.

Enyashin, AN, Ivanovskii, AL. Graphene allotropes. Phys Status Sol (b) 2011, 248:1879–1883. doi: 10.1002/pssb.201046583.

Sundholm, D. C_{72}: gaudiene, a hollow and aromatic all‐carbon molecule. Phys Chem Chem Phys 2013, 15:9025–9028. doi: 10.1039/C3CP51042E.

Bulusu, S, Li, X, Wang, LS, Zeng, XC. Evidence of hollow golden cages. Proc Natl Acad Sci U S A 2006, 103:8326–8330.

Johansson, MP, Sundholm, D, Vaara, J. Au_{32}: a 24‐carat golden fullerene. Angew Chem Int Ed 2004, 43:2678–2681. doi: 10.1002/anie.200453986.

Gao, Y, Zeng, XC. Au_{42}: an alternative icosahedral golden fullerene cage. J Am Chem Soc 2005, 127:3698–3699. doi: 10.1021/ja050435s.

Karttunen, AJ, Linnolahti, M, Pakkanen, TA, Pyykkö, P. Icosahedral Au_{72}: a predicted chiral and spherically aromatic golden fullerene. Chem Commun 2008, 465–467. doi: 10.1039/B715478J.

Assadollahzadeh, B, Schwerdtfeger, P. A systematic search for minimum structures of small gold clusters Au_{n} (*n* = 2‐20) and their electronic properties. J Chem Phys 2009, 131:064306. doi: 10.1063/1.3204488.

Zhai, HJ, Zhao, YF, Li, WL, Chen, Q, Bai, H, Hu, HS, Piazza, ZA, Tian, WJ, Lu, HG, Wu, YB, et al. Observation of an all‐boron fullerene. Nature Chem 2014, 6:727–731. doi: 10.1038/nchem.1999.