Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA. Electric field effect in atomically thin carbon films. Science 2004, 306:666–669.

Geim, AK, Grigorieva, IV. Van der Waals heterostructures. Nature 2013, 499:419–425.

Nair, RR, Blake, P, Grigorenko, AN, Novoselov, KS, Booth, TJ, Stauber, T, Peres, NMR, Geim, AK. Fine structure constant defines visual transparency of graphene. Science 2008, 320:1308.

Mak, KF, Sfeir, MY, Wu, Y, Lui, CH, Misewich, JA, Heinz, TF. Measurement of the optical conductivity of graphene. Phys Rev Lett 2008, 101:196405.

Sun, D, Wu, Z‐K, Divin, C, Li, X, Berger, C, de Heer, WA, First, PN, Norri, TB. Ultrafast relaxation of excited dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys Rev Lett 2008, 101:157402.

Wang, F, Zhang, Y, Tian, C, Girit, C, Zettl, A, Crommie, M, Shen, YR. Gate‐variable optical transitions in graphene. Science 2008, 320:206–209.

Xia, F, Mueller, T, Lin, Y‐m, Valdes‐Garcia, A, Avouris, P. Ultrafast graphene photodetector. Nat Nanotechnol 2009, 4:839–843.

Pan, D, Zhang, J, Li, Z, Wu, M. Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Adv Mater 2010, 22:734–738.

Jin, SH, Kim, DH, Jun, GH, Hong, SH, Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 2013, 7:1239–1245.

Gokus, T, Nair, RR, Bonetti, A, Bohmler, M, Lombardo, A, Novoselova, KS, Geim, AK, Ferrari, AC, Hartschuh, A. Making graphene luminescent by oxygen plasma treatment. ACS Nano 2009, 3:3963–3968.

Eda, G, Lin, Y‐Y, Mattevi, C, Yamaguchi, H, Chen, H‐A, Chen, I‐S, Chen, C‐W, Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv Mater 2010, 22:505.

Chien, CT, Li, SS, Lai, WJ, Yeh, YC, Chen, HA, Chen, IS, Chen, LC, Chen, KH, Nemoto, T, Isoda, S, et al. Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 2012, 51:6662–6666.

Li, Y, Chernikov, A, Zhang, X, Rigosi, A, Hill, HM, van der Zande, AM, Chenet, DA, Shih, E‐M, Hone, J, Heinz, TF. Measurement of the optical dielectric function of monolayer transition‐metal dichalcogenides: MoS_{2}, MoSe_{2}, WS_{2}, and WSe_{2}. Phys Rev B 2014, 90:205422.

Island, JO, Buscema, M, Barawi, M, Clamagirand, JM, Ares, JR, Sánchez, C, Ferrer, IJ, Steele, GA, van der Zant, HS, Castellanos‐Gomez, A. Ultrahigh photoresponse of few‐layer TiS_{3} nanoribbon transistors. Adv Opt Mater 2014, 2:641–645.

Barawi, M, Flores, E, Ferrer, IJ, Ares, JR, Sánchez, C. Flat band potential of TiS_{3} in a photoelectrochemical cell is determined and the photogenerated hydrogen is quantified by mass spectrometry. J Mater Chem A 2015, 3:7959–7965.

Mak, KF, Lee, C, Hone, J, Shan, J, Heinz, TF. Atomically thin MoS_{2}: a new direct‐gap semiconductor. Phys Rev Lett 2010, 105:136805.

Splendiani, A, Sun, L, Zhang, Y, Li, T, Kim, J, Chim, CY, Galli, G, Wang, F. Emerging photoluminescence in monolayer MoS_{2}. Nano Lett 2010, 10:1271–1275.

Tonndorf, P, Schmidt, R, BBöttger, P, Zhang, X, BBörner, J, Liebig, A, Albrecht, A, Kloc, C, Gordan, O, Zahn, DRT, et al. Photoluminescence emission and Raman response of monolayer MoS_{2}, MoSe_{2}, and WSe_{2}. Opt Express 2013, 21:4908–4916.

Tongay, S, Zhou, J, Ataca, C, Lo, K, Matthews, TS, Li, J, Grossman, JC, Wu, J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe_{2} versus MoS_{2}. Nano Lett 2012, 12:5576–5580.

Gutiérrez, HR, Perea‐López, N, Elías, AL, Berkdemir, A, Wang, B, Lv, R, López‐Urías, F, Crespi, VH, Terrones, H, Terrones, M. Extraordinary room‐temperature photoluminescence in triangular WS_{2} monolayers. Nano Lett 2012, 13:3447–3454.

Tongay, S, Suh, J, Ataca, C, Fan, W, Luce, A, Kang, JS, Liu, J, Ko, C, Raghunathanan, R, Zhou, J, et al. Defects activated photoluminescence in two‐dimensional semiconductors: interplay between bound, charged, and free excitons. Sci Rep 2013, 3:2657.

Ugeda, MM, Bradley, AJ, Shi, S‐F, da Jornada, FH, Zhang, Y, Qiu, DY, Ruan, W, Mo, S‐K, Hussain, Z, Shen, Z‐X, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014, 13:1091–1095.

Cao, T, Wang, G, Han, W, Ye, H, Zhu, C, Shi, J, Niu, Q, Tan, P, Wang, E, Liu, B, et al. Valley‐selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 2012, 3:887.

Zeng, H, Dai, J, Yao, W, Xiao, D, Cui, X. Valley polarization in MoS_{2} monolayers by optical pumping. Nat Nanotechnol 2012, 7:490–493.

Jones, AM, Yu, H, Ghimire, NJ, Wu, S, Aivazian, G, Ross, JS, Zhao, B, Yan, J, Mandrus, DG, Xiao, D, et al. Optical generation of excitonic valley coherence in monolayer WSe_{2}. Nat Nanotechnol 2013, 8:634–638.

Srivastava, A, Sidler, M, Allain, AV, Lembke, DS, Kis, A, Imamoglu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe_{2}. Nat Phys 2015, 11:141–147.

Tongay, S, Fan, W, Kang, J, Park, J, Koldemir, U, Suh, J, Narang, D, Liu, K, Ji, J, Li, J, et al. Tuning interlayer coupling in large‐area heterostructures with CVD‐grown MoS_{2} and WS_{2} monolayers. Nano Lett 2014, 14:3185–3190.

Gong, Y, Lin, J, Wang, X, Shi, G, Lei, S, Lin, Z, Zou, X, Ye, G, Vajtai, R, Yakobson, BI, et al. Vertical and in‐plane heterostructures from WS_{2}/MoS_{2} monolayers. Nat Mater 2014, 13:1135–1142.

Rivera, P, Schaibley, JR, Jones, AM, Ross, JS, Wu, S, Aivazian, G, Klement, P, Seyler, K, Clark, G, Ghimire, NJ, et al. Observation of long‐lived interlayer excitons in monolayer MoSe_{2}WSe_{2} heterostructures. Nat Commun 2015, 6:6242.

Huo, N, Kang, J, Wei, Z, Li, S‐S, Li, J, Wei, S‐H. Novel and enhanced optoelectronic performances of multilayer MoS_{2}WS_{2} heterostructure transistors. Adv Funct Mater 2014, 24:7025.

Cheng, R, Li, D, Zhou, H, Wang, C, Yin, A, Jiang, S, Liu, Y, Chen, Y, Huang, Y, Duan, X. Electroluminescence and photocurrent generation from atomically sharp WSe_{2}/MoS_{2} heterojunction pn diodes. Nano Lett 2014, 14:5590–5597.

Lee, C‐H, Lee, G‐H, van Der Zande, AM, Chen, W, Li, Y, Han, M, Cui, X, Arefe, G, Nuckolls, C, Heinz, TF, et al. Atomically thin p‐n junctions with van der Waals heterointerfaces. Nat Nanotechnol 2014, 9:676–681.

Furchi, MM, Pospischil, A, Libisch, F, Burgdr$f\xa8$er, J, Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett 2014, 14:4785–4791.

Withers, F, Del Pozo‐Zamudio, O, Mishchenko, A, Rooney, A, Gholinia, A, Watanabe, K, Taniguchi, T, Haigh, S, Geim, A, Tartakovskii, A, et al. Light‐emitting diodes by band‐structure engineering in van der Waals heterostructures. Nat Mater 2015, 14:301–306.

Chernikov, A, Berkelbach, TC, Hill, HM, Rigosi, A, Li, Y, Aslan, OB, Reichman, DR, Hybertsen, MS, Heinz, TF. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS_{2}. Phys Rev Lett 2014, 113:076802.

Ye, Z, Cao, T, OBrien, K, Zhu, H, Yin, X, Wang, Y, Louie, SG, Zhang, X. Probing excitonic dark states in single‐layer tungsten disulphide. Nature 2014, 513:214.

He, K, Kumar, N, Zhao, L, Wang, Z, Mak, KF, Zhao, H, Shan, J. Tightly bound excitons in monolayer WSe_{2}. Phys Rev Lett 2014, 113:026803.

Mak, KF, He, K, Lee, C, Lee, GH, Hone, J, Heinz, TF, Shan, J. Tightly bound trions in monolayer MoS_{2}. Nat Mater 2013, 12:207–211.

Ross, JS, Wu, S, Yu, H, Ghimire, NJ, Jones, AM, Aivazian, G, Yan, J, Mandrus, DG, Xiao, D, Yao, W, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 2013, 4:1474.

Mitioglu, AA, Plochocka, P, Jadczak, JN, Escoffier, W, Rikken, GLJA, Kulyuk, L, Maude, DK. Optical manipulation of the exciton charge state in single‐layer tungsten disulfide. Phys Rev B 2013, 88:245403.

Mai, C, Barrette, A, Yu, YF, Semenov, YG, Kim, KW, Cao, LY, Gundogdu, K. Many‐body effects in valleytronics: direct measurement of valley lifetimes in single‐layer MoS_{2}. Nano Lett 2014, 14:202–206.

Shang, JZ, Shen, XN, Cong, CX, Peimyoo, N, Cao, BC, Eginligil, M, Yu, T. Observation of excitonic fine structure in a 2D transition‐metal dichalcogenide semiconductor. ACS Nano 2015, 9:647–655.

You, Y, Zhang, X‐X, Berkelbach, TC, Hybertsen, MS, Reichman, DR, Heinz, TF. Observation of biexcitons in monolayer WSe_{2}. Nat Phys 2015, 11:477.

Lin, Y, Ling, X, Yu, L, Huang, S, Hsu, AL, Lee, YH, Kong, J, Dresselhaus, MS, Palacios, T. Dielectric screening of excitons and trions in single‐layer MoS_{2}. Nano Lett 2014, 14:5569–5576.

Latini, S, Olsen, T, Thygesen, KS. Excitons in van der Waals heterostructures: the important role of dielectric screening. Phys Rev B 2015, 92:245123.

Ceperley, D, Alder, B. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980, 45:566.

Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett 1996, 77:3865.

Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple [*Phys Rev Lett* 1996, 77: 3865]. Phys Rev Lett 1997, 78:1396.

Onida, G, Reining, L, Rubio, A. Electronic excitations: density‐functional versus many‐body Green`s‐function approaches. Rev Mod Phys 2002, 74:601–659.

Heyd, J, Scuseria, G, Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003, 118:8207–8215.

Shishkin, M, Kresse, G. Implementation and performance of the frequency‐dependent GW method within the PAW framework. Phys Rev B 2006, 74:035101.

Shishkin, M, Kresse, G. Self‐consistent GW calculations for semiconductors and insulators. Phys Rev B 2007, 75:235102.

Fuchs, F, Furthmüller, J, Bechstedt, F, Shishkin, M, Kresse, G. Quasiparticle band structure based on a generalized Kohn‐Sham scheme. Phys Rev B 2007, 76:115109.

Shishkin, M, Marsman, M, Kresse, G. Accurate quasiparticle spectra from self‐consistent GW calculations with vertex corrections. Phys Rev Lett 2007, 99:246403.

Gonze, X, Amadon, B, Anglade, PM, Beuken, JM, Bottin, F, Boulanger, P, Bruneval, F, Caliste, D, Caracas, R, Côté, M, et al. ABINIT: first‐principles approach to material and nanosystem properties. Comput Phys Commun 2009, 180:2582.

Marini, A, Hogan, C, Grüning, M, Varsano, D. yambo: an ab initio tool for excited state calculations. Comput Phys Commun 2009, 180:1392.

Giannozzi, P, Baroni, S, Bonini, N, Calandra, M, Car, R, Cavazzoni, C, Ceresoli, D, Chiarotti, GL, Cococcioni, M, Dabo, I, et al. QUANTUM ESPRESSO: a modular and open‐source software project for quantum simulations of materials. J Phys Condens Matter 2009, 21:395502.

Kresse, G, Hafner, J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993, 47:558–561.

Kresse, G, Hafner, J. Ab initio molecular‐dynamics simulation of the liquid‐metal‐amorphous‐semiconductor transition in germanium. Phys Rev B 1994, 49:14251.

Kresse, G, Furthmüller, J. Efficiency of ab‐initio total energy calculations for metals and semiconductors using a plane‐wave basis set. Comput Mat Sci 1996, 6:15–50.

Kresse, G, Furthmüller, J. Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set. Phys Rev B 1996, 54:11169.

Albrecht, S, Reining, L, Del Sole, R, Onida, G. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys Rev Lett 1998, 80:4510.

Rohlfing, M, Louie, SG. Electron–hole excitations in semiconductors and insulators. Phys Rev Lett 1998, 81:2312.

Yang, L, Deslippe, J, Park, CH, Cohen, ML, Louie, SG. Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 2009, 103:186802.

Trevisanutto, PE, Holzmann, M, Côté, M, Olevano, V. Ab initio high‐energy excitonic effects in graphite and graphene. Phys Rev B 2010, 81:121405(R).

Chen, Z, Wang, X‐Q. Stacking‐dependent optical spectra and many‐electron effects in bilayer graphene. Phys Rev B 2011, 83:081405.

Havener, RW, Liang, Y, Brown, L, Yang, L, Park, J. Van hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene. Nano Lett 2014, 14:3353–3357.

Yan, J‐A, Ruan, WY, Chou, MY. Enhanced optical conductivity induced by surface states in ABC‐stacked few‐layer graphene. Phys Rev B 2011, 83:245418.

Yang, L. Excitons in intrinsic and bilayer graphene. Phys Rev B 2011, 83:085405.

Mak, KF, Shan, J, Heinz, TF. Seeing many‐body effects in single‐ and few‐layer graphene: observation of two‐dimensional saddle‐point excitons. Phys Rev Lett 2011, 106:046401.

Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys Rev 1961, 124:1866.

Phillips, JC. Ultraviolet absorption of insulators. III: fcc alkali halides. Phys Rev A 1964, 136:A1705.

Chae, D‐H, Utikal, T, Weisenburger, S, Giessen, H, Klitzing, KV, Lippitz, M, Smet, J. Excitonic fano resonance in free‐standing graphene. Nano Lett 2011, 11:1379.

Wachsmuth, P, Hambach, R, Kinyanjui, MK, Guzzo, M, Benner, G, Kaiser, U. High‐energy collective electronic excitations in free‐standing single‐layer graphene. Phys Rev B 2013, 88:075433.

Yang, L. First‐principles study of the optical absorption spectra of electrically gated bilayer graphene. Phys Rev B 2010, 81:155445.

Mohan, B, Kumar, A, Ahluwalia, PK. A first principle study of interband transitions and electron energy loss in mono and bilayer graphene: effect of external electric field. Physica E 2012, 44:1670.

Rayson, MJ, Briddon, PR. Rapid iterative method for electronic‐structure eigenproblems using localised basis functions. Comput Phys Commun 2008, 178:128–134.

Pereira, VM, Ribeiro, RM, Peres, NMR, Neto, AHC. Optical properties of strained graphene. Europhys Lett 2010, 92:67001.

Yang, L. Excitonic effects on optical absorption spectra of doped graphene. Nano Lett 2011, 11:3844.

Gao, Y, Yuan, Z. Anisotropic low‐energy plasmon excitations in doped graphene: an ab initio study. Solid State Commun 2011, 151:1009.

Despoja, V, Novko, D, Dekanić, K, Sunjić, M, Marušić, L. Two‐dimensional and π plasmon spectra in pristine and doped graphene. Phys Rev B 2013, 87:075447.

Kadi, F, Malic, E. Optical properties of Bernal‐stacked bilayer graphene: a theoretical study. Phys Rev B 2014, 89:045419.

Singh, N, Kaloni, TP, Schwingenschlögl, U. A first‐principles investigation of the optical spectra of oxidized graphene. Appl Phys Lett 2013, 102:023101.

Sedelnikova, OV, Bulusheva, LG, Okotrub, AV. Ab initio study of dielectric response of rippled graphene. J Chem Phys 2011, 134:244707.

Yang, L, Cohen, ML, Louie, SG. Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett 2007, 7:3112–3115.

Prezzi, D, Varsano, D, Ruini, A, Marini, A, Molinari, E. Optical properties of graphene nanoribbons: the role of many‐body effects. Phys Rev B 2008, 77:041404(R).

Wang, S, Wang, J. Quasiparticle energies and optical excitations in chevron‐type graphene nanoribbon. J Phys Chem C 2012, 116:10193.

Yamamoto, T, Noguchi, T, Watanabe, K. Edge‐state signature in optical absorption of nanographenes: tight‐binding method and time‐dependent density functional theory calculations. Phys Rev B 2006, 74:121409(R).

Zhou, A, Sheng, W. Van Hove singularities in graphene nanoflakes. J Appl Phys 2012, 112:094313.

Luo, G, Qian, X, Liu, H, Qin, R, Zhou, J, Li, L, Gao, Z, Wang, E, Mei, WN, Lu, J, et al. Quasiparticle energies and excitonic effects of the two‐dimensional carbon allotrope graphdiyne: theory and experiment. Phys Rev B 2011, 84:075439.

Huang, S, Liang, Y, Yang, L. Exciton spectra in two‐dimensional graphene derivatives. Phys Rev B 2013, 88:075441.

Bechstedt, F, Matthes, L, Gori, P, Pulci, O. Infrared absorbance of silicene and germanene. Appl Phys Lett 2012, 100:261906.

Matthes, L, Gori, P, Pulci, O, Bechstedt, F. Universal infrared absorbance of two‐dimensional honeycomb group‐IV crystals. Phys Rev B 2013, 87:035438.

Cakir, D, Sahin, H, Peeters, FM. Tuning of the electronic and optical properties of single‐layer black phosphorus by strain. Phys Rev B 2014, 90:205421.

Cakir, D, Sevik, C, Peeters, FM. Significant effect of stacking on the electronic and optical properties of few‐layer black phosphorus. Phys Rev B 2015, 92:165406.

Seixas, L, Rodin, AS, Carvalho, A, Castro Neto, AH. Exciton binding energies and luminescence of phosphorene under pressure. Phys Rev B 2015, 91:115437.

Tran, V, Yang, L. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys Rev B 2014, 89:245407.

Pulci, O, Gori, P, Marsili, M, Garbuio, V, Seitsonen, AP, Bechstedt, F, Cricenti, A, Del Sole, R. Electronic and optical properties of group IV two‐dimensional materials. Phys Status Solidi A 2010, 207:291.

Cudazzo, P, Attaccalite, C, Tokatly, V, Rubio, A. Strong charge‐transfer excitonic effects and the Bose‐Einstein exciton condensate in graphane. Phys Rev Lett 2010, 104:226804.

Wei, W, Jacob, T. Strong charge‐transfer excitonic effects in C_{4}H‐type hydrogenated graphene. Phys Rev B 2012, 86:165444.

Cheng, JL, Salazar, C, Sipe, JE. Optical properties of functionalized graphene. Phys Rev B 2013, 88:045438.

Samarakoon, DK, Chen, Z, Nicolas, C, Wang, XQ. Structural and electronic properties of fluorographene. Small 2011, 7:965.

Karlický, F, Otyepka, M. Band gaps and optical spectra of chlorographene, fluorographene and graphane from G0W0, GW0 and GW calculations on top of PBE and HSE06 orbitals. J Chem Theory Comput 2013, 9:4155.

Karlický, F, Otyepka, M. Band gaps and optical spectra from single‐ and double‐layer fluorographene to graphite fluoride: many‐body effects and excitonic states. Ann Phys 2014, 526:408.

Wei, W, Jacob, T. Electronic and optical properties of fluorinated graphene: a many‐body perturbation theory study. Phys Rev B 2013, 87:115431.

Gunasinghe, RN, Samarakoon, DK, Arampath, AB, Shashikala, HBM, Vilus, J, Hall, JH, Wang, XQ. Resonant orbitals in fluorinated epitaxial graphene. Phys Chem Chem Phys 2014, 16:18902–18906.

Gourmelon, E, Lignier, O, Hadouda, H, Couturier, G, Bernede, JC, Tedd, J, Pouzed, J, Salardenne, J. MS_{2} (M = W, Mo) photosensitive thin films for solar cells. Sol Energy Mater Sol Cells 1997, 46:115.

Mak, K, Lee, C, Hone, J, Shan, J, Heinz, TF. Atomically thin MoS_{2}: a new direct‐gap semiconductor. Phys Rev Lett 2010, 105:136805.

Shih, BC, Xue, Y, Zhang, P, Cohen, ML, Louie, SG. Quasiparticle band gap of ZnO: high accuracy from the conventional G0W0 approach. Phys Rev Lett 2010, 105:146401.

Cheiwchanchamnangij, T, Lambrecht, WRL. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS_{2}. Phys Rev B 2012, 85:205302.

Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 2012, 866:115409.

Shi, H, Pan, H, Zhang, YW, Yakobson, BI. Quasiparticle band structures and optical properties of strained monolayer MoS_{2} and WS_{2}. Phys Rev B 2013, 87:155304.

Qiu, DY, Jornada, FH, Louie, SG. Optical spectrum of MoS_{2}: many‐body effects and diversity of exciton states. Phys Rev Lett 2013, 111:216805.

Sanchez, AM, Sangalli, D, Hummer, K, Marini, A, Wirtz, L. Effect of spin‐orbit interaction on the optical spectra of single‐layer, double‐layer, and bulk MoS2. Phys Rev B 2013, 88:045412.

Feng, J, Qian, X, Huang, CW, Li, J. Strain‐engineered artificial atom as a broad‐spectrum solar energy funnel. Nat Photonics 2012, 6:866.

Joswig, JO, Lorenz, T, Wendumu, TB, Gemming, S, Seifert, G. Optics, mechanics, and energetics of two‐dimensional MoS_{2} nanostructures from a theoretical perspective. Acc Chem Res 2015, 48:48–55.

Jing, Y, Tan, X, Zhou, Z, Shen, P. Tuning electronic and optical properties of MoS_{2} monolayer via molecular charge transfer. J Mater Chem A 2014, 2:16892.

Wie, JW, Ma, ZW, Zeng, H, Wang, ZY, Wei, Q, Peng, P. Electronic and optical properties of vacancy‐doped WS_{2} monolayers. AIP Adv 2012, 2:042141.

Yuan, S, Roldán, R, Katsnelson, MI, Guinea, F. Effect of point defects on the optical and transport properties of MoS_{2} and WS_{2}. Phys Rev B 2014, 90:041402(R).

Feng, LP, Su, J, Liu, ZT. Effect of vacancies on structural, electronic and optical properties of monolayer MoS_{2}: a first‐principles study. J Alloys Compd 2014, 613:122.

He, J, Hummer, K, Franchini, C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS_{2}, MoSe_{2}, WS_{2}, and WSe_{2}. Phys Rev B 2014, 89:075409.

Yan, J, Jacobsen, KW, Thygesen, KS. Optical properties of bulk semiconductors and graphene/boron nitride: the Bethe‐Salpeter equation with derivative discontinuity‐corrected density functional energies. Phys Rev B 2012, 86:045208.

Attaccalite, C, Bockstedte, M, Marini, A, Rubio, A, Wirtz, L. Coupling of excitons and defect states in boron‐nitride nanostructures. Phys Rev B 2011, 83:144115.

Wang, J, Xu, Y, Chen, H, Zhang, B. Ultraviolet dielectric hyperlens with layered graphene and boron nitride. J Mater Chem 2012, 22:15863–15868.

Bernardi, M, Palummo, M, Grossman, JC. Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride. Phys Rev Lett 2012, 108:226805.

Komsa, HP, Krasheninnikov, AV. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys Rev B 2013, 88:085318.

Kang, J, Tongay, S, Zhou, J, Li, J, Wu, J. Band offsets and heterostructures of two‐dimensional semiconductors. J Appl Phys Lett 2013, 102:012111.

Debbichi, L, Eriksson, O, Lebegue, S. Electronic structure of two‐dimensional transition metal dichalcogenide bilayers from ab initio theory. Phys Rev B 2014, 89:205311.

Palummo, M, Bernardi, M, Grossman, JC. Exciton radiative lifetimes in two‐dimensional transition metal dichalcogenides. Nano Lett 2015, 15:2794–2800.

Fang, H, Battaglia, C, Carraro, C, Nemsak, S, Ozdol, B, Kang, JS, Bechtel, HA, Desai, SB, Kronast, F, Unal, AA, et al. Strong interlayer coupling in van der Waals heterostructures built from single‐layer chalcogenides. Proc Natl Acad Sci USA 2014, 111:6198–6202.