Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA. Electric field effect in atomically thin carbon films. Science 2004, 306:666–669.
Geim, AK, Novoselov, KS. The rise of graphene. Nat Mater 2007, 6:183–191.
Ando, T. Exotic electronic and transport properties of graphene. Phys E 2007, 40:213–227.
Geim, AK. Graphene: status and prospects. Science 2009, 324:1530–1534.
Li, X, Cai, W, An, J, Kim, S, Nah, J, Yang, D, Piner, R, Velamakanni, A, Jung, I, Tutuc, E, et al. Large‐area synthesis of high‐quality and uniform graphene films on copper foils. Science 2009, 324:1312–1314.
Loginova, E, Bartelt, NC, Feibelman, PJ, McCarty, KF. Factors influencing graphene growth on metal surfaces. New J Phys 2009, 11:063046.
Gao, L, Guest, JR, Guisinger, NP. Epitaxial graphene on Cu(111). Nano Lett 2010, 10:3512–3516.
Zhang, Y, Zhang, L, Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 2013, 46:2329–2339.
Feng, B, Ding, Z, Meng, S, Yao, Y, He, X, Cheng, P, Chen, L, Wu, K. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 2012, 12:3507–3511.
Fleurence, A, Friedlein, R, Ozaki, T, Kawai, H, Wang, Y, Yamada‐Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 2012, 108:245501.
Vogt, P, Padova, DP, Quaresima, C, Avila, J, Frantzeskakis, E, Asensio, MC, Resta, A, Ealet, B, Lay, GL. Silicene: compelling experimental evidence for graphenelike two‐dimensional silicon. Phys Rev Lett 2012, 108:155501.
Li, L, Yu, Y, Ye, GJ, Ge, Q, Ou, X, Wu, H, Feng, D, Chen, XH, Zhang, Y. Black phosphorus field‐effect transistors. Nat Nanotechnol 2014, 9:372–377.
Liu, H, Neal, AT, Zhu, Z, Luo, Z, Xu, X, Tománek, D, Ye, PD. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8:4033–4041.
Mannix, AJ, Zhou, XF, Kiraly, B, Wood, JD, Alducin, D, Myers, BD, Liu, X, Fisher, BL, Santiago, U, Guest, JR, et al. Synthesis of borophenes: anisotropic, two‐dimensional boron polymorphs. Science 2015, 350:1513–1516.
Feng, B, Zhang, J, Zhong, Q, Li, W, Li, S, Li, H, Cheng, P, Meng, S, Chen, L, Wu, K. Experimental realization of two‐dimensional boron sheets. Nat Chem 2016, 8:563–568.
Lin, Y, Connell, JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 2012, 4:6908–6939.
Song, L, Ci, L, Lu, H, Sorokin, PB, Jin, C, Ni, J, Kvashnin, AG, Kvashnin, DG, Lou, J, Yakobson, BI, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 2010, 10:3209–3215.
Wang, QH, Kalantar‐Zadeh, K, Kis, A, Coleman, JN, Strano, MS. Electronics and optoelectronics of two‐dimensional transition metal dichalcogenides. Nat Nanotechnol 2012, 7:699–712.
Duan, X, Wang, C, Pan, A, Yu, R, Duan, X. Two‐dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 2015, 44:8859–8876.
Chen, YL, Analytis, JG, Chu, JH, Liu, ZK, Mo, SK, Qi, XL, Zhang, HJ, Lu, DH, Dai, X, Fang, Z, et al. Experimental realization of a three‐dimensional topological insulator, Bi2Te3. Science 2009, 325:178–181.
Zhang, H, Liu, CX, Qi, XL, Dai, X, Fang, Z, Zhang, SC. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 2009, 5:438–442.
Geim, AK, Grigorieva, IV. Van der Waals heterostructures. Nature 2013, 499:419–425.
Van der Waals, JD. The thermodynamic theory capillarity under the hypothesis of a continuous variation of density. Verhandel Konink Akad Weten Amsterdam 1893, 1:8; translation by Rowlinson JS. J Stat Phys 1979, 20:197–200.
Lopinski, GP, Wayner, DDM, Wolkow, RA. Self‐directed growth of molecular nanostructures on silicon. Nature 2000, 406:48–51.
Li, G, Cooper, VR, Cho, JH, Du, S, Gao, HJ, Zhang, Z. Self‐assembly of molecular wires on H‐terminated Si(100) surfaces driven by London dispersion forces. Phys Rev B 2011, 84:241406.
Gourdon, A. On‐surface covalent coupling in ultrahigh vacuum. Angew Chem Int Ed 2008, 47:6950–6953.
Otero, G, Biddau, G, Sánchez‐Sánchez, C, Caillard, R, López, F, Rogero, C, Palomares, FJ, Cabello, N, Basanta, MA, Ortega, J, et al. Fullerenes from aromatic precursors by surface‐catalysed cyclodehydrogenation. Nature 2008, 454:865–868.
Bartels, L. Tailoring molecular layers at metal surfaces. Nat Chem 2010, 2:87–95.
Butler, SZ, Hollen, SM, Cao, L, Cui, Y, Gupta, JA, Gutiérrez, HR, Heinz, TF, Hong, SS, Huang, J, Ismach, AF, et al. Progress, challenges, and opportunities in two‐dimensional materials beyond graphene. ACS Nano 2013, 7:2898–2926.
Utama, MIB, Zhang, Q, Zhang, J, Yuan, Y, Belarre, J, Arbiol, J, Xiong, Q. Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. Nanoscale 2013, 5:3570–3588.
Dion, M, Rydberg, H, Schröder, E, Langreth, DC, Lundqvist, BI. Van der Waals density functional for general geometries. Phys Rev Lett 2004, 92:246401.
Román‐Pérez, G, Soler, JM. Efficient implementation of a van der Waals density functional: application to double‐wall carbon nanotubes. Phys Rev Lett 2009, 103:096102.
Tkatchenko, A, Scheffler, M. Accurate molecular van der Waals interactions from ground‐state electron density and free‐atom reference data. Phys Rev Lett 2009, 102:073005.
Ruiz, VG, Liu, W, Zojer, E, Scheffler, M, Tkatchenko, A. Density‐functional theory with screened van der Waals interactions for the modeling of hybrid inorganic‐organic systems. Phys Rev Lett 2012, 108:146103.
Loginova, E, Bartelt, NC, Feibelman, PJ, McCarty, KF. Evidence for graphene growth by C cluster attachment. New J Phys 2008, 10:093026.
Marchini, S, Günther, S, Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys Rev B2007, 76:075429.
Coraux, J, N`Diaye, AT, Engler, M, Busse, C, Wall, D, Buckanie, N, Heringdorf, FJMZ, Gastel, RV, Poelsema, B, Michely, T. Growth of graphene on Ir(111). New J Phys 2009, 11:039801.
N`Diaye, AT, Bleikamp, S, Feibelman, PJ, Michely, T. Two‐dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys Rev Lett 2006, 97:215501.
Li, X, Cai, W, Colombo, L, Ruoff, RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 2009, 9:4268–4272.
Helveg, S, López‐Cartes, C, Sehested, J, Hansen, PL, Clausen, BS, Rostrup‐Nielsen, JR, Abild‐Pedersen, F, Nørskov, JK. Atomic‐scale imaging of carbon nanofibre growth. Nature 2004, 427:426–429.
Abild‐Pedersen, F, Nørskov, JK, Rostrup‐Nielsen, JR, Sehested, J, Helveg, S. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations. Phys Rev B 2006, 73:115419.
Chen, H, Zhu, W, Zhang, Z. Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys Rev Lett 2010, 104:186101.
Nie, S, Wofford, JM, Bartelt, NC, Dubon, OD, McCarty, KF. Origin of the mosaicity in graphene grown on Cu(111). Phys Rev B 2011, 84:155425.
Riikonen, S, Krasheninnikov, AV, Halonen, L, Nieminen, RM. The role of stable and mobile carbon adspecies in copper‐promoted graphene growth. J Phys Chem C 2012, 116:5802–5809.
Wu, P, Zhang, Y, Cui, P, Li, Z, Yang, J, Zhang, Z. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys Rev Lett 2015, 114:216102.
Wofford, JM, Nie, S, McCarty, KF, Bartelt, NC, Dubon, OD. Graphene islands on Cu foils: the interplay between shape, orientation, and defects. Nano Lett 2010, 10:4890–4896.
Amar, JG, Family, F. Critical cluster size: island morphology and size distribution in submonolayer epitaxial growth. Phys Rev Lett 1995, 74:2066–2069.
Ajayan, PM, Yakobson, BI. Graphene: pushing the boundaries. Nat Mater 2011, 10:415–417.
Yu, Q, Jauregui, LA, Wu, W, Colby, R, Tian, J, Su, Z, Cao, H, Liu, Z, Pandey, D, Wei, D, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 2011, 10:443–449.
Huang, PY, Ruiz‐Vargas, CS, van der Zande, AM, Whitney, WS, Levendorf, MP, Kevek, JW, Garg, S, Alden, JS, Hustedt, CJ, Zhu, Y, et al. Grains and grain boundaries in single‐layer graphene atomic patchwork quilts. Nature 2011, 469:389–392.
Li, X, Magnuson, CW, Venugopal, A, Tromp, RM, Hannon, JB, Vogel, EM, Colombo, L, Ruoff, RS. Large‐area graphene single crystals grown by low‐pressure chemical vapor deposition of methane on copper. J Am Chem Soc 2011, 133:2816–2819.
Bae, S, Kim, H, Lee, Y, Xu, X, Park, JS, Zheng, Y, Balakrishnan, J, Lei, T, Kim, HR, Song, YI. Roll‐to‐roll production of 30‐inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5:574–578.
Yazyev, OV, Louie, SG. Electronic transport in polycrystalline graphene. Nat Mater 2010, 9:806–809.
Yazyev, OV, Louie, SG. Topological defects in graphene: dislocations and grain boundaries. Phys Rev B 2010, 81:195420.
Grantab, R, Shenoy, VB, Ruoff, RS. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330:946–948.
Kim, K, Lee, Z, Regan, W, Kisielowski, C, Crommie, MF, Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 2011, 5:2142–2146.
An, J, Voelkl, E, Suk, JW, Li, X, Magnuson, CW, Fu, L, Tiemeijer, P, Bischoff, M, Freitag, B, Popova, E, et al. Domain (grain) boundaries and evidence of ‘twinlike’ structures in chemically vapor deposited grown graphene. ACS Nano 2011, 5:2433–2439.
Li, X, Magnuson, CW, Venugopal, A, An, J, Suk, JW, Han, B, Borysiak, M, Cai, W, Velamakanni, A, Zhu, Y, et al. Graphene films with large domain size by a two‐step chemical vapor deposition process. Nano Lett 2010, 10:4328–4334.
Chen, W, Chen, H, Lan, H, Cui, P, Schulze, TP, Zhu, W, Zhang, Z. Suppression of grain boundaries in graphene growth on superstructured Mn‐Cu(111) surface. Phys Rev Lett 2012, 109:265507.
Sun, Z, Yan, Z, Yao, J, Beitler, E, Zhu, Y, Tour, JM. Growth of graphene from solid carbon sources. Nature 2010, 468:549–552.
Li, Z, Wu, P, Wang, C, Fan, X, Zhang, W, Zhai, X, Zeng, C, Li, Z, Yang, J, Hou, J. Low‐temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 2011, 5:3385–3390.
Xue, Y, Wu, B, Jiang, L, Guo, Y, Huang, L, Chen, J, Tan, J, Geng, D, Luo, B, Hu, W, et al. Low temperature growth of highly nitrogen‐doped single crystal graphene arrays by chemical vapor deposition. J Am Chem Soc 2012, 134:11060–11063.
Choi, JH, Li, Z, Cui, P, Fan, X, Zhang, H, Zeng, C, Zhang, Z. Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force. Sci Rep 2013, 3:1925.
Cai, J, Ruffieux, P, Jaafar, R, Bieri, M, Braun, T, Blankenburg, S, Muoth, M, Seitsonen, AP, Saleh, M, Feng, X, et al. Atomically precise bottom‐up fabrication of graphene nanoribbons. Nature 2010, 466:470–473.
Castro Neto, AH, Peres, NMR, Novoselov, KS, Geim, AK, Guinea, F. The electronic properties of graphene. Rev Mod Phys 2009, 81:109–162.
Zhang, Y, Tang, TT, Girit, C, Hao, Z, Martin, MC, Zettl, A, Crommie, MF, Shen, YR, Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459:820–823.
Pal, AN, Ghosh, A. Ultralow noise field‐effect transistor from multilayer graphene. Appl Phys Lett 2009, 95:082105.
Samuels, AJ, Carey, JD. Molecular doping and band‐gap opening of bilayer graphene. ACS Nano 2013, 7:2790–2799.
Nie, S, Wu, W, Xing, S, Yu, Q, Bao, J, Pei, SS, McCarty, KF. Growth from below: bilayer graphene on copper by chemical vapor deposition. New J Phys 2012, 14:093028.
Lee, S, Lee, K, Zhong, Z. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett 2010, 10:4702–4707.
Yan, K, Peng, H, Zhou, Y, Li, H, Liu, Z. Formation of bilayer bernal graphene: layer‐by‐layer epitaxy via chemical vapor deposition. Nano Lett 2011, 11:1106–1110.
Kalbac, M, Frank, O, Kavan, L. The control of graphene double‐layer formation in copper‐catalyzed chemical vapor deposition. Carbon 2012, 50:3682–3687.
Li, Q, Chou, H, Zhong, JH, Liu, JY, Dolocan, A, Zhang, J, Zhou, Y, Ruoff, RS, Chen, S, Cai, W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett 2013, 13:486–490.
Song, W, Jeon, C, Kim, SY, Kim, Y, Kim, SH, Lee, SI, Jung, DS, Jung, MW, An, KS, Park, CY. Two selective growth modes for graphene on a Cu substrate using thermal chemical vapor deposition. Carbon 2014, 68:87–94.
Zhang, X, Wang, L, Xin, J, Yakobson, BI, Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J Am Chem Soc 2014, 136:3040–3047.
Wu, P, Zhai, X, Li, Z, Yang, J. Bilayer graphene growth via a penetration mechanism. J Phys Chem C 2014, 118:6201–6206.
Chen, W, Cui, P, Zhu, W, Kaxiras, E, Gao, Y, Zhang, Z. Atomistic mechanisms for bilayer growth of graphene on metal substrates. Phys Rev B 2015, 91:045408.
Hao, Y, Wang, L, Liu, Y, Chen, H, Wang, X, Tan, C, Nie, S, Suk, JW, Jiang, T, Liang, T, et al. Oxygen‐activated growth and bandgap tunability of large single‐crystal bilayer graphene. Nat Nanotechnol 2016, 11:426–431.
Wang, H, Yu, G. Direct CVD graphene growth on semiconductors and dielectrics for transfer‐free device fabrication. Adv Mater 2016, 28:4956–4975.
Berger, C, Song, Z, Li, T, Li, X, Ogbazghi, AY, Feng, R, Dai, Z, Marchenkov, AN, Conrad, EH, First, PN, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene‐based nanoelectronics. J Phys Chem B 2004, 108:19912–19916.
Ohta, T, Gabaly, FE, Bostwick, A, McChesney, JL, Emtsev, KV, Schmid, AK, Seyller, T, Horn, K, Rotenberg, E. Morphology of graphene thin film growth on SiC(0001). New J Phys 2008, 10:023034.
Norimatsu, W, Kusunoki, M. Epitaxial graphene on SiC{0001}: advances and perspectives. Phys Chem Chem Phys 2014, 16:3501–3511.
Riedl, C, Coletti, C, Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D 2010, 43:374009.
Takeda, K, Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 1994, 50:14916–14922.
Guzmán‐Verri, GG, Voon LYLC,. Electronic structure of silicon‐based nanostructures. Phys Rev B 2007, 76:075131.
Kara, A, Enriquez, H, Seitsonen, AP, Voon, LCLY, Vizzini, S, Aufray, B, Oughaddou, H. A review on silicene—new candidate for electronics. Surf Sci Rep 2012, 67:1–18.
Shao, ZG, Ye, XS, Yang, L, Wang, CL. First‐principles calculation of intrinsic carrier mobility of silicene. J Appl Phys 2013, 114:093712.
Li, X, Mullen, JT, Jin, Z, Borysenko, KM, Nardelli, MB, Kim, KW. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B 2013, 87:115418.
Drummond, ND, Zólyomi, V, Fal`ko, VI. Electrically tunable band gap in silicene. Phys Rev B 2012, 85:075423.
Ni, Z, Liu, Q, Tang, Q, Zheng, J, Zhou, J, Qin, R, Gao, Z, Yu, D, Lu, J. Tunable bandgap in silicene and germanene. Nano Lett 2012, 12:113–118.
Lalmi, B, Oughaddou, H, Enriquez, H, Kara, A, Vizzini, S, Ealet, B, Aufray, B. Epitaxial growth of a silicene sheet. Appl Phys Lett 2010, 97:223109.
Leandri, C, Lay, GL, Aufray, B, Girardeaux, C, Avila, J, Dávila, ME, Asensio, MC, Ottaviani, C, Cricenti, A. Self‐aligned silicon quantum wires on Ag(110). Surf Sci 2005, 574:L9–L15.
Meng, L, Wang, Y, Zhang, L, Du, S, Wu, R, Li, L, Zhang, Y, Li, G, Zhou, H, Hofer, WA, et al. Buckled silicene formation on Ir(111). Nano Lett 2013, 13:685–690.
Aizawa, T, Suehara, S, Otani, S. Silicene on zirconium carbide (111). J Phys Chem C 2014, 118:23049–23057.
Cai, Y, Chuu, CP, Wei, CM, Chou, MY. Stability and electronic properties of two‐dimensional silicene and germanene on graphene. Phys Rev B 2013, 88:245408.
Liu, H, Gao, J, Zhao, J. Silicene on substrates: a way to preserve or tune its electronic properties. J Phys Chem C2013, 117:10353–10359.
Zhu, J, Schwingenschlögl, U. Stability and electronic properties of silicene on WSe2. J Mater Chem C 2015, 3:3946–3953.
Kokott, S, Pflugradt, P, Matthes, L, Bechstedt, F. Nonmetallic substrates for growth of silicene: an ab initio prediction. J Phys Condens Matter 2014, 26:185002.
Okamoto, H, Kumai, Y, Sugiyama, Y, Mitsuoka, T, Nakanishi, K, Ohta, T, Nozaki, H, Yamaguchi, S, Shirai, S, Nakano, H. Silicon nanosheets and their self‐assembled regular stacking structure. J Am Chem Soc 2010, 132:2710–2718.
Liu, Y, Dong, YJ, Tang, Z, Wang, XF, Wang, L, Hou, T, Lin, H, Li, Y. Stable and metallic borophene nanoribbons from first‐principles calculations. J Mater Chem C2016, 4:6380–6385.
Ling, X, Wang, H, Huang, S, Xia, F, Dresselhaus, MS. The renaissance of black phosphorus. Proc Natl Acad Sci 2015, 112:4523–4530.
Kou, L, Chen, C, Smith, SC. Phosphorene: fabrication, properties, and applications. J Phys Chem Lett 2015, 6:2794–2805.
Brent, JR, Savjani, N, Lewis, EA, Haigh, SJ, Lewis, DJ, O`Brien, P. Production of few‐layer phosphorene by liquid exfoliation of black phosphorus. Chem Commun 2014, 50:13338–13341.
Fei, R, Yang, L. Strain‐engineering the anisotropic electrical conductance of few‐layer black phosphorus. Nano Lett 2014, 14:2884–2889.
Xu, Y, Dai, J, Zeng, XC. Electron‐transport properties of few‐layer black phosphorus. J Phys Chem Lett 2015, 6:1996–2002.
Gao, J, Zhang, G, Zhang, YW. The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration. J Am Chem Soc 2016, 138:4763–4771.
Jariwala, D, Sangwan, VK, Lauhon, LJ, Marks, TJ, Hersam, MC. Emerging device applications for semiconducting two‐dimensional transition metal dichalcogenides. ACS Nano 2014, 8:1102–1120.
Mak, KF, Lee, C, Hone, J, Shan, J, Heinz, TF. Atomically thin MoS2: a new direct‐gap semiconductor. Phys Rev Lett 2010, 105:136805.
Lee, HS, Min, SW, Chang, YG, Park, MK, Nam, T, Kim, H, Kim, JH, Ryu, S, Im, S. MoS2 nanosheet phototransistors with thickness‐modulated optical energy gap. Nano Lett 2012, 12:3695–3700.
Mak, KF, He, K, Shan, J, Heinz, TF. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 2012, 7:494–498.
Zheng, J, Zhang, H, Dong, S, Liu, Y, Nai, CT, Shin, HS, Jeong, HY, Liu, B, Loh, KP. High yield exfoliation of two‐dimensional chalcogenides using sodium naphthalenide. Nat Commun 2014, 5:2995.
Wu, S, Huang, C, Aivazian, G, Ross, JS, Cobden, DG, Xu, X. Vapor–solid growth of high optical quality MoS2 monolayers with near‐unity valley polarization. ACS Nano 2013, 7:2768–2772.
Dumcenco, D, Ovchinnikov, D, Marinov, K, Lazić, P, Gibertini, M, Marzari, N, Sanchez, OL, Kung, YC, Krasnozhon, D, Chen, MW, et al. Large‐area epitaxial monolayer MoS2. ACS Nano 2015, 9:4611–4620.
Pakdel, A, Bando, Y, Golberg, D. Nano boron nitride flatland. Chem Soc Rev 2014, 43:934–959.
Tetlow, H, de Boer, JP, Ford, IJ, Vvedensky, DD, Coraux, J, Kantorovich, L. Growth of epitaxial graphene: theory and experiment. Phys Rep 2014, 542:195–295.
Seah, CM, Chai, SP, Rahman Mohamed, A. Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 2014, 70:1–21.
Sone, J, Yamagami, T, Aoki, Y, Nakatsuji, K, Hirayama, H. Epitaxial growth of silicene on ultra‐thin Ag(111) films. New J Phys 2014, 16:095004.
Bernard, R, Borensztein, Y, Cruguel, H, Lazzeri, M, Prévot, G. Growth mechanism of silicene on Ag(111) determined by scanning tunneling microscopy measurements and ab initio calculations. Phys Rev B 2015, 92:045415.
Liu, H, Gao, J, Zhao, J. From boron cluster to two‐dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci Rep 2013, 3:3238.
Grønborg, SS, Ulstrup, S, Bianchi, M, Dendzik, M, Sanders, CE, Lauritsen, JV, Hofmann, P, Miwa, JA. Synthesis of epitaxial single‐layer MoS2 on Au(111). Langmuir 2015, 31:9700–9706.
Zhan, Y, Liu, Z, Najmaei, S, Ajayan, PM, Lou, J. Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8:966–971.
Orofeo, CM, Suzuki, S, Sekine, Y, Hibino, H. Scalable synthesis of layer‐controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl Phys Lett 2014, 105:083112.
Ci, L, Song, L, Jin, C, Jariwala, D, Wu, D, Li, Y, Srivastava, A, Wang, ZF, Storr, K, Balicas, L, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 2010, 9:430–435.
Levendorf, MP, Kim, CJ, Brown, L, Huang, PY, Havener, RW, Muller, DA, Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488:627–632.
Fiori, G, Betti, A, Bruzzone, S, Iannaccone, G. Lateral graphene–hBCN heterostructures as a platform for fully two‐dimensional transistors. ACS Nano 2012, 6:2642–2648.
Gao, Y, Zhang, Y, Chen, P, Li, Y, Liu, M, Gao, T, Ma, D, Chen, Y, Cheng, Z, Qiu, X. Toward single‐layer uniform hexagonal boron nitride–graphene patchworks with zigzag linking edges. Nano Lett 2013, 13:3439–3443.
Kim, SM, Hsu, A, Araujo, PT, Lee, YH, Palacios, T, Dresselhaus, M, Idrobo, JC, Kim, KK, Kong, J. Synthesis of patched or stacked graphene and hBN flakes: a route to hybrid structure discovery. Nano Lett 2013, 13:933–941.
Liu, L, Park, J, Siegel, DA, McCarty, KF, Clark, KW, Deng, W, Basile, L, Idrobo, JC, Li, AP, Gu, G. Heteroepitaxial growth of two‐dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343:163–167.
Ling, X, Lin, Y, Ma, Q, Wang, Z, Song, Y, Yu, L, Huang, S, Fang, W, Zhang, X, Hsu, AL, et al. Parallel stitching of 2D materials. Adv Mater 2016, 28:2322–2329.
Liu, L, Siegel, DA, Chen, W, Liu, P, Guo, J, Duscher, G, Zhao, C, Wang, H, Wang, W, Bai, X, et al. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy. Proc Natl Acad Sci 2014, 111:16670–16675.
Zhao, M, Ye, Y, Han, Y, Xia, Y, Zhu, H, Wang, S, Wang, Y, Muller, DA, Zhang, X. Large‐scale chemical assembly of atomically thin transistors and circuits. Nat Nanotechnol 2016, 11:954–959.
Guimarães, MH, Gao, H, Han, Y, Kang, K, Xie, S, Kim, CJ, Muller, DA, Ralph, DC, Park, J. Atomically thin Ohmic edge contacts between two‐dimensional materials. ACS Nano 2016, 10:6392–6399.
Chen, X, Park, YJ, Das, T, Jang, H, Lee, JB, Ahn, JH. Lithography‐free plasma‐induced patterned growth of MoS2 and its heterojunction with graphene. Nanoscale 2016, 8:15181–15188.
Gorbachev, RV, Geim, AK, Katsnelson, MI, Novoselov, KS, Tudorovskiy, T, Grigorieva, IV, MacDonald, AH, Morozov, SV, Watanabe, K, Taniguchi, T, et al. Strong Coulomb drag and broken symmetry in double‐layer graphene. Nat Phys 2012, 8:896–901.
Ponomarenko, LA, Geim, AK, Zhukov, AA, Jalil, R, Morozov, SV, Novoselov, KS, Grigorieva, IV, Hill, EH, Cheianov, VV, Fal`ko, VI, et al. Tunable metal–insulator transition in double‐layer graphene heterostructures. Nat Phys 2011, 7:958–961.
Yang, W, Lu, X, Chen, G, Wu, S, Xie, G, Cheng, M, Wang, D, Yang, R, Shi, D, Watanabe, K, et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat Phys 2012, 8:382–386.
Dean, CR, Wang, L, Maher, P, Forsythe, C, Ghahari, F, Gao, Y, Katoch, J, Ishigami, M, Moon, P, Koshino, M, et al. Hofstadter`s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497:598–602.
Hunt, B, Sanchez‐Yamagishi, JD, Young, AF, Yankowitz, M, LeRoy, BJ, Watanabe, K, Taniguchi, T, Moon, P, Koshino, M, Jarillo‐Herrero, P, et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340:1427–1430.
Britnell, L, Ribeiro, RM, Eckmann, A, Jalil, R, Belle, BD, Mishchenko, A, Kim, YJ, Gorbachev, RV, Georgiou, T, Morozov, SV, et al. Strong light‐matter interactions in heterostructures of atomically thin films. Science 2013, 340:1311–1314.
Zeng, J, Chen, W, Cui, P, Zhang, DB, Zhang, Z. Enhanced half‐metallicity in orientationally misaligned graphene/hexagonal boron nitride lateral heterojunctions. Phys Rev B 2016, 94:235425.
Yang, W, Chen, G, Shi, Z, Liu, CC, Zhang, L, Xie, G, Cheng, M, Wang, D, Yang, R, Shi, D, et al. Epitaxial growth of single‐domain graphene on hexagonal boron nitride. Nat Mater 2013, 12:792–797.
Gong, Y, Lin, J, Wang, X, Shi, G, Lei, S, Lin, Z, Zou, X, Ye, G, Vajtai, R, Yakobson, BI, et al. Vertical and in‐plane heterostructures from WS2/MoS2 monolayers. Nat Mater 2014, 13:1135–1142.
Xia, F, Wang, H, Xiao, D, Dubey, M, Ramasubramaniam, A. Two‐dimensional material nanophotonics. Nat Photonics 2014, 8:899–907.
Pospischil, A, Humer, M, Furchi, MM, Bachmann, D, Guider, R, Fromherz, T, Mueller, T. CMOS‐compatible graphene photodetector covering all optical communication bands. Nat Photonics 2013, 7:892–896.
Gan, X, Shiue, RJ, Gao, Y, Meric, I, Heinz, TF, Shepard, K, Hone, J, Assefa, S, Englund, D. Chip‐integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 2013, 7:883–887.
Xu, X, Gabor, NM, Alden, JS, Van Der Zande, AM, McEuen, PL. Photo‐thermoelectric effect at a graphene interface junction. Nano Lett 2010, 10:562–566.
Sun, D, Wu, ZK, Divin, C, Li, X, Berger, C, de Heer, WA, First, PN, Norris, TB. Ultrafast relaxation of excited dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys Rev Lett 2008, 101:157402.
Xu, X, Yao, W, Xiao, D, Heinz, TF. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 2014, 10:343–350.
Wirtz, L, Marini, A, Rubio, A. Excitons in boron nitride nanotubes: dimensionality effects. Phys Rev Lett 2006, 96:126104.
Cudazzo, P, Attaccalite, C, Tokatly, IV, Rubio, A. Strong charge‐transfer excitonic effects and the Bose‐Einstein exciton condensate in graphane. Phys Rev Lett 2010, 104:226804.
Qiu, DY, da Jornada, FH, Louie, SG. Optical spectrum of MoS2: many‐body effects and diversity of exciton states. Phys Rev Lett 2013, 111:216805.
Ugeda, MM, Bradley, AJ, Shi, SF, da Jornada, FH, Zhang, Y, Qiu, DY, Ruan, W, Mo, SK, Hussain, Z, Shen, ZX, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014, 13:1091–1095.
Ye, Z, Cao, T, O`Brien, K, Zhu, H, Yin, X, Wang, Y, Louie, SG, Zhang, X. Probing excitonic dark states in single‐layer tungsten disulphide. Nature 2014, 513:214–218.
Choi, JH, Cui, P, Lan, H, Zhang, Z. Linear scaling of the exciton binding energy versus the band gap of two‐dimensional materials. Phys Rev Lett 2015, 115:066403.
Olsen, T, Latini, S, Rasmussen, F, Thygesen, KS. Simple screened hydrogen model of excitons in two‐dimensional materials. Phys Rev Lett 2016, 116:056401.
Setter, N, Damjanovic, D, Eng, L, Fox, G, Gevorgian, S, Hong, S, Kingon, A, Kohlstedt, H, Park, NY, Stephenson, GB, et al. Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 2006, 100:051606.
Junquera, J, Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 2003, 422:506–509.
Shirodkar, SN, Waghmare, UV. Emergence of ferroelectricity at a metal‐semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett 2014, 112:157601.
Fei, R, Kang, W, Yang, L. Ferroelectricity and phase transitions in monolayer group‐IV monochalcogenides. Phys Rev Lett 2016, 117:097601.
Chang, K, Liu, J, Lin, H, Wang, N, Zhao, K, Zhang, A, Jin, F, Zhong, Y, Hu, X, Duan, W, et al. Discovery of robust in‐plane ferroelectricity in atomic‐thick SnTe. Science 2016, 353:274–278.
Han, W. Perspectives for spintronics in 2D materials. APL Mater 2016, 4:032401.
Han, W, Kawakami, RK, Gmitra, M, Fabian, J. Graphene spintronics. Nat Nanotechnol 2014, 9:794–807.
Kan, E, Li, Z, Yang, J. Magnetism in graphene systems. Nano 2008, 3:433–442.
Lee, H, Son, YW, Park, N, Han, S, Yu, J. Magnetic ordering at the edges of graphitic fragments: magnetic tail interactions between the edge‐localized states. Phys Rev B 2005, 72:174431.
Son, YW, Cohen, ML, Louie, SG. Half‐metallic graphene nanoribbons. Nature 2006, 444:347–349.
Jung, J, Pereg‐Barnea, T, MacDonald, AH. Theory of interedge superexchange in zigzag edge magnetism. Phys Rev Lett 2009, 102:227205.
Magda, GZ, Jin, X, Hagymási, I, Vancsó, P, Osváth, Z, Nemes‐Incze, P, Hwang, C, Biró, LP, Tapasztó, L. Room‐temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514:608–611.
Wimmer, M, Adagideli, I, Berber, S, Tománek, D, Richter, K. Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys Rev Lett 2008, 100:177207.
Cocchi, C, Prezzi, D, Calzolari, A, Molinari, E. Spin‐transport selectivity upon co adsorption on antiferromagnetic graphene nanoribbons. J Chem Phys 2010, 133:124703.
Kane, CL, Mele, EJ. Quantum spin hall effect in graphene. Phys Rev Lett 2005, 95:226801.
Min, H, Hill, JE, Sinitsyn, NA, Sahu, BR, Kleinman, L, MacDonald, AH. Intrinsic and Rashba spin‐orbit interactions in graphene sheets. Phys Rev B 2006, 74:165310.
Wang, WL, Yazyev, OV, Meng, S, Kaxiras, E. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys Rev Lett 2009, 102:157201.
Bullard, Z, Girão, EC, Owens, JR, Shelton, W, Meunier, V. Improved all‐carbon spintronic device design. Sci Rep 2015, 5:7634.
Zeng, M, Shen, L, Su, H, Zhang, C, Feng, Y. Graphene‐based spin logic gates. Appl Phys Lett 2011, 98:092110.
Cui, P, Zhang, Q, Zhu, H, Li, X, Wang, W, Li, Q, Zeng, C, Zhang, Z. Carbon tetragons as definitive spin switches in narrow zigzag graphene nanoribbons. Phys Rev Lett 2016, 116:026802.
Farooq, MU, Hashmi, A, Hong, J. Ferromagnetism controlled by electric field in tilted phosphorene nanoribbon. Sci Rep 2016, 6:26300.
Zhang, T, Lin, JH, Yu, YM, Chen, XR, Liu, WM. Stacked bilayer phosphorene: strain‐induced quantum spin Hall state and optical measurement. Sci Rep 2015, 5:13927.
Katsnelson, MI, Irkhin, VY, Chioncel, L, Lichtenstein, AI, de Groot, RA. Half‐metallic ferromagnets: from band structure to many‐body effects. Rev Mod Phys 2008, 80:315–378.
Kan, EJ, Xiang, HJ, Wu, F, Tian, C, Lee, C, Yang, JL, Whangbo, MH. Prediction for room‐temperature half‐metallic ferromagnetism in the half‐fluorinated single layers of BN and ZnO. Appl Phys Lett 2010, 97:122503.
Li, X, Wu, X, Yang, J. Half‐metallicity in MnPSe3 exfoliated nanosheet with carrier doping. J Am Chem Soc 2014, 136:11065–11069.
Wu, F, Huang, C, Wu, H, Lee, C, Deng, K, Kan, E, Jena, P. Atomically thin transition‐metal dinitrides: high‐temperature ferromagnetism and half‐metallicity. Nano Lett 2015, 15:8277–8281.
Pruneda, JM. Origin of half‐semimetallicity induced at interfaces of C‐BN heterostructures. Phys Rev B 2010, 81:161409.
Kim, SW, Kim, HJ, Choi, JH, Scheicher, RH, Cho, JH. Contrasting interedge superexchange interactions of graphene nanoribbons embedded in h‐BN and graphane. Phys Rev B 2015, 92:035443.
Menezes, MG, Capaz, RB. Half‐metallicity induced by charge injection in hexagonal boron nitride clusters embedded in graphene. Phys Rev B 2012, 86:195413.
Pan, X, Fan, Z, Chen, W, Ding, Y, Luo, H, Bao, X. Enhanced ethanol production inside carbon‐nanotube reactors containing catalytic particles. Nat Mater 2007, 6:507–511.
Pan, X, Bao, X. The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 2011, 44:553–562.
Xiao, J, Pan, X, Guo, S, Ren, P, Bao, X. Toward fundamentals of confined catalysis in carbon nanotubes. J Am Chem Soc 2015, 137:477–482.
Zhang, Y, Weng, X, Li, H, Li, H, Wei, M, Xiao, J, Liu, Z, Chen, M, Fu, Q, Bao, X. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule–metal interaction and metal‐catalyzed reactions. Nano Lett 2015, 15:3616–3623.
Jiao, F, Li, J, Pan, X, Xiao, J, Li, H, Ma, H, Wei, M, Pan, Y, Zhou, Z, Li, M, et al. Selective conversion of syngas to light olefins. Science 2016, 351:1065–1068.
Yao, Y, Fu, Q, Zhang, YY, Weng, X, Li, H, Chen, M, Jin, L, Dong, A, Mu, R, Jiang, P. Graphene cover‐promoted metal‐catalyzed reactions. Proc Natl Acad Sci 2014, 111:17023–17028.
Chen, W, Santos, EJG, Zhu, W, Kaxiras, E, Zhang, Z. Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett 2013, 13:509–514.
Rothenberg, G. Catalysis. Weinheim: Wiley‐VCH Verlag GmbH %26 Co. KGaA; 2008. doi:10.1002/9783527621866.
Zhou, Y, Chen, W, Cui, P, Zeng, J, Lin, Z, Kaxiras, E, Zhang, Z. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett 2016, 16:6058–6063.