Heitler, W, London, F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 1927, 44:455–472.
Several essays and opinions on the role of chemical models in chemical science have been published recently, e.g.WHE, S. Chemical bonding: state of the art in conceptual quantum chemistry. An introduction. Theor Chem Acc 2001, 105:271–275.
Shaik, S. Is my chemical universe localized or delocalized? Is there a future for chemical concepts? New J Chem 2007, 31:2105–2028.
Frenking, G, Krapp, A. Unicorns in the world of chemical bonding models. J Comput Chem 2007, 28:15–24.
Lewis, GN. The atom and the molecule. J Am Chem Soc 1916, 38:762–785.
A discussion of the impact and importance of the work of G. N. Lewis to the theory of chemistry is presented in a special issue edited by Frenking, G, Shaik, S. 90 years of chemical bonding. J Comput Chem 2007, 28:1–3.
Pauling, L. The nature of the chemical bond and the structure of molecules and crystals. 3rd ed. Ithaca, NY: Cornell University Press; 1960.
Morokuma, K. Molecular orbital studies of hydrogen bonds. J Chem Phys 1971, 55:1236–1244.
Ziegler, T, Rauk, A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 1977, 46:1–10.
Bader, RFW. Atoms in Molecules. A Quantum Theory. Oxford, UK: Oxford University Press; 1990.
Frenking, G, von Hopffgarten, M. Calculation of bonding properties. In: Solomon, EI, Scott, RA, King, RB, eds. Computational Inorganic and Bioinorganic Chemistry. New York: John Wiley %26 Sons; 2009, 3–16.
Mitoraj, M, Michalak, A. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 2007, 13:347–355.
Mitoraj, MP, Michalak, A, Ziegler, T. A combined change and energy decomposition scheme for bond analysis. J Chem Theory Comput 2009, 5:962–975.
Fukui, K. Theory of Orientation and Stereoselection. Berlin: Springer Verlag; 1975.
Woodward, RB, Hoffmann, R. The Conservation of Orbital Symmetry. Verlag Chemie: Weinheim; 1970.
Mo, YR, Peyerimhoff, SD. Theoretical analysis of electronic delocalization. J Chem Phys 1998, 109:1687–1697.
Mo, YR, Gao, JL, Peyerimhoff, SD. Energy decomposition analysis of intermolecular interactions using a block‐localized wave function approach. J Chem Phys 2000, 112:5530–5538.
Mo, YR. Geometrical optimization for strictly localized structures. J Chem Phys 2003, 119:1300–1306.
Mo, YR. Intramolecular electron transfer: computational study based on the orbital deletion procedure (ODP). Curr Org Chem 2006, 10:779–790.
Mo, Y. The block‐localized wavefunction (BLW) perspective of chemical bonding. In: Frenking, G, Shaik, S, eds. The Chemical Bond 1. Fundamental Ascpects of Chemical Bonding. Weinheim: Wiley‐VCH; 2014, 199–232.
Cardozo, TM, Chaer Nascimento, MA. Energy partitioning for generalized product functions: The interference contribution to the energy of generalized valence bond and spin coupled wave functions. J Chem Phys 2009, 130:104102.
Cardozo, TM, Nascimento, MAC. Chemical bonding in the N2 molecule and the role of the quantum mechanical interference effect. Journal of Physical Chemistry A 2009, 113:12541–12548.
de Sousa, DWO, Nascimento, MACI. There a quadruple bond in C2? J Chem Theory Comput 2016, 12:2234–2241.
Mo, Y, Song, L, Lin, Y. Block‐localized wavefunction (BLW) method at the density functional theory (DFT) level. J Phys Chem A 2007, 111:8291–8301.
Blanco, MA, Martín Pendás, A, Francisco, E. Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 2005, 1:1096–1109.
Pendás, AM, Blanco, MA, Francisco, E. Chemical fragments in real space: definitions, properties, and energetic decompositions. J Comput Chem 2007, 28:161–184.
Pendás, AM, Blanco, MA, Francisco, E. Steric repulsions, rotation barriers, and stereoelectronic effects: a real space perspective. J Comput Chem 2009, 30:98–109.
García‐Revilla, M, Francisco, E, Popelier, PLA, Martín Pendás, A. Domain‐averaged exchange‐correlation energies as a physical underpinning for chemical graphs. ChemPhysChem 2013, 14:1211–1218.
Maxwell, P, Martin Pendas, A, Popelier, PLA. Extension of the interacting quantum atoms (IQA) approach to B3LYP level density functional theory (DFT). Phys Chem Chem Phys 2016, 18:20986–21000.
Khaliullin, RZ, Head‐Gordon, M, Bell, AT. An efficient self‐consistent field method for large systems of weakly interacting components. J Chem Phys 2006, 124:204105‐1–204105‐11.
Khaliullin, RZ, Cobar, EA, Lochan, RC, Bell, AT, Head‐Gordon, M. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J Phys Chem A 2007, 111:8753–8765.
Horn, PR, Mao, Y, Head‐Gordon, M. Probing non‐covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys Chem Chem Phys 2016, 18:23067–23079.
Thirman, J, Head‐Gordon, M. Efficient implementation of energy decomposition analysis for second‐order Møller–Plesset perturbation theory and application to anion−π interactions. Chem A Eur J 2017, 121:717–728.
Horn, PR, Sundstrom, EJ, Baker, TA, Head‐Gordon, M. Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals. J Chem Phys 2013, 138:134119.
Horn, PR, Head‐Gordon, M. Polarization contributions to intermolecular interactions revisited with fragment electric‐field response functions. J Chem Phys 2015, 143:114111.
Levine, DS, Horn, PR, Mao, Y, Head‐Gordon, M. Variational energy decomposition analysis of chemical bonding. 1. Spin‐pure analysis of single bonds. J Chem Theory Comput 2016, 12:4812–4820.
Azar, RJ, Horn, PR, Sundstrom, EJ, Head‐Gordon, M. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer. J Chem Phys 2013, 138:084102.
Bitter, T, Ruedenberg, K, Schwarz, WHE. Toward a physical understanding of electron‐sharing two‐center bonds. I. General aspects. J Comput Chem 2007, 28:411–422.
Bitter, T, Wang, SG, Ruedenberg, K, Schwarz, WHE. Toward a physical understanding of electron‐sharing two‐center bonds. II. Pseudo‐potential based analysis of diatomic molecules. Theor Chem Acc 2010, 127:237–257.
Schmidt, MW, Ivanic, J, Ruedenberg, K. The physical origin of the chemical bond. In: Frenking, G, Shaik, S, eds. The Chemical Bond. 1. Fundamental Aspects of Chemical Bonding. Weinheim: Wiley‐VCH; 2014, 1–67.
Bickelhaupt, FM, Baerends, EJ. Kohn Sham density functional theory: predicting and understanding chemistry. In: Lipkowitz, KB, Boyd, BD, eds. Reviews in Computational Chemistry, vol. 15. New York: Wiley‐VCH; 2000, 1–86.
Wagner, JP, Schreiner, PR. London dispersion in molecular chemistry—reconsidering steric effects. Angew Chem Int Ed 2015, 54:12274–12296.
Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 2004, 25:1463–1473.
Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem 2006, 27:1787–1799.
Esterhuysen, C, Frenking, G. The nature of the chemical bond revisited: An energy decomposition analysis of diatomic molecules E2 (E=N‐Bi, F‐I), CO and BF. Theor Chem Acc 2004, 111:381–389.
Kovács, A, Esterhuysen, C, Frenking, G. The nature of the chemical bond revisited: an energy partitioning analysis of nonpolar bonds. Chem – A Eur J 2005, 11:1813–1823.
Krapp, A, Bickelhaupt, FM, Frenking, G. Orbital overlap and chemical bonding. Chem – A Eur J 2006, 12:9196–9216.
Spackman, MA, Maslen, EN. Chemical properties from the promolecule. J Phys Chem 1986, 90:2020–2027.
Loschen, C, Voigt, K, Frunzke, J, Diefenbach, A, Diedenhofen, M, Frenking, G. Quantum chemical investigations of the phosphane complexes X3B‐PY3 and X3Al‐PY3 (X = H, F, Cl; Y = F, Cl, Me, CN). Zeitschrift für anorganische und allgemeine Chemie 2002, 628:1294–1304.
Bessac, F, Frenking, G. Chemical bonding in phosphane and amine complexes of main group elements and transition metals. Inorg Chem 2003, 42:7990–7994.
Frenking, G, Wichmann, K, Fröhlich, N, Loschen, C, Lein, M, Frunzke, J, Rayón, VM. Towards a rigorously defined quantum chemical analysis of the chemical bond in donor‐acceptor complexes. Coord Chem Rev 2003, 238–239:55–82.
Cappel, D, Tüllmann, S, Krapp, A, Frenking, G. Direct estimate of the conjugative and hyperconjugative stabilization in diynes, dienes and related compounds. Angew Chem Int Ed 2005, 44:3617–3620 Angew Chem 117:3683–3686.
Fernández, I, Frenking, G. Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method. Chem A Eur J 2006, 12:3617–3629.
Fernández, I, Frenking, G. Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method. Faraday Discuss 2007, 135:403–421.
Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Zeitschrift für Physik 1931, 70:204–286.
Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. II. Quantentheorie der induzierten Polaritäten. Zeitschrift für Physik 1931, 72:310–337.
Hückel, E. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III. Zeitschrift für Physik 1932, 76:628–648.
Hückel, E. Die freien Radikale der organischen Chemie. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. IV. Zeitschrift für Physik 1933, 83:632–668.
Doering, W v E, Detert, FL. Cycloheptatrienylium oxide. J Am Chem Soc 1951, 73:876–877.
von Ragué Schleyer, P. The theoretical treatment of aromaticity is topic of a special issue entitled “Aromaticity”. Chem Rev 2001, 101:1115–1118.
von Ragué Schleyer, P. for reviews on conjugation and delocalization see the special issue entitled “Delocalization – pi and sigma”. Chem Rev 2005, 105:3433–3435.
See Refs 60, 61 A detailed review on different ways to estimate aromaticity is given in: Mo, Y, von Ragué Schleyer, P. An energetic measure of aromaticity and antiaromaticity based on the Pauling‐Wheland resonance energies. Chem A Eur J 2006, 12:2009–2020.
Thorn, DL, Hoffmann, R. Delocalization in metallocycles. Nouveau J de Chimie 1979, 3:39–45.
Fernández, I, Frenking, G. Aromaticity in Metallabenzenes. Chem A Eur J 2007, 13:5873–5884.
Pierrefixe, SCAH, Bickelhaupt, FM. Aromaticity: molecular‐orbital picture of an intuitive concept. Chem A Eur J 2007, 13:6321–6328.
Pierrefixe, SCAH, Bickelhaupt, FM. Aromaticity and antiaromaticity In 4‐, 6‐, 8‐, and 10‐membered conjugated hydrocarbon rings. J Phys Chem A 2008, 12:12816–12822.
Shaik, SS, Hiberty, PC. When does electronic delocalization become a driving force of molecular shape and stability? 1. The aromatic sextet. J Am Chem Soc 1985, 107:3089–3095.
Diefenbach, A, Bickelhaupt, FM, Frenking, G. The nature of the transition metal‐carbonyl bond and the question about valence orbitals of transition metals. a bond‐energy decomposition analyses of TM(CO)6q (TMq = Hf2−, Ta−, W, Re+, Os2+, Ir3+). J Am Chem Soc 2000, 122:6449–6458.
Nechaev, MS, Rayòn, VM, Frenking, GF. Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO)5TM‐C2Hx and Cl4TM‐C2Hx (TM=Cr, Mo, W), (CO)4TM‐C2Hx (TM = Fe, Ru, Os), and TM+‐C2Hx (TM=Cu, Ag, Au). J Phys Chem A 2004, 108:3134–3142.
Tonner, R, Heydenrych, G, Frenking, G. Bonding analysis of N‐heterocyclic carbene tautomers and phosphine ligands in transition metal complexes: a theoretical study. Chem Asian J 2007, 2:1555–1567.
Frenking, G, Wichmann, K, Fröhlich, N, Grobe, J, Golla, W, Van, DL, Krebs, B, Läge, M. Nature of the metal‐ligand bond in M(CO)5PX3 complexes (M = Cr, Mo, W; X = H, Me, F, Cl): synthesis, molecular structure, and quantum‐chemical calculations. Organometallics 2002, 21:2921–2930.
Dewar, MJS. A review of the π‐complex‐theory. Bull Soc Chim France 1951, 18C:74–79.
Chatt, J, Duncanson, LA. Olefin co‐ordination compounds. Part III. Infra‐red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 1953:2939–2947.
Frenking, G. Understanding the nature of the bonding in transition metal complexes: from dewar`s molecular orbital model to an energy partitioning analysis of the metal‐ligand bond. J Organomet Chem 2001, 635:9–23.
Frenking, G. The Dewar‐Chatt‐Duncanson bonding model of transition metal‐olefin complexes examined by modern quantum chemical methods. In: Leigh, GJ, Winterton, N, eds. Modern Coordination Chemistry: The Legacy of Joseph Chatt. London: The Royal Society; 2002, 111.
Heydenrych, G, von Hopffgarten, M, Stander, E, Schuster, O, Raubenheimer, HG, Frenking, G. The nature of the metal‐carbene bond in normal and abnormal pyridylidene, quinolylidene and isoquinolylidene complexes. Eur J Inorg Chem 2009, 2009:1892–1904.
Nemcsok, D, Wichmann, K, Frenking, G. The significance of π interactions in group 11 complexes with N‐heterocyclic carbenes. Organometallics 2004, 23:3640–3646.
Rayón, VM, Frenking, G. Bis(benzene)chromium is a δ‐bonded molecule and ferrocene is a π‐bonded molecule. Organometallics 2003, 22:3304–3308.
Miller, SA, Tebboth, JA, Tremaine, JF. Dicyclopentadienyliron. J Chem Soc 1952:632–635.
Kealy, TJ, Pauson, PL. A new type of organo‐iron compound. Nature 1951, 168:1039–1040.
Fischer, EO, Pfab, W, Zur Kristallstruktur, D. Di‐cyclopentadienyl‐verbindungen des zweiwertigen eisens, kobalts und nickels. Zeitschrift für Naturforschung 1952, 7B:377–379.
Wilkinson, G, Rosenblum, M, Whiting, MC, Woodward, RB. The structure of iron bis‐cyclopentadienyl. J Am Chem Soc 1952, 74:2125–2126.
Elschenbroich, C, ed. Organometallics. 3rd ed. Weinheim: Wiley‐VCH; 2006.
Fischer, EO, Hafner, W. Di‐benzol‐chrom. Zeitschrift für Naturforschung 1955, 10B:665–668.
A historical review of the way to the synthesis of chromium bisbenzene and the subsequent development of organometallic chemistry is illustrated in two reviews:Seyferth, D. Bis(benzene)chromium. 1. Franz Hein at the University of Leipzig and Harold Zeiss and Minoru Tsutsui at Yale. Organometallics 2002, 21:1520–1530.
Seyferth, D. Bis(benzene)chromium. 2. Its Discovery by E. O. Fischer and W. Hafner and Subsequent Work by the Research Groups of E. O. Fischer, H‐ H. Zeiss, F. Hein, C. Elschenbroich, and Others. Organometallics 2002, 21:2800–2820.
Cadenbach, T, Bollermann, T, Gemel, C, Fernández, I, von Hopffgarten, M, Frenking, G, Fischer, RA. Twelve one‐electron ligands coordinating one metal center: structure and bonding of [Mo(ZnCH3)9(ZnCp*)3]. Angew Chem Int Ed 2008, 47:9150–9154 Angew Chemie 2008, 120:9290–9295.
Lein, M, Frunzke, J, Timoshkin, A, Frenking, G. Iron bispentazole Fe(η5‐N5)2, a theoretically predicted high‐energy compound: structure, bonding analysis, metal‐ligand bond strength and a comparison with the isoelectronic ferrocene. Chem A Eur J 2001, 7:4155–4163.
Frunzke, J, Lein, M, Frenking, G. Structures, metal‐ligand bond strength, and bonding analysis of ferrocene derivatives with group‐15 heteroligands Fe(η5‐E5)2 and FeCp(η5‐E5) (E = N, P, As, Sb). A theoretical study. Organometallics 2002, 21:3351–3359.
Lein, M, Frunzke, J, Frenking, G. Structures and bonding of the sandwich complexes [Ti(η5‐E5)2]2− (E = CH, N, P, As, Sb): a theoretical study. Inorg Chem 2003, 42:2504–2511.
Rayón, VM, Frenking, G. Structures, bond energies, heats of formation, and quantitative bonding analysis of main group metallocenes [E(Cp)2] (E = Be‐Ba, Zn, Si‐Pb) and [E(Cp)] (E = Li‐Cs, B‐Tl). Chem A Eur J 2002, 8:4693–4707.
Resa, I, Carmona, E, Gutierrez‐Puebla, E, Monge, A. Decamethyldizincocene, a stable compound of Zn(I) with a Zn‐Zn bond. Science 2004, 305:1136–1138.
Velazquez, A, Fernández, I, Frenking, G, Merino, G. Multimetallocenes. A theoretical study. Organometallics 2007, 26:4731–4736.
Esenturk, EN, Fettinger, J, Lam, Y‐F, Eichhorn, B. [Pt@Pb12]2−. Angew Chem Int Ed 2004, 43:2132–2134 Angew Chem 116:2184–2186.
Esenturk, EN, Fettinger, J, Eichhorn, B. The Pb122− and Pb102− zintl ions and the M@Pb122− and M@ Pb102− cluster series where M=Ni, Pd, Pt. J Am Chem Soc 2006, 128:9178–9186.
Wade, K. Structural and bonding patterns in cluster chemistry. Adv Inorg Chem Radiochem 1976, 18:1–66.
Mingos, DMP. Polyhedral skeletal electron pair approach. Acc Chem Res 1984, 17:311–319.
Chen, M, Zhang, Q, Zhou, M, Andrada, DM, Frenking, G. Carbon monoxide bonding with BeO and BeCO3: surprisingly high CO stretching frequency of OCBeCO3. Angew Chem Int Ed 2015, 54:124–128.
Zhan, C‐G, Liu, F, Hu, Z‐M. Bond strength and bond angles for hybrid orbitals composed of arbitrary sets of orbital angular momentum quantum number. Int J Quant Chem 1987, 32:13–18.
Firman, TK, Landis, CR. Structure and electron counting in ternary transition metal hydrides. J Am Chem Soc 1998, 120:12650–12656.
Fukui, K. The path of chemical reactions—The IRC approach. Acc Chem Res 1981, 14:363–372.
Bickelhaupt, FM, Baerends, EJ, Nibbering, NMM, Ziegler, T. Theoretical investigation on base‐induced 1,2‐eliminations in the model system F‐ + CH3CH2F. The role of the base as a catalyst. J Am Chem Soc 1993, 115:9160–9173.
Fernández, I, Frenking, G, Uggerud, E. The interplay of steric and electronic effects in SN2 reactions. Chem A Eur J 2009, 15:2166–2175.
Bento, AP, Bickelhaupt, FM. Nucleophilicity and leaving‐group ability in frontside and backside SN2 reactions. J Org Chem 2008, 73:7290–7299.
de Jong, GT, Bickelhaupt, FM. Transition state energy and position along the reaction coordinate in an extended activation strain model. ChemPhysChem 2007, 8:1170–1181.
van Zeist, W‐J, Visser, R, Bickelhaupt, FM. The steric nature of the bite angle. Chem A Eur J 2009, 15:6112–6115.
Bickelhaupt, FM, Ziegler, T, von Ragué Schleyer, P. Oxidative insertion as frontside SN2 substitution: a theoretical study of the model reaction system Pd + CH3Cl. Organometallics 1995, 14:2288–2296.
Diefenbach, A, Bickelhaupt, FM. Oxidative addition of Pd to C‐H, C‐C and C‐Cl bonds: importance of relativistic effects in DFT calculations. J Chem Phys 2001, 115:4030–4040.
Diefenbach, A, Bickelhaupt, FM. Activation of H‐H, C‐H, C‐C, and C‐Cl bonds by Pd(0). Insight from the activation strain model. J Phys Chem A 2004, 108:8460–8466.
Diefenbach, A, de Jong, GT, Bickelhaupt, FM. Activation of H‐H, C‐H, C‐C and C‐Cl bonds by Pd and PdCl−. understanding anion assistance in C‐X bond activation. J Chem Theory Comput 2005, 1:286–298.
Diefenbach, A, Bickelhaupt, FM. Activation of C‐H, C‐C and C‐I bonds by Pd and cis‐Pd(CO)2I2. Catalyst‐substrate adaption. J Organomet Chem 2005, 690:2191–2199.
de Jong, GT, Bickelhaupt, FM. Catalytic carbon‐halogen activation: trends in reactivity, selectivity, and solvation. J Chem Theory Comput 2007, 3:514–529.
de Jong, GT, Visser, R, Bickelhaupt, FM. Oxidative addition to main group versus transition metals: insight from the activation strain model. J Organomet Chem 2006, 691:4341–4349.
van Stralen, JNP, Bickelhaupt, FM. Oxidative addition versus dehydrogenation of methane, silane, and heavier AH4 congeners reacting with palladium. Organometallics 2006, 25:4260–4268.
Fernández, I, Bickelhaupt, FM, Cossío, FP. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers. Chem A Eur J 2009, 15:13022–13032.
Bickelhaupt, FM. Understanding reactivity with Kohn‐Sham molecular orbital theory: E2‐SN2 mechanistic spectrum and other concepts. J Comput Chem 1999, 20:114–128.
van Zeist, W‐J, Bickelhaupt, FM. The activation strain model of chemical reactivity. Org Biomol Chem 2010, 8:3118–3127.
Fernandez, I, Bickelhaupt, FM. Deeper insight into the Diels‐Alder reaction through the activation strain model. Chem Asian J 2016, 11:3297–3304.
Lein, M, Krapp, A, Frenking, G. Why do the heavy‐atom analogues of acetylene E2H2 (E = Si – Pb) exhibit unusual structures? J Am Chem Soc 2005, 127:6290–6299.
Pu, L, Twamley, B, Power, PP. Synthesis and characterization of 2,6‐Trip2H3C6PbPbC6H3‐2,6‐Trip2 (Trip = C6H2‐2,4,6‐i‐Pr3): a stable heavier group 14 element analogue of an alkyne. J Am Chem Soc 2000, 122:3524–3525.
Phillips, AD, Wright, RJ, Olmstead, MM, Power, PP. Synthesis and characterization of 2,6‐Dipp2‐H3C6SnSnC6H3‐2,6‐Dipp2 (Dipp = C6H3‐2,6‐Pri2): a tin analogue of an alkyne. J Am Chem Soc 2002, 124:5930–5931.
Stender, M, Phillips, AD, Wright, RJ, Power, PP. Synthesis and characterization of a digermanium analogue of an alkyne. Angew Chem Int Ed 2002, 41:1785–1787 Angew Chem 2002, 114:1863–1865.
Sekiguchi, A, Kinjo, R, Ichinohe, MA. Stable compound containing a silicon‐silicon triple bond. Science 2007, 305:1755–1757.
Jacobsen, H, Ziegler, T. Nonclassical double bonds in ethylene analogues: influence of pauli repulsion on trans bending and π bond strength. A density functional study. J Am Chem Soc 1994, 116:3667–3679.
Ziegler, T. Theoretical study of the triple metal bond in d3‐d3 binuclear complexes of chromium, molybdenum, and tungsten by the Hartree‐Fock‐Slater transition state method. J Am Chem Soc 1983, 105:7543–7549.
Ziegler, T. Theoretical study of multiple metal‐metal bonds in binuclear complexes of group 6D and group 7D transition elements with the general formula M2Cl4(PH3)4n+ (n = 0, 1, 2) by the Hartree‐Fock‐Slater transition state method. J Am Chem Soc 1984, 106:5901–5908.
Krapp, A, Lein, M, Frenking, G. The strength of the σ‐, π‐ and δ‐bonds in 2−Re2Cl8. Theor Chem Acc 2008, 120:313–320.
Koch, W, Collins, JR, Frenking, G. Are there neutral helium compounds which are stable in their ground state? A theoretical investigation of HeBCH and HeBeO. Chem Phys Lett 1986, 132:330–333.
Koch, W, Frenking, G, Gauss, J, Cremer, D, Collins, JB. Helium chemistry: theoretical predictions and experimental challenge. J Am Chem Soc 1987, 109:5917–5931.
Frenking, G, Koch, W, Gauss, J, Cremer, D. Stabilities and nature of the attractive interactions in HeBeO, NeBeO, ArBeO and a comparison with analogues NGLiF, NGBN and NGLiH (NG = He, Ar). A theoretical investigation. J Am Chem Soc 1988, 110:8007–8016.
Andrews, L, Tague, TJ. Reactions of pulsed‐laser evaporated be atoms with CO2‐infrared spectra of OCBeO and COBeO in solid argon. J Am Chem Soc 1994, 116:6856–6859.
Frenking, G, Koch, W, Collins, JR. Fixation of nitrogen and carbon monoxide by beryllium oxide: theoretical investigation of the structures and stabilities of NNBeO, OCBeO and COBeO. J Chem Soc Chem Commun 1988:1147–1148.
When CO is bonded via a σ‐bond to a Lewis acid A at the carbon end A←CO the bond becomes shorter and stronger, but σ‐bonding at oxygen A←OC weakens the bond. This can be explained with the change in the polarization of the orbitals:Lupinetti, AJ, Fau, S, Frenking, G, Strauss, SH. Theoretical analysis of the bonding between CO and positively charged atoms. J Phys Chem A 1997, 101:9551–9559.
Lupinetti, AJ, Frenking, G, Strauss, SH. Nonclassical metal carbonyls: appropriate definitions with a theoretical justification. Angew Chem Int Ed 1998, 37:2113–2116.
Lupinetti, AJ, Strauss, SH, Frenking, G. Nonclassical metal carbonyls. Prog Inorg Chem 2001, 49:1–112.
Diels, O, Wolf, B. Über das Kohlensuboxyd. Berichte der Deutschen Chemischen Gesellschaft 1906, 39:689–697.
Zhang, Q, Li, WL, Xu, C, Chen, M, Zhou, M, Li, J, Andrada, DM, Frenking, G. Formation and characterization of the boron dicarbonyl complex [B(CO)2]−. Angew Chem 2015, 127:11230–11235 Angew Chem Int Ed 2015, 54: 11078–11083.
Jensen, P, Johns, JWC. The infrared spectrum of carbon suboxide in the ν6 fundamental region: experimental observation and semirigid bender analysis. J Mol Spectr 1986, 118:248–266.
Koput, J. An ab initio study on the equilibrium structure and CCC bending energy levels of carbon suboxide. Chem Phys Lett 2000, 320:237–244.
Carbon suboxide has a very flat bending potential and becomes linear in the solid state, which is due to intermolecular interactions:Ellern, A, Drews, T, Seppelt, K. The structure of carbon suboxide, C3O2, in the solid state. Zeitung für Anorganische und Allgemeine Chemie 2001, 627:73–76.
Bernhardi, I, Drews, T, Seppelt, K. Isolation and structure of the OCNCO+ ion. Angew Chem 1999, 111:2370–2372 Angew Chem Int Ed 1999, 38: 2232–2233.
Zhang, Q, Li, WL, Xu, C, Chen, M, Zhou, M, Li, J, Andrada, DM, Frenking, G. Formation and characterization of the boron dicarbonyl complex [B(CO)2]−. Angew Chem 2015, 127:11230–11235 Angew Chem Int Ed 2015, 54: 11078–11083.
Celik, MA, Frenking, G, Neumüller, B, Petz, W. Exploiting the twofold donor ability of carbodiphosphoranes. Theoretical studies of [(PPh3)2C→EH2]q (Eq = Be, B+, C2+, N3+, O4+) and synthesis of the dication [(Ph3P)2C=CH2]2+. ChemPlusChem 2013, 78:1024–1032.
Andrada, DM, Frenking, G. Stabilization of heterodiatomic SiC through ligand donation. Theoretical investigation of SiC(L)2 (L = NHCMe, CAACMe, PMe3). Angew Chem Int Ed 2015, 54:12319–12324 Angew Chem 2015, 127: 12494–12500.
Mohapatra, C, Kundu, S, Paesch, AN, Herbst‐Irmer, R, Stalke, D, Andrada, DM, Frenking, G, Roesky, HW. The structure of the carbene stabilized Si2H2 may be equally well described with coordinate bonds as with classical double bond. J Am Chem Soc 2016, 138:10429–10432.
Georgiou, DC, Zhao, L, Wilson, DJD, Frenking, G, Dutton, JL. NHC stabilized acetylene – how far can the analogy be pushed? Chem A Eur J 2017, 23:2926–2934.
Li, Z, Chen, X, Andrada, DM, Frenking, G, Benkö, Z, Li, Y, Harmer, J, Su, CY, Grützmacher, H. (L)2C2P2, dicarbondiphosphide stabilized by N‐heterocyclic carbenes or cyclic diamido carbenes. Angew Chem 2017, 129:5838–5843 Angew Chem Int Ed 2017, 56: 5744–5749.
Tonner, R, Öxler, F, Neumüller, B, Petz, W, Frenking, G. Carbodiphosphoranes: the chemistry of divalent carbon(0). Angew Chem 2006, 118:8206–8211 Angew Chem Int Ed 2006, 45: 8038–8042.
For reviews see:Frenking, G, Tonner, R, Klein, S, Takagi, N, Shimizu, T, Krapp, A, Pandey, KK, Parameswaran, P. New bonding modes of carbon and heavier group 14 atoms Si – Pb. Chem Soc Rev 2014, 43:5106–5139.
Zhao, L, Hermann, M, Holzmann, N, Frenking, G. Dative bonding in main group compounds. Coord Chem Rev 2017, 344:163–204. https://doi.org/10.1016/j.ccr.2017.03.026.
Frenking, G, Tonner, R. Divalent carbon(0) compounds. Pure Appl Chem 2009, 81:597–614.
Ramirez, F, Desai, NB, Hansen, B, McKelvie, N. Hexaphenylcarbodiphosphorane (C6H5)3PCP(C6H5)3. J Am Chem Soc 1961, 83:3539–3540.
Tonner, R, Frenking, G. Divalent carbon(0) chemistry, part 1: parent compounds. Chem A Eur J 2008, 14:3260–3272.
Tonner, R, Frenking, G. Divalent carbon(0) chemistry, part 2: protonation and complexes with main group and transition metal lewis acids. Chem A Eur J 2008, 14:3273–3289.
Tonner, R, Frenking, G. C(NHC)2: divalent carbon(0) compounds with N‐heterocyclic carbene ligands – theoretical evidence for a class of molecules with promising chemical properties. Angew Chem 2007, 119:8850–8853 Angew Chem Int Ed 2007, 46: 8695–8698.
For a detailed description of carbodicarbenes see:Frenking, G, Tonner, R. Carbodicarbenes — divalent carbon(0) compounds exhibiting carbon–carbon donor–acceptor bonds. Wiley Interdiscip Rev Comput Mol Sci 2011, 1:869–878.
Herrmann, WA. N‐Heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem 2002, 114:1342–1351 Angew Chem Int Ed 2002, 41: 1290–1309.
Dyker, CA, Lavallo, V, Donnadieu, B, Bertrand, G. Synthesis of an extremely bent acyclic allene (a “carbodicarbene”): a strong donor ligand. Angew Chem Int Ed 2008, 47:3206–3209.
Alcarazo, M, Lehmann, W, Anoop, A, Thiel, W, Fürstner, A. Coordination chemistry at carbon. Nat Chem 2009, 1:295–301.
Fürstner, A, Alcarazo, M, Goddard, R, Lehmann, CW. Coordination chemistry of ene‐1, 1‐diamines and a prototype carbodicarbene. Angew Chem 2008, 120:3254–3258 Angew Chem Int Ed 2008, 47: 3210–3214.
Andrada, DM, Holzmann, N, Frenking, G. Bonding analysis of ylidone complexes EL2 (E = C – Pb) with phosphine and carbene ligands L. Can J Chem 2016, 94:1006–1014.
Holzmann, N, Stasch, A, Jones, C, Frenking, G. Structures and stabilities of group 13 adducts [(NHC)(EX3)] and [(NHC)2(E2Xn)] (E = B to In; X = H, Cl; n = 4, 2, 0; NHC = N‐heterocyclic carbene) and the search for hydrogen storage systems: a theoretical study. Chem A Eur J 2011, 17:13517–13525.
Pyykkö, P, Atsumi, M. Molecular double‐bond covalent radii for elements Li‐E112. Chem A Eur J 2009, 15:12770–12779.
Braunschweig, H, Dewhurst, RD, Hammond, K, Mies, J, Radacki, K, Vargas, A. Ambient‐temperature isolation of a compound with aboron‐boron triple bond. Science 2012, 336:1420–1422.
See also:Frenking, G, Holzmann, N. A boron‐boron triple bond. Science 2012, 336:1394–1395.
Two related complexes with saturated NHCR ligands and cAAC (cylic Alkyl Amino Carbene) groups have in the meantime been isolated:Böhnke, J, Braunschweig, H, Ewing, WC, Hörl, C, Kramer, T, Krummenacher, I, Mies, J, Vargas, A. Diburabutatriene: an electron‐deficient cumulene. Angew Chem Int Ed 2014, 53:9082–9085.
Böhnke, J, Braunschweig, H, Dellermann, T, Ewing, WC, Hammond, K, Jimenez‐Halla, JOC, Kramer, T, Mies, J. The synthesis of B2(SIDip)2 and its reactivity between the diboracumulenic and diborynic extremes. Angew Chem Int Ed 2015, 54:13801–13805.
Zhou, M, Tsumori, N, Li, Z, Fan, K, Andrews, L. OCBBCO: A neutral molecule with some boron‐boron triple bond character. J Am Chem Soc 2002, 124:12936–12937.
Papakondylis, A, Miliordos, E, Mavridis, A. Carbonyl boron and related systems: an ab initio study of B−X and YB⋮BY (1Σg+), where X = He, Ne, Ar, Kr, CO, CS, N2 and Y = Ar, Kr, CO, CS, N2. J Phys Chem A 2004, 108:4335–4340.
Ducati, LC, Takagi, N, Frenking, G. Molecules with all triple bonds: OCBBCO, N2BBN2 and [OBBBBO2]−. J Phys Chem A 2009, 113:11693–11698.
Koppe, R, Schnöckel, H. The boron–boron triple bond? A thermodynamic and force field based interpretation of the N‐heterocyclic carbene (NHC) stabilization procedure. Chem Sci 2015, 6:1199–1205.
Holzmann, N, Hermann, M, Frenking, G. The boron‐boron triple bond in NHC→B≡B←NHC. Chem Sci 2015, 6:4089–4094. The EDA‐NOCV results in this work slightly differ from the data in Table 13, because a different basis set was used.
Böhnke, J, Braunschweig, H, Constantinidis, P, Dellermann, T, Ewing, WC, Fischer, I, Hammond, K, Hupp, F, Mies, J, Schmitt, HC, Vargas, A. Experimental assessment of the strengths of B‐B triple bonds. J Am Chem Soc 2015, 137:1766–1769.
Perras, FA, Ewing, WC, Dellermann, T, Bohnke, J, Ullrich, S, Schafer, T, Braunschweig, H, Bryce, DL. Spying on the boron‐boron triple bond using spin‐spin coupling measured from 11B solid‐state NMR spectroscopy. Chem Sci 2015, 6:3378–3382.
The unpaired electrons in the X3Σg− state of B2 are in the 1πu and 1πu’ MOs which are orthogonal to each other (Figure 11). The planes of the two NHCMe ligands in B2(NHCMe)2 are also nearly perpendicular and therefore they can easily form π MOs. The dihedral angle between the ligand planes deviates from 90o and therefore, the π bonding contributions have different values.
Fleming, I. Frontier Orbitals and Organic Chemical Reactions. New York: John Wiley %26 Sons; 1976. A new edition has been published with the slightly altered title: Molecular Orbitals and Organic Chemical Reactions. New York: John Wiley & Sons; 2010.
Hermann, M, Goedecke, C, Jones, C, Frenking, G. Reaction pathways for addition of H2 to amido‐ditetrylynes R2N‐EE‐NR2 (E = Si, Ge, Sn). A theoretical study. Organometallics 2013, 32:6666–6673.