Addicoat,, M. A., Vankova,, N., Akter,, I. F., & Heine,, T. (2014). Extension of the universal force field to metal‐organic frameworks. Journal of Chemical Theory and Computation, 10, 880–891.
Allinger,, N. L., Yuh,, Y. H., & Lii,, J. H. (1989). Molecular mechanics. The MM3 force field for hydrocarbons. 1. Journal of the American Chemical Society, 111, 8551–8566.
Andersen,, H. C. (1980). Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics, 72, 2384–2393.
Bahr,, D. F., Reid,, J. A., Mook,, W. M., Bauer,, C. A., Stumpf,, R., Skulan,, A. J., … Allendorf,, M. D. (2007). Mechanical properties of cubic zinc carboxylate IRMOF‐1 metal‐organic framework crystals. Physical Review B, 76, 184106.
Baker,, J. (1986). An algorithm for the location of transition states. Journal of Computational Chemistry, 7, 385–395.
Balestra,, S. R. G., Bueno‐Perez,, R., Hamad,, S., Dubbeldam,, D., Ruiz‐Salvador,, A. R., & Calero,, S. (2016). Controlling thermal expansion: A metal‐organic frameworks route. Chemistry of Materials, 28, 8296–8304.
Banaszak,, B. J., Faller,, R., & de Pablo,, J. J. (2004). Simulation of the effects of chain architecture on the sorption of ethylene in polyethylene. The Journal of Chemical Physics, 120, 11304–11315.
Banlusan,, K., & Strachan,, A. (2017). First‐principles study of elastic mechanical responses to applied deformation of metal‐organic frameworks. The Journal of Chemical Physics, 146, 184705.
Bauer,, B. A., & Patel,, S. (2012). Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations. Theoretical Chemistry Accounts, 131, 1153.
Becker,, T. M., Heinen,, J., Dubbeldam,, D., Lin,, L.‐C., & Vlugt,, T. J. H. (2017). Polarizable force fields for CO2 and CH4 adsorption in M‐MOF‐74. Journal of Physical Chemistry C, 121, 4659–4673.
Bennett,, T. D., Cheetham,, A. K., Fuchs,, A. H., & Coudert,, F.‐X. (2017). Interplay between defects, disorder and flexibility in metal‐organic frameworks. Nature Chemistry, 9, 11–16.
Bennett,, T. D., Simoncic,, P., Moggach,, S. A., Gozzo,, F., Macchi,, P., Keen,, D. A., … Cheetham,, A. K. (2011). Reversible pressure‐induced amorphization of a zeolitic imidazolate framework (ZIF‐4). Chemical Communications, 47, 7983–7985.
Berendsen,, H. J. C., Postma,, J. P. M., van Gunsteren,, W. F., DiNola,, A., & Haak,, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.
Born,, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160–172.
Born,, M., & Huang,, K. (1954). Dynamics theory of crystal lattices. Oxford, England: Oxford University Press.
Botu,, V., Batra,, R., Chapman,, J., & Ramprasad,, R. (2017). Machine learning force fields: Construction, validation, and outlook. Journal of Physical Chemistry C, 121, 511–522.
Boyd,, P. G., Moosavi,, S. M., Witman,, M., & Smit,, B. (2017). Force‐field prediction of materials properties in metal‐organic frameworks. Journal of Physical Chemistry Letters, 8, 357–363.
Brennan,, J. K., & Madden,, W. G. (2002). Phase coexistence curves for off‐lattice polymer‐solvent mixtures: Gibbs‐ensemble simulations. Macromolecules, 35, 2827–2834.
Bristow,, J. K., Skelton,, J. M., Svane,, K. L., Walsh,, A., & Gale,, J. D. (2016). A general forcefield for accurate phonon properties of metal‐organic frameworks. Physical Chemistry Chemical Physics, 18, 29316–29329.
Bristow,, J. K., Tiana,, D., & Walsh,, A. (2014). Transferable force field for metal‐organic frameworks from first‐principles: BTW‐FF. Journal of Chemical Theory and Computation, 10, 4644–4652.
Bueno‐Pérez,, R., Calero,, S., Dubbeldam,, D., Ania,, C. O., Parra,, J. B., Zaderenko,, A. P., & Merkling,, P. J. (2012). Zeolite force fields and experimental siliceous frameworks in a comparative infrared study. Journal of Physical Chemistry C, 116, 25797–25805.
Bureekaew,, S., Amirjalayer,, S., Tafipolsky,, M., Spickermann,, C., Roy,, T. K., & Schmid,, R. (2013). MOF‐FF—A flexible first‐principles derived force field for metal‐organic frameworks. Physica Status Solidi (b), 250, 1128–1141.
Burtch,, N. C., Heinen,, J., Bennett,, T. D., Dubbeldam,, D., & Allendorf,, M. D. (2017). Mechanical properties in metal‐organic frameworks: Emerging opportunities and challenges for device functionality and technological applications. Advanced Materials, 1704124‐‐n/a, 1704124.
Burtch,, N. C., Jasuja,, H., Dubbeldam,, D., & Walton,, K. S. (2013). Investigating water and framework dynamics in pillared MOFs. Journal of the American Chemical Society, 135, 7172–7180.
Campa,, C., Mussard,, B., & Woo,, T. K. (2009). Electrostatic potential derived atomic charges for periodic systems using a modified error functional. Journal of Chemical Theory and Computation, 5, 2866–2878.
Campbell,, C., Ferreiro‐Rangel,, C. A., Fischer,, M., Gomes,, J. R. B., & Jorge,, M. (2017). A transferable model for adsorption in MOFs with unsaturated metal sites. Journal of Physical Chemistry C, 121, 441–458.
Canepa,, P., Tan,, K., Du,, Y., Lu,, H., Chabal,, Y. J., & Thonhauser,, T. (2015). Structural, elastic, thermal, and electronic responses of small‐molecule‐loaded metal‐organic framework materials. Journal of Materials Chemistry A, 3, 986–995.
Casco,, M. E., Cheng,, Y. Q., Daemen,, L. L., Fairen‐Jimenez,, D., Ramos‐Fernandez,, E. V., Ramirez‐Cuesta,, A. J., & Silvestre‐Albero,, J. (2016). Gate‐opening effect in ZIF‐8: The first experimental proof using inelastic neutron scattering. Chemical Communications, 52, 3639–3642.
Castillo,, J. M., Vlugt,, T. J. H., & Calero,, S. (2008). Understanding water adsorption in cu‐BTC metal‐organic frameworks. Journal of Physical Chemistry C, 112, 15934–15939.
Chang,, Z., Yang,, D.‐H., Xu,, J., Hu,, T.‐L., & Bu,, X.‐H. (2015). Flexible metal‐organic frameworks: Recent advances and potential applications. Advanced Materials, 27, 5432–5441.
Chempath,, S., Clark,, L. A., & Snurr,, R. Q. (2003). Two general methods for grand canonical ensemble simulation of molecules with internal flexibility. The Journal of Chemical Physics, 118, 7635–7643.
Chui,, S., Lo,, S., Charmant,, J., Orpen,, A., & Williams,, I. (1999). A chemically functionalizable nanoporous material [cu‐3(TMA)(2)(H2O)(3)](n). Science, 283, 1148–1150.
Chung,, Y. G., Camp,, J., Haranczyk,, M., Sikora,, B. J., Bury,, W., Krungleviciute,, V., … Snurr,, R. Q. (2014). Computation‐ready, experimental metal‐organic frameworks: A tool to enable high‐throughput screening of Nanoporous crystals. Chemistry of Materials, 26, 6185–6192.
Clavier,, G., Desbiens,, N., Bourasseau,, E., Lachet,, V., Brusselle‐Dupend,, N., & Rousseau,, B. (2017). Computation of elastic constants of solids using molecular simulation: Comparison of constant volume and constant pressure ensemble methods. Molecular Simulation, 1, 1–10.
Clegg,, W., Harbron,, D. R., Homan,, C. D., Hunt,, P. A., Little,, I. R., & Straughan,, B. P. (1991). Crystal structures of three basic zinc carboxylates together with infrared and FAB mass spectrometry studies in solution. Inorganica Chimica Acta, 186, 51–60.
Coudert,, F.‐X. (2015). Responsive metal‐organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chemistry of Materials, 27, 1905–1916.
Coudert,, F.‐X., Boutin,, A., Jeffroy,, M., Mellot‐Draznieks,, C., & Fuchs,, A. H. (2011). Thermodynamic methods and models to study flexible metal‐organic frameworks. Chemphyschem, 12, 247–258.
Coudert,, F.‐X., Jeffroy,, M., Fuchs,, A. H., Boutin,, A., & Mellot‐Draznieks,, C. (2008). Thermodynamics of guest‐induced structural transitions in hybrid organic‐inorganic frameworks. Journal of the American Chemical Society, 130, 14294–14302.
Coupry,, D. E., Addicoat,, M. A., & Heine,, T. (2016). Extension of the universal force field for metal‐organic frameworks. Journal of Chemical Theory and Computation, 12, 5215–5225.
Dauber‐Osguthorpe,, P., Roberts,, V. A., Osguthorpe,, D. J., Wolff,, J., Genest,, M., & Hagler,, A. T. (1988). Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system. Proteins: Structure, Function, and Bioinformatics, 4, 31–47.
Demontis,, P., Suffritti,, G. B., Quartieri,, S., Fois,, E. S., & Gamba,, A. (1988). Molecular dynamics studies on zeolites. 3. Dehydrated zeolite A. The Journal of Physical Chemistry, 92, 867–871.
Demuynck,, R., Rogge,, S. M. J., Vanduyfhuys,, L., Wieme,, J., Waroquier,, M., & Van‐Speybroeck,, V. (2017). Efficient Construction of Free Energy Profiles of Breathing Metal‐organic frameworks using advanced molecular dynamics simulations. Journal of Chemical Theory and Computation, 13, 5861.
Duane,, S., Kennedy,, A., Pendleton,, B. J., & Roweth,, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195, 216–222.
Dubbeldam,, D., Krishna,, R., & Snurr,, R. Q. (2009). Method for analyzing structural changes of flexible metal‐organic frameworks induced by adsorbates. Journal of Physical Chemistry C, 113, 19317–19327.
Dubbeldam,, D., Torres‐Knoop,, A., & Walton,, K. S. (2013). On the inner workings of Monte Carlo codes. Molecular Simulation, 39, 1253–1292.
Dubbeldam,, D., Walton,, K., Ellis,, D., & Snurr,, R. (2007). Exceptional negative thermal expansion in isoreticular metal‐organic frameworks. Angewandte Chemie, International Edition, 46, 4496–4499.
Dzubak,, A. L., Lin,, L.‐C., Kim,, J., Swisher,, J. A., Poloni,, R., Maximoff,, S. N., … Gagliardi,, L. (2012). Ab initio carbon capture in open‐site metal‐organic frameworks. Nature Chemistry, 4, 810–816.
Eddaoudi,, M., Kim,, J., Rosi,, N., Vodak,, D., Wachter,, J., O`Keeffe,, M., & Yaghi,, O. M. (2002). Design and synthesis of an exceptionally stable and highly porous metal‐organic framework. Science, 295, 469–472.
Evans,, J. D., Bocquet,, L., & Coudert,, F.‐X. (2016). Origins of negative gas adsorption. Chem, 1, 873–886.
Evans,, J. D., & Coudert,, F.‐X. (2017). Predicting the mechanical properties of zeolite frameworks by machine learning. Chemistry of Materials, 29, 7833–7839.
Evans,, J. D., Huang,, D. M., Haranczyk,, M., Thornton,, A. W., Sumby,, C. J., & Doonan,, C. J. (2016). Computational identification of organic porous molecular crystals. CrystEngComm, 18, 4133–4141.
Fairen‐Jimenez,, D., Moggach,, S. A., Wharmby,, M. T., Wright,, P. A., Parsons,, S., & Düren,, T. (2011). Opening the gate: Framework flexibility in ZIF‐8 explored by experiments and simulations. Journal of the American Chemical Society, 133, 8900–8902.
Fang,, H., Demir,, H., Kamakoti,, P., & Sholl,, D. S. (2014). Recent developments in first‐principles force fields for molecules in nanoporous materials. Journal of Materials Chemistry A, 2, 274–291.
Farha,, O. K., Eryazici,, I., Jeong,, N. C., Hauser,, B. G., Wilmer,, C. E., Sarjeant,, A. A., … Hupp,, J. T. (2012). Metal‐organic framework materials with ultrahigh surface areas: Is the sky the limit? Journal of the American Chemical Society, 134, 15016–15021.
Fay,, P. J., & Ray,, J. R. (1992). Monte Carlo simulations in the isoenthalpic‐isotension‐isobaric ensemble. Physical Review A, 46, 4645–4649.
Feller,, S. E., Zhang,, Y., Pastor,, R. W., & Brooks,, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics, 103, 4613–4621.
Frenkel,, D., & Smit,, B. (2002). Understanding molecular simulation: From algorithms to applications (2nd ed.). Academic Press.
Gaillac,, R., Pullumbi,, P., & Coudert,, F.‐X. (2016). ELATE: An open‐source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28, 275201.
Gao,, G., Workum,, K. V., Schall,, J. D., & Harrison,, J. A. (2006). Elastic constants of diamond from molecular dynamics simulations. Journal of Physics: Condensed Matter, 18, S1737–S1750.
Garcia‐Perez,, E., Serra‐Crespo,, P., Hamad,, S., Kapteijn,, F., & Gascon,, J. (2014). Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field. Physical Chemistry Chemical Physics, 16, 16060–16066.
Gasteiger,, J., & Marsili,, M. (1978). A new model for calculating atomic charges in molecules. Tetrahedron Letters, 19, 3181–3184.
Gasteiger,, J., & Marsili,, M. (1980). Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron, 36, 3219–3228.
Ghoufi,, A., Subercaze,, A., Ma,, Q., Yot,, P., Ke,, Y., Puente‐Orench,, I., … Maurin,, G. (2012). Comparative guest, thermal, and mechanical breathing of the porous metal organic framework MIL‐53(Cr): A computational exploration supported by experiments. Journal of Physical Chemistry C, 116, 13289–13295.
Graben,, H. W., & Ray,, J. R. (1991). Unified treatment of adiabatic ensembles. Physical Review A, 43, 4100–4103.
Greathouse,, J. A., & Allendorf,, M. D. (2006). The interaction of water with MOF‐5 simulated by molecular dynamics. Journal of the American Chemical Society, 128, 10678–10679.
Greathouse,, J. A., & Allendorf,, M. D. (2008). Force field validation for molecular dynamics simulations of IRMOF‐1 and other Isoreticular zinc carboxylate coordination polymers. Journal of Physical Chemistry C, 112, 5795–5802.
Grosch,, J. S., & Paesani,, F. (2012). Molecular‐level characterization of the breathing behavior of the jungle‐gym‐type DMOF‐1 metal–organic framework. Journal of the American Chemical Society, 134, 4207–4215.
Hamad,, S., Balestra,, S. R., Bueno‐Perez,, R., Calero,, S., & Ruiz‐Salvador,, A. R. (2015). Atomic charges for modeling metal‐organic frameworks: Why and how. Journal of Solid State Chemistry, 223, 144–151.
Han,, S. S., & Goddard, III, W. A. (2007). Metal‐organic frameworks provide large negative thermal expansion behavior. Journal of Physical Chemistry C, 111, 15185–15191.
Heinen,, J., Burtch,, N. C., Walton,, K. S., & Dubbeldam,, D. (2017). Flexible force field parameterization through fitting on the ab initio derived elastic tensor. Journal of Chemical Theory and Computation, 13, 3722–3730.
Heinen,, J., Burtch,, N. C., Walton,, K. S., Fonseca‐Guerra,, C., & Dubbeldam,, D. (2016). Predicting multicomponent adsorption isotherms in open‐metal site materials using force field calculations based on energy decomposed density functional theory. Chemistry ‐ A European Journal, 22, 18045–18050.
Heinen,, J., & Dubbeldam,, D. (2016). Understanding and solving disorder in the substitution pattern of amino functionalized MIL‐47(V). Dalton Transactions, 45, 4309–4315.
Hermes,, S., Schroder,, F., Amirjalayer,, S., Schmid,, R., & Fischer,, R. A. (2006). Loading of porous metal‐organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type [LnM]a@MOF‐5. Journal of Materials Chemistry, 16, 2464–2472.
Hill,, J.‐R., & Sauer,, J. (1995). Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. Aluminosilicates. The Journal of Physical Chemistry, 99, 9536–9550.
Hirshfeld,, F. L. (1977). Bonded‐atom fragments for describing molecular charge densities. Theoretica Chimica Acta, 44, 129–138.
Huan,, T. D., Batra,, R., Chapman,, J., Krishnan,, S., Chen,, L., & Ramprasad,, R. (2017). A universal strategy for the creation of machine learning‐based atomistic force fields. npj Computational Materials, 3, 37.
Huang,, L., Wang,, H., Chen,, J., Wang,, Z., Sun,, J., Zhao,, D., & Yan,, Y. (2003). Synthesis, morphology control, and properties of porous metal‐organic coordination polymers. Microporous and Mesoporous Materials, 58, 105–114.
Huang,, Y.‐B., Liang,, J., Wang,, X.‐S., & Cao,, R. (2017). Multifunctional metal‐organic framework catalysts: Synergistic catalysis and tandem reactions. Chemical Society Reviews, 46, 126–157.
Jenkins,, R., & Snyder,, R. L. (1996). Introduction to X‐ray powder diffractometry. New York, NY: John Wiley %26 Sons.
Jensen,, F. (2009). Introduction to computational chemistry. John Wiley %26 Sons.
Jorgensen,, W. L., Maxwell,, D. S., & Tirado‐Rives,, J. (1996). Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225–11236.
Jorgensen,, W. L., & Tirado‐Rives,, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657–1666.
Kamb,, W. B. (1961). The thermodynamic theory of nonhydrostatically stressed solids. Journal of Geophysical Research, 66, 259–271.
Kittel,, C. (2005). Introduction to solid state physics. John Wiley %26 Sons.
Koike,, J. (1993). Elastic instability of crystals caused by static atom displacement: A mechanism for solid‐state amorphization. Physical Review B, 47, 7700–7704.
Krause,, S., Bon,, V., Senkovska,, I., Stoeck,, U., Wallacher,, D., Többens,, D. M., … Kaskel,, S. (2016). A pressure‐amplifying framework material with negative gas adsorption transitions. Nature, 532, 348–352.
Kreno,, L. E., Leong,, K., Farha,, O. K., Allendorf,, M., Van Duyne,, R. P., & Hupp,, J. T. (2012). Metal‐organic framework materials as chemical sensors. Chemical Reviews, 112, 1105–1125.
Kulkarni,, A. R., & Sholl,, D. S. (2016). Screening of copper open metal site MOFs for olefin/paraffin separations using DFT‐derived force fields. Journal of Physical Chemistry C, 120, 23044–23054.
Leach,, A. R. (2001). Molecular modelling principles and applications (2nd ed.). Harlow, England: Prentice‐Hall.
Ledbetter,, H. (2006). Sound velocities, elastic constants: Temperature dependence. Materials Science and Engineering A, 442, 31–34.
Li,, H., Eddaoudi,, M., O`Keeffe,, M., & Yaghi,, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal‐organic framework. Nature, 402, 276–279.
Li,, J.‐R., Kuppler,, R. J., & Zhou,, H.‐C. (2009). Selective gas adsorption and separation in metal‐organic frameworks. Chemical Society Reviews, 38, 1477–1504.
Li,, J.‐R., Sculley,, J., & Zhou,, H.‐C. (2012). Metal‐organic frameworks for separations. Chemical Reviews, 112, 869–932.
Li,, Y., Li,, H., Pickard,, F. C., Narayanan,, B., Sen,, F. G., Chan,, M. K. Y., … Roux,, B. (2017). Machine learning force field parameters from ab initio data. Journal of Chemical Theory and Computation, 13, 4492–4503.
Li,, Z., Kermode,, J. R., & De Vita,, A. (2015). Molecular dynamics with on‐the‐fly machine learning of quantum‐mechanical forces. Physical Review Letters, 114, 096405.
Llewellyn,, P. L., Maurin,, G., Devic,, T., Loera‐Serna,, S., Rosenbach,, N., Serre,, C., … Férey,, G. (2008). Prediction of the conditions for breathing of metal organic framework materials using a combination of X‐ray powder diffraction, microcalorimetry, and molecular simulation. Journal of the American Chemical Society, 130, 12808–12814.
Lock,, N., Wu,, Y., Christensen,, M., Cameron,, L. J., Peterson,, V. K., Bridgeman,, A. J., … Iversen,, B. B. (2010). Elucidating negative thermal expansion in MOF‐5. Journal of Physical Chemistry A, 114, 16181–16186.
Lutsko,, J. F. (1989). Generalized expressions for the calculation of elastic constants by computer simulation. Journal of Applied Physics, 65, 2991–2997.
Manz,, T. A., & Sholl,, D. S. (2010). Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. Journal of Chemical Theory and Computation, 6, 2455–2468.
Manz,, T. A., & Sholl,, D. S. J. (2012). Improved atoms‐in‐molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. Journal of Chemical Theory and Computation, 8, 2844–2867.
Marcus,, P. M., Ma,, H., & Qiu,, S. L. (2002). On the importance of the free energy for elasticity under pressure. Journal of Physics: Condensed Matter, 14, L525.
Marcus,, P. M., & Qiu,, S. L. (2004). Reply to comment on `On the importance of the free energy for elasticity under pressure’. Journal of Physics: Condensed Matter, 16, 8787.
Marcus,, P. M., & Qiu,, S. L. (2009). Elasticity in crystals under pressure. Journal of Physics: Condensed Matter, 21, 115401.
Martin,, M. G., & Siepmann,, J. I. (1998). Transferable potentials for phase equilibria. 1. United‐atom description of n‐alkanes. The Journal of Physical Chemistry. B, 102, 2569–2577.
Martin,, M. G., & Siepmann,, J. I. (1999). Novel configurational‐bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United‐atom description of branched alkanes. The Journal of Physical Chemistry. B, 103, 4508–4517.
Martyna,, G. J., Tobias,, D. J., & Klein,, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101, 4177–4189.
Martyna,, G. J., Tuckerman,, M. E., Tobias,, D. J., & Klein,, M. L. (1996). Explicit reversible integrators for extended systems dynamics. Molecular Physics, 87, 1117–1157.
Mayo,, S. L., Olafson,, B. D., & Goddard,, W. A. (1990). DREIDING: A generic force field for molecular simulations. The Journal of Physical Chemistry, 94, 8897–8909.
McCall,, J. (2005). Genetic algorithms for modelling and optimisation. Journal of Computational and Applied Mathematics, 184, 205–222 Special Issue on Mathematics Applied to Immunology.
Mehta,, M., & Kofke,, D. A. (1994). Coexistence diagrams of mixtures by molecular simulation. Chemical Engineering Science, 49, 2633–2645.
Miller,, W., Smith,, C. W., Mackenzie,, D. S., & Evans,, K. E. (2009). Negative thermal expansion: A review. Journal of Materials Science, 44, 5441–5451.
Ming‐cai,, Y., Chi‐wei,, W., Chang‐chun,, A., Liang‐jie,, Y., & Ju‐tang,, S. (2004). Synthesis and crystal structure of tetranuclear zinc benzoate. Wuhan University Journal of Natural Sciences, 9, 939–942.
Mouhat,, F., Bousquet,, D., Boutin,, A., Boussel du Bourg,, L., Coudert,, F.‐X., & Fuchs,, A. H. (2015). Softening upon adsorption in microporous materials: A counterintuitive mechanical response. Journal of Physical Chemistry Letters, 6, 4265–4269.
Munn,, A. S., Pillai,, R. S., Biswas,, S., Stock,, N., Maurin,, G., & Walton,, R. I. (2016). The flexibility of modified‐linker MIL‐53 materials. Dalton Transactions, 45, 4162–4168.
Munn,, R. W. (1972). Ro1e of the elastic constants in negative thermal expansion of axial solids. Journal of Physics C: Solid State Physics, 5, 535–542.
Neimark,, A. V., Coudert,, F.‐X., Boutin,, A., & Fuchs,, A. H. (2010). Stress‐based model for the breathing of metal‐organic frameworks. Journal of Physical Chemistry Letters, 1, 445–449.
Neimark,, A. V., Coudert,, F.‐X., Triguero,, C., Boutin,, A., Fuchs,, A. H., Beurroies,, I., & Denoyel,, R. (2011). Structural transitions in MIL‐53 (Cr): View from outside and inside. Langmuir, 27, 4734–4741.
Nicholas,, J. B., Hopfinger,, A. J., Trouw,, F. R., & Iton,, L. E. (1991). Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field. Journal of the American Chemical Society, 113, 4792–4800.
Nicholson,, D., & Parsonage,, N. G. (1988). Computer simulation and the statistical mechanics of adsorption. New York: Academic Press.
Nos,, S., & Klein,, M. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50, 1055–1076.
Nye,, J. F. (1957). Physical properties of crystals. Oxford University Press.
Ortiz,, A. U., Boutin,, A., Fuchs,, A. H., & Coudert,, F.‐X. (2012). Anisotropic elastic properties of flexible metal‐organic frameworks: How soft are soft porous crystals? Physical Review Letters, 109, 195502.
Ortiz,, A. U., Boutin,, A., Fuchs,, A. H., & Coudert,, F.‐X. (2013a). Investigating the pressure‐induced amorphization of zeolitic imidazolate framework ZIF‐8: Mechanical instability due to shear mode softening. Journal of Physical Chemistry Letters, 4, 1861–1865.
Ortiz,, A. U., Boutin,, A., Fuchs,, A. H., & Coudert,, F.‐X. (2013b). Metal‐organic frameworks with wine‐rack motif: What determines their flexibility and elastic properties? The Journal of Chemical Physics, 138, 174703.
Parrinello,, M., & Rahman,, A. (1980). Crystal structure and pair potentials: A molecular‐dynamics study. Physical Review Letters, 45, 1196–1199.
Parrinello,, M., & Rahman,, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.
Parrinello,, M., & Rahman,, A. (1982). Strain fluctuations and elastic constants. The Journal of Chemical Physics, 76, 2662–2666.
Quigley,, D., & Probert,, M. I. J. (2004). Langevin dynamics in constant pressure extended systems. The Journal of Chemical Physics, 120, 11432–11441.
Rappe,, A. K., Casewit,, C. J., Colwell,, K. S., Goddard,, W. A., & Skiff,, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114, 10024–10035.
Rappe,, A. K., & Goddard,, W. A. (1991). Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95, 3358–3363.
Ray,, J. R. (1988). Elastic constants and statistical ensembles in molecular dynamics. Computer Physics Reports, 8, 109–151.
Ray,, J. R. (2005). Ensembles and computer simulation calculation of response functions. In S. Yip, (Ed.), Handbook of materials modeling: Methods (pp. 729–743). Dordrecht, the Netherlands: Springer Netherlands.
Ray,, J. R., & Graben,, H. W. (1990). Fourth adiabatic ensemble. The Journal of Chemical Physics, 93, 4296–4298.
Ray,, J. R., & Rahman,, A. (1984). Statistical ensembles and molecular dynamics studies of anisotropic solids. The Journal of Chemical Physics, 80, 4423–4428.
Ray,, J. R., & Rahman,, A. (1985). Statistical ensembles and molecular dynamics studies of anisotropic solids. II. The Journal of Chemical Physics, 82, 4243–4247.
Rehn,, L. E., Okamoto,, P. R., Pearson,, J., Bhadra,, R., & Grimsditch,, M. (1987). Solid‐state amorphization of Zr$_3$al: Evidence of an elastic instability and first‐order phase transformation. Physical Review Letters, 59, 2987–2990.
Rogge,, S., Vanduyfhuys,, L., Ghysels,, A., Waroquier,, M., Verstraelen,, T., Maurin,, G., & Van Speybroeck,, V. (2015). A comparison of barostats for the mechanical characterization of metal‐organic frameworks. Journal of Chemical Theory and Computation, 11, 5583–5597.
Rowsell,, J. L., & Yaghi,, O. M. (2004). Metal‐organic frameworks: A new class of porous materials. Microporous and Mesoporous Materials, 73, 3–14.
Rowsell,, J. L. C., Spencer,, E. C., Eckert,, J., Howard,, J. A. K., & Yaghi,, O. M. (2005). Gas adsorption sites in a large‐pore metal‐organic framework. Science, 309, 1350–1354.
Ryder,, M. R., Civalleri,, B., Bennett,, T. D., Henke,, S., Rudić,, S., Cinque,, G., … Tan,, J.‐C. (2014). Identifying the role of terahertz vibrations in metal‐organic frameworks: From gate‐opening phenomenon to shear‐driven structural destabilization. Physical Review Letters, 113, 215502.
Ryder,, M. R., Civalleri,, B., Cinque,, G., & Tan,, J.‐C. (2016). Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST‐1 metal‐organic framework. CrystEngComm, 18, 4303–4312.
Ryder,, M. R., Civalleri,, B., & Tan,, J.‐C. (2016). Isoreticular zirconium‐based metal‐organic frameworks: Discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 18, 9079–9087.
Samanta,, A., Furuta,, T., & Li,, J. (2006). Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal‐organic framework materials. The Journal of Chemical Physics, 125, 084714.
Santander,, J. E., Tsapatsis,, M., & Auerbach,, S. M. (2013). Simulating adsorptive expansion of zeolites: Application to biomass‐derived solutions in contact with Silicalite. Langmuir, 29, 4866–4876.
Sayetat,, F., Fertey,, P., & Kessler,, M. (1998). An easy method for the determination of Debye temperature from thermal expansion analyses. Journal of Applied Crystallography, 31, 121–127.
Schneemann,, A., Bon,, V., Schwedler,, I., Senkovska,, I., Kaskel,, S., & Fischer,, R. A. (2014). Flexible metal‐organic frameworks. Chemical Society Reviews, 43, 6062–6096.
Sengupta,, S., Nielaba,, P., Rao,, M., & Binder,, K. (2000). Elastic constants from microscopic strain fluctuations. Physical Review E, 61, 1072–1080.
Serre,, C., Mellot‐Draznieks,, C., Surblé,, S., Audebrand,, N., Filinchuk,, Y., & Férey,, G. (2007). Role of solvent‐host interactions that lead to very large swelling of hybrid frameworks. Science, 315, 1828–1831.
Serre,, C., Millange,, F., Thouvenot,, C., Nogus,, M., Marsolier,, G., Lour,, D., & Frey,, G. (2002). Very large breathing effect in the first nanoporous chromium(III)‐based solids: MIL‐53 or CrIII(OH)·O2C−C6H4−CO2·HO2C−C6H4−CO2Hx·H2Oy. Journal of the American Chemical Society, 124, 13519–13526.
Shi,, W., & Maginn,, E. J. (2007). Continuous fractional component Monte Carlo: An adaptive biasing method for open system atomistic simulations. Journal of Chemical Theory and Computation, 3, 1451–1463.
Stassen,, I., Burtch,, N., Talin,, A., Falcaro,, P., Allendorf,, M., & Ameloot,, R. (2017). An updated roadmap for the integration of metal‐organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 46, 3185–3241.
Steinle‐Neumann,, G., & Cohen,, R. E. (2004). Comment on `On the importance of the free energy for elasticity under pressure’. Journal of Physics: Condensed Matter, 16, 8783.
Sun,, L., & Deng,, W.‐Q. (2017). Recent developments of first‐principles force fields. WIREs Computational Molecular Science, 7, 1–15.
Tafipolsky,, M., Amirjalayer,, S., & Schmid,, R. (2007). Ab initio parametrized MM3 force field for the metal‐organic framework MOF‐5. Journal of Computational Chemistry, 28, 1169–1176.
Tafipolsky,, M., & Schmid,, R. (2009). Systematic first principles parameterization of force fields for metal−organic frameworks using a genetic algorithm approach. The Journal of Physical Chemistry. B, 113, 1341–1352.
Takenaka,, K. (2012). Negative thermal expansion materials: Technological key for control of thermal expansion. Science and Technology of Advanced Materials, 13, 013001.
Tan,, J.‐C., Civalleri,, B., Lin,, C.‐C., Valenzano,, L., Galvelis,, R., Chen,, P.‐F., … Cheetham,, A. K. (2012). Exceptionally low shear modulus in a prototypical imidazole‐based metal‐organic framework. Physical Review Letters, 108, 095502.
Tanaka,, S., Fujita,, K., Miyake,, Y., Miyamoto,, M., Hasegawa,, Y., Makino,, T., … Denayer,, J. F. M. (2015). Adsorption and diffusion phenomena in crystal size engineered ZIF‐8 MOF. Journal of Physical Chemistry C, 119, 28430–28439.
Torres‐Knoop,, A., Balaji,, S. P., Vlugt,, T. J. H., & Dubbeldam,, D. (2014). A comparison of advanced Monte Carlo methods for open systems: CFCMC vs CBMC. Journal of Chemical Theory and Computation, 10, 942–952.
Vanduyfhuys,, L., Vandenbrande,, S., Verstraelen,, T., Schmid,, R., Waroquier,, M., & Van Speybroeck,, V. (2015). QuickFF: A program for a quick and easy derivation of force fields for metal‐organic frameworks from ab initio input. Journal of Computational Chemistry, 36, 1015–1027.
Vanduyfhuys,, L., Verstraelen,, T., Vandichel,, M., Waroquier,, M., & Van Speybroeck,, V. (2012). Ab initio parametrized force field for the flexible metal‐organic framework MIL‐53(al). Journal of Chemical Theory and Computation, 8, 3217–3231.
Voigt,, W. (1910). Lehrbuch der Kristallphysiki. Leipzig and Berlin, Germany: B. G, Teubner.
Wallace,, D. C. (1972). Thermodynamics of crystals. John Wiley %26 Sons.
Walton,, K. S., Millward,, A. R., Dubbeldam,, D., Frost,, H., Low,, J. J., Yaghi,, O. M., & Snurr,, R. Q. (2008). Understanding inflections and steps in carbon dioxide adsorption isotherms in metal‐organic frameworks. Journal of the American Chemical Society, 130, 406–407.
Wang,, Y., Wang,, J. J., Zhang,, H., Manga,, V. R., Shang,, S. L., Chen,, L.‐Q., & Liu,, Z.‐K. (2010). A first‐principles approach to finite temperature elastic constants. Journal of Physics: Condensed Matter, 22, 225404.
Weiner,, P. K., & Kollman,, P. A. (1981). AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry, 2, 287–303.
Weiner,, S. J., Kollman,, P. A., Case,, D. A., Singh,, U. C., Ghio,, C., Alagona,, G., … Weiner,, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106, 765–784.
Wilmer,, C. E., & Snurr,, R. Q. (2011). Towards rapid computational screening of metal‐organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration. The Chemical Engineering Journal, 171, 775–781.
Wolf,, R. J., Lee,, M. W., & Davis,, R. C. (1993). Pressure‐composition isotherms for palladium hydride. Physical Review B, 48, 12415–12418.
Workum,, K. V., & Pablo,, J. J. d. (2003). Improved simulation method for the calculation of the elastic constants of crystalline and amorphous systems using strain fluctuations. Physical Review E, 67, 011505.
Wu,, X., Huang,, J., Cai,, W., & Jaroniec,, M. (2014). Force field for ZIF‐8 flexible frameworks: Atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2. RSC Advances, 4, 16503–16511.
Wu,, Y., Kobayashi,, A., Halder,, G., Peterson,, V., Chapman,, K., Lock,, N., … Kepert,, C. (2008). Negative thermal expansion in the metal‐organic framework material Cu3(1,3,5‐benzenetricarboxylate)2. Angewandte Chemie, International Edition, 47, 8929–8932.
Yaghi,, O. M., O`Keeffe,, M., Ockwig,, N. W., Chae,, H. K., Eddaoudi,, M., & Kim,, J. (2003). Reticular synthesis and the design of new materials. Nature, 423, 705–714.
Zhao,, L., Yang,, Q., Ma,, Q., Zhong,, C., Mi,, J., & Liu,, D. (2011). A force field for dynamic cu‐BTC metal‐organic framework. Journal of Molecular Modeling, 17, 227–234.
Zhao,, Y., Song,, Z., Li,, X., Sun,, Q., Cheng,, N., Lawes,, S., & Sun,, X. (2016). Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2, 35–62.
Zheng,, C., Liu,, D., Yang,, Q., Zhong,, C., & Mi,, J. (2009). Computational study on the influences of framework charges on CO2 uptake in metal‐organic frameworks. Industrial and Engineering Chemistry Research, 48, 10479–10484.
Zhou,, H.‐C., Long,, J. R., & Yaghi,, O. M. (2012). Introduction to metal‐organic frameworks. Chemical Reviews, 112, 673–674.
Zhou,, W., Wu,, H., Yildirim,, T., Simpson,, J. R., & Walker,, A. R. H. (2008). Origin of the exceptional negative thermal expansion in metal‐organic framework‐5 Zn4O(1, 4 ‐ benzenedicarboxylate)3. Physical Review B, 78, 054114.
Zimmerman,, J. A., Bammann,, D. J., & Gao,, H. (2009). Deformation gradients for continuum mechanical analysis of atomistic simulations. International Journal of Solids and Structures, 46, 238–253.