Dunning, TH Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007–1023.

Kendall, RA, Dunning, TH, Harrison, RJ. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J Chem Phys. 1992;96:6796–6806.

Dunning, T Jr, Peterson, KA, Wilson, A. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J Chem Phys. 2001;114:9244–9253.

Peterson, KA, Adler, TB, Werner, H‐J. Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B‐Ne, and Al‐Ar. J Chem Phys. 2008;128:084102.

Peterson, KA, Kesharwani, MK, Martin, JML. The cc‐pV5Z‐F12 basis set: Reaching the basis set limit in explicitly correlated calculations. Mol Phys. 2015;113:1551–1558.

Sylvetsky, N, Peterson, KA, Karton, A, Martin, JML. Toward a W4‐F12 approach: Can explicitly correlated and orbital‐based *ab initio* CCSD(T) limits be reconciled? J Chem Phys. 2016;144:214101–214114.

Bak, KL, Jørgensen, P, Olsen, J, Helgaker, T, Klopper, W. Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations. J Chem Phys. 2000;112:9229–9242.

Klopper, W. Highly accurate coupled‐cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques. Mol Phys. 2001;99:481–507.

Pulay, P. Localizability of dynamic electron correlation. Chem Phys Lett. 1983;100:151–154.

Saebø, S, Pulay, P. Local configuration‐interaction: An efficient approach for larger molecules. Chem Phys Lett. 1985;113:13–18.

Pulay, P, Saebø, S. Orbital‐invariant formulation and second‐order gradient evaluation in Møller‐Plesset perturbation theory. Theor Chim Acta. 1986;69:357–368.

Saebø, S, Pulay, P. Fourth‐order Møller‐Plesset perturbation theory in the local correlation treatment. I. Method. J Chem Phys. 1987;86:914–922.

Saebø, S, Pulay, P. The local correlation treatment. II. Implementation and tests. J Chem Phys. 1988;88:1884–1890.

Saebø, S, Pulay, P. Local treatment of electron correlation. Annu Rev Phys Chem. 1993;44:213–236.

Maslen, PE, Head‐Gordon, M. Non‐iterative local second order Møller–Plesset theory. Chem Phys Lett. 1998;283:102–180.

Maslen, PE, Head‐Gordon, M. Noniterative local second order Møller–Plesset theory: Convergence with local correlation space. J Chem Phys. 1998;109:7093–7099.

Ayala, PY, Scuseria, GE. Linear scaling second‐order Møller‐Plesset theory in the atomic orbital basis for large molecular systems. J Chem Phys. 1999;110:3660–3671.

Scuseria, GE, Ayala, PY. Linear scaling coupled cluster and perturbation theories in the atomic orbital basis. J Chem Phys. 1999;111:8330–8343.

Auer, A, Nooijen, M. Dynamically screened local correlation method using enveloping localized orbitals. J Chem Phys. 2006;125:024104.

Russ, NJ, Crawford, TD. Local correlation in coupled cluster calculations of molecular response properties. Chem Phys Lett. 2004;400:104–111.

Maslen, PE, Dutoi, AD, Lee, MS, Shao, Y, Head‐Gordon, M. Accurate local approximations to the triples correlation energy: Formulation, implementation and tests of 5th‐order scaling models. Mol Phys. 2005;103:425–437.

DiStasio, RA, Jung, YS, Head‐Gordon, M. A resolution‐of‐the‐identity implementation of the local triatomics‐in‐molecules model for second‐order Møller‐Plesset perturbation theory with application to alanine tetrapeptide conformational energies. J Chem Theory Comput. 2005;1:862–876.

Subotnik, JE, Head‐Gordon, M. A local correlation model that yields intrinsically smooth potential‐energy surfaces. J Chem Phys. 2005;123:064108.

Lawler, KV, Parkhill, JA, Head‐Gordon, M. Penalty functions for combining coupled‐cluster and perturbation amplitudes in local correlation methods with optimized orbitals. Mol Phys. 2008;106:2309–2324.

Schweizer, S, Kussmann, J, Doser, B, Ochsenfeld, C. Linear‐scaling Cholesky decomposition. J Comput Chem. 2008;29:1004–1010.

Schweizer, S, Doser, B, Ochsenfeld, C. An atomic orbital‐based reformulation of energy gradients in second‐order Møller‐Plesset perturbation theory. J Chem Phys. 2008;128:154101.

Doser, B, Lambrecht, DS, Kussmann, J, Ochsenfeld, C. Linear‐scaling atomic orbital‐based second‐order Møller–Plesset perturbation theory by rigorous integral screening criteria. J Chem Phys. 2009;130:064107.

Doser, B, Zienau, J, Clin, L, Lambrecht, DS, Ochsenfeld, C. A linear‐scaling MP2 method for large molecules by rigorous integral‐screening criteria. Z Phys Chem. 2010;224:397–412.

Maschio, L. Local MP2 with density fitting for periodic systems: A parallel implementation. J Chem Theory Comput. 2011;7:2818–2830.

Hampel, C, Werner, H‐J. Local treatment of electron correlation in coupled cluster theory. J Chem Phys. 1996;104:6286–6297.

Hetzer, G, Pulay, P, Werner, H‐J. Multipole approximation of distant pair energies in local MP2 calculations. Chem Phys Lett. 1998;290:143–149.

Hetzer, G, Schütz, M, Stoll, H, Werner, H‐J. Low‐order scaling local correlation methods II: Splitting the coulomb operator in linear scaling local second‐order Møller‐Plesset perturbation theory. J Chem Phys. 2000;113:9443–9455.

Schütz, M, Rauhut, G, Werner, H‐J. Local treatment of electron correlation in molecular clusters: Structures and stabilities of (H_{2}O)_{n}, n = 2–4. J Phys Chem A. 1998;102:5997–6003.

Schütz, M, Hetzer, G, Werner, H‐J. Low‐order scaling local electron correlation methods. I. Linear scaling local MP2. J Chem Phys. 1999;111:5691–5705.

Schütz, M, Werner, H‐J. Local perturbative triples correction (T) with linear cost scaling. Chem Phys Lett. 2000;318:370–378.

Schütz, M. Low‐order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T). J Chem Phys. 2000;113:9986–10001.

Schütz, M, Werner, H‐J. Low‐order scaling local electron correlation methods. IV. Linear scaling local coupled‐cluster (LCCSD). J Chem Phys. 2001;114:661–681.

Schütz, M. Linear scaling local connected triples beyond local (T): Local CCSDT‐1b with O(N) scaling. J Chem Phys. 2002;116:8772–8785.

Schütz, M. A new, fast, semi‐direct implementation of linear scaling local coupled cluster theory. Phys Chem Chem Phys. 2002;4:3941–3947.

Schütz, M, Manby, FR. Linear scaling local coupled cluster theory with density fitting. I: 4‐external integrals. Phys Chem Chem Phys. 2003;5:3349–3358.

Werner, H‐J, Manby, FR, Knowles, P. Fast linear scaling second‐order Møller‐Plesset perturbation theory (MP2) using local and density fitting approximations. J Chem Phys. 2003;118:8149–8160.

Schütz, M, Werner, H‐J, Lindh, R, Manby, FR. Analytical energy gradients for local second‐order Møller‐Plesset perturbation theory using density fitting approximations. J Chem Phys. 2004;121:737–750.

Werner, H‐J, Pflüger, K. On the selection of domains and orbital pairs in local correlation treatments. Ann Rep Comput Chem. 2006;2:53–80.

Mata, R, Werner, H‐J. Calculation of smooth potential energy surfaces using local electron correlation methods. J Chem Phys. 2006;125:184110.

Mata, R, Werner, H‐J. Local correlation methods with a natural localized molecular orbital basis. Mol Phys. 2007;105:2753–2761.

Mata, RA, Werner, H‐J, Thiel, S, Thiel, W. Towards accurate barriers for enzymatic reactions: QM/MM case study on *p*‐hydroxybenzoate hydroxylase. J Chem Phys. 2008;128:025104.

Mata, R, Werner, H‐J, Schütz, M. Correlation regions within a localized molecular orbital approach. J Chem Phys. 2008;128:144106.

Werner, H‐J, Schütz, M. An efficient local coupled cluster method for accurate thermochemistry of large systems. J Chem Phys. 2011;135:144116.

Krause, C, Werner, H‐J. Comparison of explicitly correlated local coupled‐cluster methods with various choices of virtual orbitals. Phys Chem Chem Phys. 2012;14:7591–7604.

Werner, H‐J, Knizia, G, Krause, C, Schwilk, M, Dornbach, M. Scalable electron correlation methods I.: PNO‐LMP2 with linear scaling in the molecular size and near‐inverse‐linear scaling in the number of processors. J Chem Theory Comput. 2015;11:484–507.

Schwilk, M, Usvyat, D, Werner, H‐J. Communication: Improved pair approximations in local coupled‐cluster methods. J Chem Phys. 2015;142:121102.

Köppl, C, Werner, H‐J. On the use of abelian point group symmetry in density‐fitted local MP2 using various types of virtual orbitals. J Chem Phys. 2015;142:164108.

Ma, Q, Werner, H‐J. Scalable electron correlation methods. 2. Parallel PNO‐LMP2‐F12 with near linear scaling in the molecular size. J Chem Theory Comput. 2015;11:5291–5304.

Schwilk, M, Ma, Q, Köppl, C, Werner, H‐J. Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO‐LCCSD). J Chem Theory Comput. 2017;13:3650–3675.

Ma, Q, Schwilk, M, Köppl, C, Werner, H‐J. Scalable electron correlation methods. 4. Parallel explicitly correlated local coupled cluster with pair natural orbitals (PNO‐LCCSD‐F12). J Chem Theory Comput. 2017;13:4871–4896.

Ma, Q, Werner, H‐J. Scalable electron correlation methods. 5. Parallel perturbative triples correction for explicitly correlated local coupled cluster with pair natural orbitals. J Chem Theory Comput. 2017;14:198–215.

Kats, D, Usvyat, D, Schütz, M. On the use of the Laplace transform in local correlation methods. Phys Chem Chem Phys. 2008;10:3430–3439.

Kats, D, Manby, FR. Sparse tensor framework for implementation of general local correlation methods. J Chem Phys. 2013;138:144101.

Kats, D. Speeding up local correlation methods. J Chem Phys. 2014;141:244101.

Kats, D. Speeding up local correlation methods: System‐inherent domains. J Chem Phys. 2016;145:014103.

Kats, D, Schütz, M. A multistate local coupled cluster CC2 response method based on the Laplace transform. J Chem Phys. 2009;131:124117.

Freundorfer, K, Kats, D, Korona, T, Schütz, M. Local CC2 response method for triplet states based on Laplace transform: Excitation energies and first‐order properties. J Chem Phys. 2010;133:244110.

Neese, F, Wennmohs, F, Hansen, A. Efficient and accurate local approximations to coupled‐electron pair approaches: An attempt to revive the pair natural orbital method. J Chem Phys. 2009;130:114108.

Neese, F, Hansen, A, Liakos, DG. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J Chem Phys. 2009;131:064103.

Hansen, A, Liakos, DG, Neese, F. Efficient and accurate local single reference correlation methods for high‐spin open‐shell molecules using pair natural orbitals. J Chem Phys. 2011;135:214102.

Liakos, DG, Hansen, A, Neese, F. Weak molecular interactions studied with parallel implementations of the local pair natural orbital coupled pair and coupled cluster methods. J Chem Theory Comput. 2011;7:76–87.

Izsak, R, Hansen, A, Neese, F. The resolution of identity and chain of spheres approximations for the LPNO‐CCSD singles Fock term. Mol Phys. 2012;110:2413–2417.

Riplinger, C, Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys. 2013;138:034106.

Riplinger, C, Sandhoefer, B, Hansen, A, Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J Chem Phys. 2013;139:134101.

Pinski, P, Riplinger, C, Valeev, EF, Neese, F. Sparse maps—A systematic infrastructure for reduced‐scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J Chem Phys. 2015;143:034108.

Liakos, DG, Sparta, M, Kesharwani, MK, Martin, JML, Neese, F. Exploring the accuracy limits of local pair natural orbital coupled‐cluster theory. J Chem Theory Comput. 2015;11:1525–1539.

Riplinger, C, Pinski, P, Becker, U, Valeev, EF, Neese, F. Sparse maps‐a systematic infrastructure for reduced‐scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J Chem Phys. 2016;144:024109.

Pavošević, F, Peng, C, Pinski, P, Riplinger, C, Neese, F, Valeev, EF. SparseMaps—A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled‐cluster method with pair natural orbitals. J Chem Phys. 2017;146:174108.

Guo, Y, Riplinger, C, Becker, U, et al. Communication: An improved linear scaling perturbative triples correction for the domain based local pair‐natural orbital based singles and doubles coupled cluster method [DLPNO‐CCSD(T)]. J Chem Phys. 2018;148:011101.

Schmitz, G, Helmich, B, Hättig, C. A O(*N*^{3}) scaling PNO‐MP2 method using a hybrid OSV‐PNO approach with an iterative direct generation of OSVs. Mol Phys. 2013;111:2463–2476.

Schmitz, G, Hättig, C. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. J Chem Phys. 2016;145:234107.

Maurer, SA, Clin, L, Ochsenfeld, C. Cholesky‐decomposed density MP2 with density fitting: Accurate MP2 and double‐hybrid DFT energies for large systems. J Chem Phys. 2014;140:224112.

Schurkus, HF, Ochsenfeld, C. Communication: An effective linear‐scaling atomic‐orbital reformulation of the random‐phase approximation using a contracted double‐Laplace transformation. J Chem Phys. 2016;144:031101.

Edmiston, C, Krauss, M. Configuration‐interaction calculation of H_{3} and H_{2}. J Chem Phys. 1965;42:1119–1120.

Meyer, W. Ionization energies of water from PNO‐CI calculations. Int J Quantum Chem. 1971;5:341–348.

Meyer, W. PNO‐CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane. J Chem Phys. 1973;58:1017–1035.

Ahlrichs, R, Driessler, F, Lischka, H, Staemmler, V, Kutzelnigg, W. PNO‐CI (pair natural orbital configuration interaction) and CEPA‐PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH_{2}, BH, BH_{3}, CH_{4}, $CH3\u2212$, NH_{3} (planar and pyramidal), H_{2}O, $OH3+$, HF and the Ne atom. J Chem Phys. 1975;62:1235–1247.

Taylor, PR, Bacskay, G, Hush, N, Hurley, A. The coupled‐pair approximation in a basis of independent‐pair natural orbitals. Chem Phys Lett. 1976;41:444–449.

Taylor, PR. A rapidly convergent CI expansion based on several reference configurations, using optimized correlating orbitals. J Chem Phys. 1981;74:1256–1270.

Staemmler, V, Jaquet, R. CEPA calculations on open‐shell molecules. I. Outline of the method. Theor Chim Acta. 1981;59:487–500.

Fink, R, Staemmler, V. A multi‐configuration reference CEPA method based on pair natural orbitals. Theor Chem Accounts. 1993;87:129–145.

Kato, T. On the eigenfunctions of many‐particle systems in quantum mechanics. Commun Pure Appl Math. 1957;10:151–177.

Pack, RT, Byers Brown, W. Cusp conditions for molecular wavefunctions. J Chem Phys. 1966;45:556–559.

Hylleraas, EA. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho‐Helium. Z Phys. 1929;54:347–366.

Kutzelnigg, W. *r*_{12}‐dependent terms in the wave function as closed sums of partial wave amplitudes for large *l*. Theor Chim Acta. 1985;68:445–469.

Klopper, W, Kutzelnigg, W. Møller–Plesset calculations taking care of the correlation cusp. Chem Phys Lett. 1987;134:17–22.

Klopper, W, Kutzelnigg, W. MP2‐R12 calculations on the relative stability of carbocations. J Phys Chem. 1990;94:5625–5630.

Klopper, W, Röhse, R, Kutzelnigg, W. CID and CEPA calculations with linear *r*_{12} terms. Chem Phys Lett. 1991;178:455–461.

Kutzelnigg, W, Klopper, W. Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory. J Chem Phys. 1991;94:1985–2001.

Termath, V, Klopper, W, Kutzelnigg, W. Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. II. Second‐order Møller‐Plesset (MP2‐R12) calculations on closed‐shell atoms. J Chem Phys. 1991;94:2002–2019.

Klopper, W, Kutzelnigg, W. Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second‐order Møller‐Plesset (MP2‐R12) calculations on molecules of first row atoms. J Chem Phys. 1991;94:2020–2030.

Klopper, W. Orbital‐invariant formulation of the MP2‐R12 method. Chem Phys Lett. 1991;186:583–585.

Noga, J, Kutzelnigg, W, Klopper, W. CC‐R12, a correlation cusp corrected coupled‐cluster method with a pilot application to the Be_{2} potential curve. Chem Phys Lett. 1992;199:497–504.

Noga, J, Kutzelnigg, W. Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates. J Chem Phys. 1994;101:7738–7762.

Klopper, W, Samson, CCM. Explicitly correlated second‐order Møller‐Plesset methods with auxiliary basis sets. J Chem Phys. 2002;116:6397–6410.

Manby, FR. Density fitting in second‐order linear‐*r*_{12} Møller‐Plesset perturbation theory. J Chem Phys. 2003;119:4607–4613.

Ten‐no, S. Initiation of explicitly correlated slater‐type geminal theory. Chem Phys Lett. 2004;398:56–61.

Ten‐no, S. Explicitly correlated second order perturbation theory: Introduction of a rational generator and numerical quadratures. J Chem Phys. 2004;121:117–129.

May, AJ, Manby, FR. An explicitly correlated second order Møller‐Plesset theory using a frozen Gaussian geminal. J Chem Phys. 2004;121:4479–4485.

Valeev, EF. Improving on the resolution of the identity in linear R12 ab initio theories. Chem Phys Lett. 2004;395:190–195.

Tew, DP, Klopper, W. New correlation factors for explicitly correlated electronic wave functions. J Chem Phys. 2005;123:074101.

Kedžuch, S, Milko, M, Noga, J. Alternative formulation of the matrix elements in MP2‐R12 theory. Int J Quantum Chem. 2005;105:929–936.

Fliegl, H, Klopper, W, Hättig, C. Coupled‐cluster theory with simplified linear‐*r*_{12} corrections: The CCSD(R12) model. J Chem Phys. 2005;122:084107.

Fliegl, H, Hättig, C, Klopper, W. Inclusion of the (T) triples correction into the linear‐*r*_{12} corrected coupled‐cluster model CCSD(R12). Int J Quantum Chem. 2006;106:2306–2317.

Manby, FR, Werner, H‐J, Adler, TB, May, AJ. Explicitly correlated local second‐order perturbation theory with a frozen geminal correlation factor. J Chem Phys. 2006;124:094103.

Werner, H‐J, Adler, TB, Manby, FR. General orbital invariant MP2‐F12 theory. J Chem Phys. 2007;126:164102.

Noga, J, Kedžuch, S, Šimunek, J. Second order explicitly correlated R12 theory revisited: A second quantization framework for treatment of the operators` partitionings. J Chem Phys. 2007;127:034106.

Adler, TB, Knizia, G, Werner, H‐J. A simple and efficient CCSD(T)‐F12 approximation. J Chem Phys. 2007;127:221106.

Ten‐no, S. A simple F12 geminal correction in multi‐reference perturbation theory. Chem Phys Lett. 2007;447:175–179.

Tew, DP, Klopper, W, Neiss, C, Hättig, C. Quintuple‐zeta quality coupled‐cluster correlation energies with triple‐zeta basis sets. Phys Chem Chem Phys. 2007;9:1921–1930.

Knizia, G, Werner, H‐J. Explicitly correlated RMP2 for high‐spin open‐shell reference states. J Chem Phys. 2008;128:154103.

Shiozaki, T, Kamiya, M, Hirata, S, Valeev, EF. Explicitly correlated coupled‐cluster singles and doubles method based on complete diagrammatic equations. J Chem Phys. 2008;129:071101.

Shiozaki, T, Kamiya, M, Hirata, S, Valeev, EF. Equations of explicitly‐correlated coupled‐cluster methods. Phys Chem Chem Phys. 2008;10:3358–3370.

Noga, J, Kedžuch, S, Šimunek, J, Ten‐no, S. Explicitly correlated coupled cluster F12 theory with single and double excitations. J Chem Phys. 2008;128:174103.

Tew, DP, Klopper, W, Hättig, C. A diagonal orbital‐invariant explicitly correlated coupled‐cluster method. Chem Phys Lett. 2008;452:326–332.

Valeev, EF. Coupled‐cluster methods with perturbative inclusion of explicitly correlated terms: A preliminary investigation. Phys Chem Chem Phys. 2008;10:106–113.

Valeev, EF, Crawford, TD. Simple coupled‐cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The $CCSD(T)R12\xaf$ model. J Chem Phys. 2008;128:244113.

Torheyden, M, Valeev, EF. Variational formulation of perturbative explicitly‐correlated coupled‐cluster methods. Phys Chem Chem Phys. 2008;10:3410–3420.

Bokhan, D, Ten‐no, S, Noga, J. Implementation of the CCSD(T)‐F12 method using cusp conditions. Phys Chem Chem Phys. 2008;10:3320–3326.

Köhn, A, Richings, GW, Tew, DP. Implementation of the full explicitly correlated coupled‐cluster singles and doubles model CCSD‐F12 with optimally reduced auxiliary basis dependence. J Chem Phys. 2008;129:201103.

Köhn, A. Explicitly correlated connected triple excitations in coupled‐cluster theory. J Chem Phys. 2009a;130:131101.

Knizia, G, Adler, TB, Werner, H‐J. Simplified CCSD(T)‐F12 methods: Theory and benchmarks. J Chem Phys. 2009;130:054104.

Shiozaki, T, Kamiya, M, Hirata, S, Valeev, EF. Higher‐order explicitly correlated coupled‐cluster methods. J Chem Phys. 2009;130:054101.

Bokhan, D, Bernadotte, S, Ten‐no, S. Implementation of the CCSD(T)(F12) method using numerical quadratures. Chem Phys Lett. 2009;469:214–218.

Bischoff, FA, Wolfsegger, S, Tew, DP, Klopper, W. Assessment of basis sets for F12 explicitly‐correlated molecular electronic‐structure methods. Mol Phys. 2009;107:963–975.

Hättig, C, Tew, DP, Köhn, A. Accurate and efficient approximations to explicitly correlated coupled‐cluster singles and doubles, CCSD‐F12. J Chem Phys. 2010;132:231102.

Werner, H‐J, Knizia, G, Manby, FR. Explicitly correlated coupled cluster methods with pair‐specific geminals. Mol Phys. 2011;109:407–417.

Shiozaki, T, Knizia, G, Werner, H‐J. Explicitly correlated multireference configuration interaction: MRCI‐F12. J Chem Phys. 2011;134:034113.

Werner, H‐J, Knizia, G, Adler, TB, Marchetti, O. Benchmark studies for explicitly correlated perturbation‐ and coupled cluster theories. Z Phys Chem. 2010;224:493–511.

Hättig, C, Tew, DP, Helmich, B. Local explicitly correlated second‐ and third‐order Møller‐Plesset perturbation theory with pair natural orbitals. J Chem Phys. 2012;136:204105.

Kong, L, Bischoff, FA, Valeev, EF. Explicitly correlated R12/F12 methods for electronic structure. Chem Rev. 2012;112:75–107.

Ten‐no, S, Noga, J. Explicitly correlated electronic structure theory from R12/F12 ansätze. WIREs Comput Mol Sci. 2012;2:114–125.

Shiozaki, T, Werner, H‐J. Multireference explicitly correlated F12 theories. Mol Phys. 2013;111:607–630.

Grüneis, A, Hirata, S, ya Ohnishi, Y, Ten‐no, S. Perspective: Explicitly correlated electronic structure theory for complex systems. J Chem Phys. 2017;146:080901.

Werner, H‐J. Eliminating the domain error in local explicitly correlated second‐order Møller‐Plesset perturbation theory. J Chem Phys. 2008;129:101103.

Adler, TB, Werner, H‐J. Local explicitly correlated coupled‐cluster methods: Efficient removal of the basis set incompleteness and domain errors. J Chem Phys. 2009;130:241101.

Adler, TB, Werner, H‐J, Manby, FR. Local explicitly correlated second‐order perturbation theory for the accurate treatment of large molecules. J Chem Phys. 2009;130:054106.

Adler, TB, Werner, H‐J. An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit. J Chem Phys. 2011;135:144117.

Tew, DP, Helmich, B, Hättig, C. Local explicitly correlated second‐order Moller‐Plesset perturbation theory with pair natural orbitals. J Chem Phys. 2011;135:074107.

Li, W. Linear scaling explicitly correlated MP2‐F12 and ONIOM methods for the long‐range interactions of the nanoscale clusters in methanol aqueous solutions. J Chem Phys. 2013;138:014106.

Wang, YM, Hättig, C, Reine, S, Valeev, E, Kjaergaard, T, Kristensen, K. Explicitly correlated second‐order Møller‐Plesset perturbation theory in a divide‐expand‐consolidate (DEC) context. J Chem Phys. 2016;144:204112.

Pavošević, F, Pinski, P, Riplinger, C, Neese, F, Valeev, EF. Sparse maps‐a systematic infrastructure for reduced‐scaling electronic structure methods. IV. Linear‐scaling second‐order explicitly correlated energy with pair natural orbitals. J Chem Phys. 2016;144:144109.

Fedorov, DG, Kitaura, K. Coupled‐cluster theory based upon the fragment molecular‐orbital method. J Chem Phys. 2005;123:134103.

Fedorov, A, Couzijn, EPA, Nagornova, NS, Boyarkin, OV, Rizzo, TR, Chen, P. Structure and bonding of isoleptic coinage metal (Cu, Ag, Au) dimethylaminonitrenes in the gas phase. J Am Chem Soc. 2010;132:13789–13798.

Hughes, TF, Flocke, N, Bartlett, RJ. Natural linear‐scaled coupled‐cluster theory with local transferable triple excitations: Applications to peptides. J Phys Chem A. 2008;112:5994–6003.

Gordon, MS, Mullin, JM, Pruitt, SR, Roskop, LB, Slipchenko, LV, Boatz, JA. Accurate methods for large molecular systems. J Phys Chem B. 2009;113:9646–9663.

Gordon, MS, Fedorov, DG, Pruitt, SR, Slipchenko, LV. Fragmentation methods: A route to accurate calculations on large systems. Chem Rev. 2012;112:632–672.

Findlater, AD, Zahariev, F, Gordon, MS. Combined fragment molecular orbital cluster in molecule approach to massively parallel electron correlation calculations for large systems. J Phys Chem A. 2015;119:3587–3593.

Ziółkowski, M, Jansìk, B, Kjærgaard, T, Jørgensen, P. Linear scaling coupled cluster method with correlation energy based error control. J Chem Phys. 2010;133:014107.

Kristensen, K, Ziółkowski, M, Jansìk, B, Kjærgaard, T, Jørgensen, P. A locality analysis of the divide‐expand‐consolidate coupled cluster amplitude equations. J Chem Theory Comput. 2011;7:1677–1694.

Høyvik, I‐M, Kristensen, K, Jansìk, B, Jørgensen, P. The divide‐expand‐consolidate family of coupled cluster methods: Numerical illustrations using second order Møller‐Plesset perturbation theory. J Chem Phys. 2012;136:014105.

Kristensen, K, Jørgensen, P, Jansìk, B, Kjærgaard, T, Reine, S. Molecular gradient for second‐order Møller‐Plesset perturbation theory using the divide‐expand‐consolidate (DEC) scheme. J Chem Phys. 2012;137:114102.

Kristensen, K, Kjærgaard, T, Høyvik, I‐M, et al. The divide‐expand‐consolidate MP2 scheme goes massively parallel. Mol Phys. 2013;111:1196–1210.

Eriksen, JJ, Baudin, P, Ettenhuber, P, Kristensen, K, Kjærgaard, T, Jørgensen, P. Linear‐scaling coupled cluster with perturbative triple excitations: The divide‐expand‐consolidate CCSD(T) model. J Chem Theory Comput. 2015;11:2984–2993.

Baudin, P, Ettenhuber, P, Reine, S, Kristensen, K, Kjaergaard, T. Efficient linear‐scaling second‐order Møller‐Plesset perturbation theory: The divide‐expand‐consolidate RI‐MP2 model. J Chem Phys. 2016;144:054102.

Bykov, D, Kristensen, K, Kjaergaard, T. The molecular gradient using the divide‐expand‐consolidate resolution of the identity second‐order Møller‐Plesset perturbation theory: The DEC‐RI‐MP2 gradient. J Chem Phys. 2016;145:024106.

Ettenhuber, P, Baudin, P, Kjaergaard, T, Jorgensen, P, Kristensen, K. Orbital spaces in the divide‐expand‐consolidate coupled cluster method. J Chem Phys. 2016;144:164116.

Li, W, Piecuch, P, Gour, JR, Li, S. Local correlation calculations using standard and renormalized coupled‐cluster approaches. J Chem Phys. 2009;131:114109.

Li, W, Piecuch, P. Improved design of orbital domains within the cluster‐in‐molecule local correlation framework: Single‐environment cluster‐in‐molecule ansatz and its application to local coupled‐cluster approach with singles and doubles. J Phys Chem A. 2010a;114:8644–8657.

Li, W, Piecuch, P. Multilevel extension of the cluster‐in‐molecule local correlation methodology: Merging coupled‐cluster and Møller‐Plesset perturbation theories. J Phys Chem A. 2010b;114:6721–6727.

Li, W, Guo, Y, Li, S. A refined cluster‐in‐molecule local correlation approach for predicting the relative energies of large systems. Phys Chem Chem Phys. 2012;14:7854–7862.

Guo, Y, Li, W, Li, S. Improved cluster‐in‐molecule local correlation approach for electron correlation calculation of large systems. J Phys Chem A. 2014;118:8996–9004.

Li, W, Chen, C, Zhao, D, Li, S. LSQC: Low scaling quantum chemistry program. Int J Quantum Chem. 2015;115:641–646.

Li, W, Ni, Z, Li, S. Cluster‐in‐molecule local correlation method for post‐Hartree‐Fock calculations of large systems. Mol Phys. 2016;114:1447–1460.

Rolik, Z, Kallay, M. A general‐order local coupled‐cluster method based on the cluster‐in‐molecule approach. J Chem Phys. 2011;135:104111.

Rolik, Z, Szegedy, L, Ladjánszki, I, Ladóczki, B, Kallay, M. An efficient linear‐scaling CCSD(T) method based on local natural orbitals. J Chem Phys. 2013;139:094105.

Kallay, M. Linear‐scaling implementation of the direct random‐phase approximation. J Chem Phys. 2015;142:204105.

Nagy, PR, Samu, G, Kallay, M. An integral‐direct linear‐scaling second‐order Møller‐Plesset approach. J Chem Theory Comput. 2016;12:4897–4914.

Nagy, PR, Kállay, M. Optimization of the linear‐scaling local natural orbital CCSD(T) method: Redundancy‐free triples correction using Laplace transform. J Chem Phys. 2017;146:214106.

Saha, A, Raghavachari, K. Dimers of dimers (DOD): A new fragment‐based method applied to large water clusters. J Chem Theory Comput. 2014;10:58–67.

Yoshikawa, T, Nakai, H. Linear‐scaling self‐consistent field calculations based on divide‐and‐conquer method using resolution‐of‐identity approximation on graphical processing units. J Comput Chem. 2015;36:164–170.

Stoll, H. On the correlation energy of graphite. J Chem Phys. 1992;97:8449–8454.

Friedrich, J, Hanrath, M, Dolg, M. Fully automated implementation of the incremental scheme: Application to CCSD energies for hydrocarbons and transition metal compounds. J Chem Phys. 2007;126:154110.

Friedrich, J, Hanrath, M, Dolg, M. Evaluation of incremental correlation energies for open‐shell systems: Application to the intermediates of the 4‐exo cyclization, Arduengo carbenes and an anionic water cluster. J Phys Chem A. 2008;112:8762–8766.

Friedrich, J, Dolg, M. Implementation and performance of a domain‐specific basis set incremental approach for correlation energies: Applications to hydrocarbons and a glycine oligomer. J Chem Phys. 2008;129:244105.

Friedrich, J, Coriani, S, Helgaker, T, Dolg, M. Implementation of the incremental scheme for one‐electron first‐order properties in coupled‐cluster theory. J Chem Phys. 2009;131:154102.

Friedrich, J, Dolg, M. Fully automated incremental evaluation of MP2 and CCSD(T) energies: Application to water clusters. J Chem Theory Comput. 2009;5:287–294.

Friedrich, J, Hänchen, J. Incremental CCSD(T)(F12*)—MP2: A black box method to obtain highly accurate reaction energies. J Chem Theory Comput. 2013;9:5381–5394.

Meitei, OR, Hesselmann, A. Molecular energies from an incremental fragmentation method. J Chem Phys. 2016;144:084109.

Hoyau, S, Maynau, D, Malrieu, J‐P. A regionally contracted multireference configuration interaction method: General theory and results of an incremental version. J Chem Phys. 2011;134:054125.

Werner, H‐J, Köppl, C, Ma, Q, Schwilk, M. In: Gordon, MS, editor. Fragmentation: Towards accurate calculations on complex molecular systems. Chichester, England: Wiley, 2017; p. 1–89, This article is freely available under https://www.wiley.com

Kjaergaard, T, Baudin, P, Bykov, D, Kristensen, K, Jorgensen, P. The divide‐expand‐consolidate coupled cluster scheme. WIREs Comput Mol Sci. 2017;7:e1319.

Köhn, A. A modified ansatz for explicitly correlated coupled‐cluster wave functions that is suitable for response theory. J Chem Phys. 2009;130:104104.

Hanauer, M, Koehn, A. Response properties with explicitly correlated coupled‐cluster methods using a slater‐type correlation factor and cusp conditions. J Chem Phys. 2009;131:124118.

Werner, H‐J, Knowles, PJ, Knizia, G, Manby, FR, Schütz, M. Molpro: A general‐purpose quantum chemistry program package. WIREs Comput Mol Sci. 2012;2:242–253.

Hoyvik, I‐M, Jorgensen, P. Characterization and generation of local occupied and virtual Hartree–Fock orbitals. Chem Rev. 2016;116:3306–3327.

Boys, SF. Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev Mod Phys. 1960;32:296–299.

Foster, JM, Boys, SF. Canonical configurational interaction procedure. Rev Mod Phys. 1960;32:300–302.

Boys, SF. In: Löwdin, PO, editor. Quantum theory of atoms, molecules, and the solid state. New York, NY: Academic Press, 1966; p. 253–262.

Pipek, J, Mezey, PG. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J Chem Phys. 1989;90:4916–4926.

Edmiston, C, Ruedenberg, K. Localized atomic and molecular orbitals. Rev Mod Phys. 1963;35:457–465.

Edmiston, C, Ruedenberg, K. Localized atomic and molecular orbitals. II. J Chem Phys. 1965;43:S97–S116.

Knizia, G. Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts. J Chem Theory Comput. 2013;9:4834–4843.

Janowski, T. Near equivalence of intrinsic atomic orbitals and quasiatomic orbitals. J Chem Theory Comput. 2014;10:3085–3091.

Lu, WC, Wang, CZ, Schmidt, MW, Bytautas, L, Ho, KM, Ruedenberg, K. Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal‐basis orbitals. J Chem Phys. 2004;120:2629–2637.

West, AC, Schmidt, MW, Gordon, MS, Ruedenberg, K. A comprehensive analysis of molecule‐intrinsic quasi‐atomic, bonding, and correlating orbitals. I. Hartree‐Fock wave functions. J Chem Phys. 2013;139:234107.

Lehtola, S, Jónsson, H. Unitary optimization of localized molecular orbitals. J Chem Theory Comput. 2013;9:5365–5372.

Magnko, L, Schweizer, M, Rauhut, G, Schütz, M, Stoll, H, Werner, H‐J. A comparison of metallophilic attraction in (X‐M‐PH_{3})_{2} (M = Cu, Ag, Au; X = H, Cl). Phys Chem Chem Phys. 2002;4:1006–1013.

Rauhut, G, Werner, H‐J. The vibrational spectra of furoxan and dichlorofuroxan: A comparative theoretical study using density functional theory and local Electron correlation methods. Phys Chem Chem Phys. 2003;5:2001–2008.

Claeyssens, F, Harvey, JN, Manby, FR, et al. High‐accuracy computation of reaction barriers in enzymes. Angew Chem Int Ed. 2006;45:6856–6859.

Hrenar, T, Rauhut, G, Werner, H‐J. Impact of local and density fitting approximations on harmonic vibrational frequencies. J Phys Chem A. 2006;110:2060–2064.

Marchetti, O, Werner, H‐J. Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion weighted MP2 method. J Phys Chem A. 2009;113:11580–11585.

Rommel, JB, Liu, Y, Werner, H‐J, Kästner, J. Role of tunneling in the enzyme glutamate mutase. J Phys Chem B. 2012;116:13682–13689.

Yang, J, Kurashige, Y, Manby, FR. Tensor factorizations of local second‐order Møller–Plesset theory. J Chem Phys. 2011;134:044123.

Kurashige, Y, Yang, J, Chan, GKL, Manby, FR. Optimization of orbital‐specific virtuals in local Møller‐Plesset perturbation theory. J Chem Phys. 2012;136:124106.

Yang, J, Chan, GK‐L, Manby, FR, Schütz, M, Werner, H‐J. The orbital‐specific‐virtual local coupled cluster singles and doubles method. J Chem Phys. 2012;136:144105.

Schütz, M, Yang, J, Chan, GK‐L, Manby, FR, Werner, H‐J. The orbital‐specific virtual local triples correction: OSV‐L(T). J Chem Phys. 2013;138:054109.

Werner, H‐J. Communication: Multipole approximations of distant pair energies in local correlation methods with pair natural orbitals. J Chem Phys. 2016;145:201101.

Huenerbein, R, Schirmer, B, Moellmann, J, Grimme, S. Effects of London dispersion on the isomerization reactions of large organic molecules: A density functional benchmark study. Phys Chem Chem Phys. 2010;12:6940–6948.

Fedorov, A, Batiste, L, Couzijn, EPA, Chen, P. Experimental and theoretical study of a gold(I) aminonitrene complex in the gas phase. ChemPhysChem. 2010;11:1002–1005.

Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput Mol Sci. 2018;8:e1327.

Grimme, S. Improved second‐order Møller‐Plesset perturbation theory by separate scaling of parallel‐ and antiparallel‐spin pair correlation energies. J Chem Phys. 2003;118:9095–9102.

Schütz, M, Masur, O, Usvyat, D. Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. II. Beyond the ring approximation. J Chem Phys. 2014;140:244107.

Almlöf, J. Elimination of energy denominators in Møller–Plesset perturbation theory by a Laplace transform approach. Chem Phys Lett. 1991;181:8449–8454.

Häser, M, Almlöf, J. Laplace transform techniques in Møller–Plesset perturbation theory. J Chem Phys. 1992;96:489–494.

Werner, H‐J, Knowles, PJ, Knizia, G, Manby, FR, Schütz, M. MOLPRO, development version 2018.1, a package of ab initio programs. Available from: http://www.molpro.net.

Patkowski, K. On the accuracy of explicitly correlated coupled‐cluster interaction energies — Have orbital results been beaten yet? J Chem Phys. 2012;137:034103.

Sirianni, DA, Burns, LA, Sherrill, CD. Comparison of explicitly correlated methods for computing high‐accuracy benchmark energies for noncovalent interactions. J Chem Theory Comput. 2017;13:86–99.

Sylvetsky, N, Kesharwani, MK, Martin, JML. The aug‐cc‐pVnZ‐F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes. J Chem Phys. 2017;147:134106–134114.

Figgen, D, Rauhut, G, Dolg, M, Stoll, H. Energy‐consistent pseudopotentials for group 11 and 12 atoms: Adjustment to multi‐configuration Dirac–Hartree–Fock data. Chem Phys. 2005;311:227–244.

Peterson, K, Puzzarini, C. Systematically convergent basis sets for transition metals. II. Pseudopotential‐based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Accounts. 2005;114:283–296.

Peterson, KA, Figgen, D, Dolg, M, Stoll, H. Energy‐consistent relativistic pseudopotentials and correlation consistent basis sets for the 4*d* elements Y–Pd. J Chem Phys. 2007;126:124101.

Figgen, D, Peterson, KA, Dolg, M, Stoll, H. Energy‐consistent pseudopotentials and correlation consistent basis sets for the 5*d* elements Hf–Pt. J Chem Phys. 2009;130:164108.

Weigend, F. A fully direct RI‐HF algorithm: Implementation, optimized auxiliary basis sets, demonstration of accuracy and efficiency. Phys Chem Chem Phys. 2002;4:4285–4291.

Weigend, F, Köhn, A, Hättig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J Chem Phys. 2002;116:3175–3183.

Luo, S, Zhao, Y, Truhlar, DG. Validation of electronic structure methods for isomerization reactions of large organic molecules. Phys Chem Chem Phys. 2011;13:13683–13689.

Adamo, C, Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys. 1999;110:6158–6170.

Grimme, S, Antony, J, Ehrlich, S, Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. J Chem Phys. 2010;132:154104.

Weymuth, T, Couzijn, EPA, Chen, P, Reiher, M. New benchmark set of transition‐metal coordination reactions for the assessment of density Functionals. J Chem Theory Comput. 2014;10:3092–3103.

Narancic, S, Bach, A, Chen, P. Simple fitting of energy‐resolved reactive cross sections in threshold collision‐induced dissociation (T‐CID) experiments. J Phys Chem A. 2007;111:7006–7013.

Becke, AD. Density‐functional exchange‐energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100.

Perdew, JP. Density‐functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33:8822–8824.

Turbomole. TURBOMOLE V7.1 2016, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. 2016. Available from: http://www.turbomole.com

Weigend, F, Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297–3305.

Eichkorn, K, Treutler, O, Öhm, H, Häser, M, Ahlrichs, R. Auxiliary basis sets to approximate coulomb potentials. Chem Phys Lett. 1995;240:283–290.

Eichkorn, K, Weigend, F, Treutler, O, Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Accounts. 1997;97:119–124.

Sierka, M, Hogekamp, A, Ahlrichs, R. Fast evaluation of the coulomb potential for electron densities using multipole accelerated resolution of identity approximation. J Chem Phys. 2003;118:9136–9148.

Janssen, CL, Nielsen, IM. New diagnostics for coupled‐cluster and Møller–Plesset perturbation theory. Chem Phys Lett. 1998;290:423–430.

Lee, TJ, Taylor, PR. A diagnostic for determining the quality of single‐reference electron correlation methods. Int J Quantum Chem. 1989;36:199–207.

Husch, T, Freitag, L, Reiher, M. Calculation of ligand dissociation energies in large transition‐metal complexes. J Chem Theory Comput. 2018;14:2456–2468.

Marshall, MS, Burns, LA, Sherrill, CD. Basis set convergence of the coupled‐cluster correction, $\delta MP2CCSD(T)$: Best practices for benchmarking non‐covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. J Chem Phys. 2011;135:194102.

Jurečka, P, Šponer, J, Černý, J, Hobza, P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys. 2006;8:1985–1993.

Řezáč, J, Hobza, P. Describing noncovalent interactions beyond the common approximations: How accurate is the “Gold standard,” CCSD(T) at the complete basis set limit? J Chem Theory Comput. 2013;9:2151–2155.

Řezáč, J, Hobza, P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem Rev. 2016;116:5038–5071.

Bernardi, F, Boys, SF. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19:553–566.

van Duijneveldt, FB, van Duijneveldt‐van de Rijdt, JGCM, van Lenthe, JH. State of the art in counterpoise theory. Chem Rev. 1994;94:1873–1885.

Burns, LA, Marshall, MS, Sherrill, CD. Comparing counterpoise‐corrected, uncorrected, and averaged binding energies for benchmarking noncovalent interactions. J Chem Theory Comput. 2014;10:49–57.

Brauer, B, Kesharwani, MK, Martin, JML. Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions. J Chem Theory Comput. 2014;10:3791–3799.

Saebø, S, Tong, W, Pulay, P. Efficient elimination of basis set superposition errors by the local correlation method: Accurate ab initio studies of the water dimer. J Chem Phys. 1993;98:2170–2175.

Hill, JG, Platts, JA, Werner, H‐J. Calculation of intermolecular interactions in the benzene dimer using coupled‐cluster and local electron correlation methods. Phys Chem Chem Phys. 2006;8:4072–4078.

Sedlak, R, Janowski, T, Pitonak, M, Rezac, J, Pulay, P, Hobza, P. Accuracy of quantum chemical methods for large noncovalent complexes. J Chem Theory Comput. 2013;9:3364–3374.

Nieplocha, J, Palmer, B, Tipparaju, V, Krishnan, M, Trease, H, Aprà, E. Advances, applications and performance of the global arrays shared memory programming toolkit. Int J High Perform Comput Appl. 2006;20:203–231.

Rauhut, G, Werner, H‐J. Analytical energy gradients for local coupled‐cluster methods. Phys Chem Chem Phys. 2001;3:4853–4862.

ElAzhary, A, Rauhut, G, Pulay, P, Werner, H‐J. Analytical energy gradients for local second‐order Møller‐Plesset perturbation theory. J Chem Phys. 1998;108:5185–5193.

Dornbach,, M.; Werner,, H.‐J. To be published.

Pinski, P, Neese, F. Communication: Exact analytical derivatives for the domain‐based local pair natural orbital MP2 method (DLPNO‐MP2). J Chem Phys. 2018;148:031101.

Frank, MS, Schmitz, G, Hättig, C. The PNO–MP2 gradient and its application to molecular geometry optimisations. Mol Phys. 2017;115:343–356.

Menezes, F, Kats, D, Werner, H‐J. Local complete active space second‐order perturbation theory using pair natural orbitals (PNO‐CASPT2). J Chem Phys. 2016;145:124115.