Chen, H, Engkvist, O, Wang, Y, Olivecrona, M, Blaschke, T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23:1241–1250.
Jorgensen, PB, Schmidt, MN, Winther, O. Deep generative models for molecular science. Mol Inform. 2018;37;1700133.
Schneider, G. Generative models for artificially‐intelligent molecular design. Mol Inform. 2018;37;1880131.
Zhang, L, Tan, J, Han, D, Zhu, H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22:1680–1685.
Faulon, J‐L, Churchwell, CJ, Visco, DP. The signature molecular descriptor. 2. Enumerating molecules from their extended valence sequences. J Chem Inf Comput Sci. 2003;43:721–734.
Wong, WW, Burkowski, FJ. A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse‐QSAR problem. J Chem. 2009;1:4.
Miyao, T, Kaneko, H, Funatsu, K. Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J Chem Inf Model. 2016;56:286–299.
Brown, N, Lewis, RA. Exploiting QSAR methods in lead optimization. Curr Opin Drug Discov Devel. 2006;9:419–424.
Salakhutdinov, R. Learning deep generative models. Annu Rev Stat Its Appl. 2015;2:361–385.
Gawehn, E, Hiss, JA, Schneider, G. Deep learning in drug discovery. Mol Inform. 2016;35:3–14.
Gómez‐Bombarelli, R, Wei, JN, Duvenaud, D, et al. Automatic chemical design using a data‐driven continuous representation of molecules. ACS Central Sci. 2018;4:268–276.
Dai, H, Tian, Y, Dai, B, Skiena, S, Song, L. Syntax‐directed variational autoencoder for molecule generation. Proceedings of the International Conference on Machine Learning; New Orleans, U.S., 2018.
Lim, J, Ryu, S, Kim, JW, Kim, WY. Molecular generative model based on conditional variational autoencoder for de novo molecular design. arXiv preprint arXiv:1806.05805. 2018.
Blaschke, T, Olivecrona, M, Engkvist, O, Bajorath, J, Chen, H. Application of generative autoencoder in de novo molecular design. Mol Inform. 2018;37:1700123.
Kadurin, A, Aliper, A, Kazennov, A, et al. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget. 2017;8:10883.
Kadurin, A, Nikolenko, S, Khrabrov, K, Aliper, A, Zhavoronkov, A. druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm. 2017;14:3098–3104.
Guimaraes, GL, Sanchez‐Lengeling, B, Outeiral, C, Farias, PLC, Aspuru‐Guzik, A. Objective‐reinforced generative adversarial networks (ORGAN) for sequence generation models. arXiv preprint arXiv:1705.10843. 2017.
De Cao, N, Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973. 2018.
Segler, MH, Kogej, T, Tyrchan, C, Waller, MP. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Sci. 2017;4:120–131.
Gupta, A, Müller, AT, Huisman, BJ, Fuchs, JA, Schneider, P, Schneider, G. Generative recurrent networks for de novo drug design. Mol Inform. 2018;37:1700111.
Merk, D, Friedrich, L, Grisoni, F, Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol Inform. 2018;37:1700153.
Olivecrona, M, Blaschke, T, Engkvist, O, Chen, H. Molecular de‐novo design through deep reinforcement learning. J Chem. 2017;9:48.
Putin, E, Asadulaev, A, Ivanenkov, Y, et al. Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model. 2018;58:1194–1204.
Putin, E, Asadulaev, A, Vanhaelen, Q, et al. Adversarial threshold neural computer for molecular de novo design. Mol Pharm. 2018;15:4386–4397.
Goodfellow, I, Bengio, Y, Courville, A, Bengio, Y. Deep learning. Vol 1. Cambridge, MA: MIT Press, 2016.
Makhzani, A, Shlens, J, Jaitly, N, Goodfellow, I, Frey, B. Adversarial autoencoders. arXiv preprint arXiv:1511.05644. 2015.
Mescheder, L, Nowozin, S, Geiger, A. Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. arXiv preprint arXiv:1701.04722. 2017.
Rosca, M, Lakshminarayanan, B, Warde‐Farley, D, Mohamed, S. Variational approaches for auto‐encoding generative adversarial networks. arXiv preprint arXiv:1706.04987. 2017.
Kingma, DP, Welling, M. Auto‐encoding variational bayes. arXiv preprint arXiv:1312.6114. 2013.
Goodfellow, IJ, Pougetabadie, J, Mirza, M, Xu, B, Wardefarley, D, Ozair, S, Courville, AC, Bengio, Y. Generative adversarial networks. arXiv: Machine Learning. 2014.
Arjovsky, M, Chintala, S, Bottou, L. Wasserstein gan. arXiv preprint arXiv:1701.07875. 2017.
Salimans, T, Goodfellow, I, Zaremba, W, Cheung, V, Radford, A, Chen, X. Improved techniques for training gans. Proceedings at the Advances in neural information processing systems; Barcelona, Spain, 2016.
Creswell, A, White, T, Dumoulin, V, Arulkumaran, K, Sengupta, B, Bharath, AA. Generative adversarial networks: An overview. IEEE Signal Process Mag. 2018;35:53–65.
Kurach, K, Lucic, M, Zhai, X, Michalski, M, Gelly, S. The GAN landscape: Losses, architectures, regularization, and normalization. arXiv:1807.04720, 2018.
Lucic, M, Kurach, K, Michalski, M, Gelly, S, Bousquet, O. Are gans created equal? a large‐scale study. arXiv preprint arXiv:1711.10337. 2017.
Mikolov, T, Karafiát, M, Burget, L, Černocký, J, Khudanpur, S. Recurrent neural network based language model. Proceedings of the Eleventh Annual Conference of the International Speech Communication Association; Makuhari, Chiba, Japan, 2010.
Kaelbling, LP, Littman, ML, Moore, AW. Reinforcement learning: A survey. J Artif Intell Res. 1996;4:237–285.
Graves, A, Wayne, G, Reynolds, M, et al. Hybrid computing using a neural network with dynamic external memory. Nature. 2016;538:471–476.
Li, Y, Zhang, L, Liu, Z. Multi‐objective de novo drug design with conditional graph generative model. arXiv preprint arXiv:1801.07299. 2018.
Duvenaud, DK, Maclaurin, D, Iparraguirre, J, Bombarell, R, Hirzel, T, Aspuru‐Guzik, A, Adams, RP. Convolutional networks on graphs for learning molecular fingerprints. Proceedings of the Advances in Neural Information Processing Systems; Montreal, Canada, 2015.
Kearnes, S, McCloskey, K, Berndl, M, Pande, V, Riley, P. Molecular graph convolutions: Moving beyond fingerprints. J Comput Aided Mol Des. 2016;30:595–608.
Preuer, K, Renz, P, Unterthiner, T, Hochreiter, S, Klambauer, G. Fréchet ChemblNet Distance: A metric for generative models for molecules. arXiv preprint arXiv:1803.09518. 2018.
Benhenda, M. Can AI reproduce observed chemical diversity? bioRxiv 2018:292177. 2018
Benhenda, M. ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity? arXiv preprint arXiv:1708.08227. 2017.
https://www.rdkit.org/
Ramsundar, B. Molecular machine learning with DeepChem. Proceedings of the Abstracts of Papers of the American Chemical Society: Amer Chemical Soc; 2018, Washington, DC.
Yang, X, Zhang, J, Yoshizoe, K, Terayama, K, Tsuda, K. ChemTS: An efficient python library for de novo molecular generation. Sci Technol Adv Mater. 2017;18:972–976.
Huang, G, Yuan, Y, Xu, Q, Guo, C, Sun, Y, Wu, F, Weinberger, K. An empirical study on evaluation metrics of generative adversarial networks. arXiv:1806.07755, 2018.
Wu, Z, Ramsundar, B, Feinberg, EN, Gomes, J, Geniesse, C, Pappu, AS, Leswing, K, Pande V. MoleculeNet: a benchmark for molecular machine learning. Chemical science 2018, 9:513–530.