Peters, B. Reaction rate theory and rare events. Amsterdam, Netherlands: Elsevier, 2017.
Tuckerman, ME. Statistical mechanics: Theory and molecular simulation. 1st ed. Oxford: Oxford University Press, 2010.
Vanden‐Eijnden, E. Some recent techniques for free energy calculations. J Comput Chem. 2009;30:1737–1747.
Christ, CD, Mark, AE, van Gunsteren, WF. Basic ingredients of free energy calculations: A review. J Comput Chem. 2010;31:1569–1582.
Bonella, S, Meloni, S, Ciccotti, G. Theory and methods for rare events. Eur Phys J B. 2012;85:97.
Valsson, O, Tiwary, P, Parrinello, M. Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint. Annu Rev Phys Chem. 2016;67:159–184.
Torrie, GM, Valleau, JP. Monte Carlo free energy estimates using non‐Boltzmann sampling: Application to the subcritical Lennard‐Jones fluid. Chem Phys Lett. 1974;28:578–581.
Laio, A, VandeVondele, J, Rothlisberger, U. A Hamiltonian electrostatic coupling scheme for hybrid Car‐Parrinello molecular dynamics simulations. J Chem Phys. 2002;116:6941–6947.
Huber, T, Torda, AE, van Gunsteren, WF. Local elevation: A method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des. 1994;8:695–708.
Wang, F, Landau, DP. Efficient, multiple‐range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050.
Hansmann, UHE, Wille, LT. Global optimization by energy landscape paving. Phys Rev Lett. 2002;88:068105.
Darve, E, Pohorille, A. Calculating free energies using average force. J Chem Phys. 2001;115:9169–9183.
Comer, J, Gumbart, JC, Hénin, J, Lelièvre, T, Pohorille, A, Chipot, C. The adaptive biasing force method: Everything you always wanted to know but were afraid to ask. J Phys Chem B. 2015;119:1129–1151.
Maragliano, L, Vanden‐Eijnden, E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006;426:168–175.
Chen, M, Cuendet, MA, Tuckerman, ME. Heating and flooding: A unified approach for rapid generation of free energy surfaces. J Chem Phys. 2012;137:024102.
Cuendet, MA, Tuckerman, ME. Free energy reconstruction from metadynamics or adiabatic free energy dynamics simulations. J Chem Theory Comput. 2014;10:2975–2986.
Chen, M, Yu, TQ, Tuckerman, ME. Locating landmarks on high‐dimensional free energy surfaces. Proc Natl Acad Sci. 2015;112:3235–3240.
Morishita, T, Itoh, SG, Okumura, H, Mikami, M. Free energy calculation via mean‐force dynamics using a logarithmic energy landscape. Phys Rev E. 2012;85:066702.
Barducci, A, Bussi, G, Parrinello, M. Well‐tempered metadynamics: A smoothly converging and tunable free energy method. Phys Rev Lett. 2008;100:020603.
Barnett, CB, Naidoo, KJ. Free energies from adaptive reaction coordinate forces (FEARCF): An application to ring puckering. Mol Phys. 2009;107:1243–1250.
Iannuzzi, M, Laio, A, Parrinello, M. Efficient exploration of reactive potential energy surfaces using Car‐Parrinello molecular dynamics. Phys Rev Lett. 2003;90:238302.
Valsson, O, Parrinello, M. Variational approach to enhanced sampling and free energy calculations. Phys Rev Lett. 2014;113:090601.
Carter, E, Ciccotti, G, Hynes, J, Karpal, R. Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett. 1989;156:472–477.
Rosso, L, Mináry, P, Zhu, Z, Tuckerman, ME. On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J Chem Phys. 2002;116:4389–4402.
Affentranger, R, Tavernelli, I, Di Iorio, EE. A novel Hamiltonian replica exchange MD protocol to enhance protein conformational space sampling. J Chem Theory Comput. 2006;2:217–228.
Hansmann, UHE, Okamoto, Y, Eisenmenger, F. Molecular dynamics, Langeivn and hybrid Monte Carlo simulations in a multicanonical ensemble. Chem Phys Lett. 1996;259:321–330.
Sugita, Y, Kitao, A, Okamoto, Y. Multidimensional replica‐exchange method for free energy calculations. J Chem Phys. 2000;113:6042–6051.
Fukunishi, H, Watanabe, O, Takada, S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J Chem Phys. 2002;116:9058–9067.
Liu, P, Kim, B, Friesner, RA, Berne, BJ. Replica exchange with solute tempering: A method for sampling biological systems in explicit water. Proc Nat Acad Sci. 2005;102:13749–13754.
Gao, YQ. An integrate‐over‐temperature approach for enhanced sampling. J Chem Phys. 2008;128:064105.
Grubmüller, H. Predicting slow structural transitions in macromolecular systems: Conformational flooding. Phys Rev E. 1995;52:2893–2906.
Hamelberg, D, Mongan, J, McCammon, JA. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J Chem Phys. 2004;120:11919–11929.
Itoh, SG, Okumura, H. Replica‐permutation method with the Suwa‐Todo algorithm beyond the replica‐exchange method. J Chem Theory Comput. 2012;9:570–581.
Sugita, Y, Okamoto, Y. Replica‐exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314:141–151.
Lelièvre, T, Rousset, M, Stoltz, G. Free energy computations: A mathematical perspective. London: Imperial College Press, 2010.
Pietrucci, F. Strategies for the exploration of free energy landscapes: Unity in diversity and challenges ahead. Rev Phys. 2017;2:32–45.
Abrams, C, Bussi, G. Enhanced sampling in molecular dynamics using metadynamics, replica‐exchange, and temperature‐acceleration. Entropy. 2014;16:163.
Vithani, N, Jagtap, PKA, Verma, SK, et al. Mechanism of Mg2+‐accompanied product release in sugar nucleotidyltransferases. Structure. 2018;26:459–466.
Paul, S, Taraphder, S. Determination of the reaction coordinate for a key conformational fluctuation in human carbonic anhydrase II. J Phys Chem B. 2015;119:11403–11415.
Blumberger, J, Ensing, B, Klein, ML. Formamide hydrolysis in alkaline aqueous solution: Insight from ab initio metadynamics calculations. Angew Chem Int Ed. 2006;45(18):2893–2897.
Mondal, S, Debnath, J, Meyer, B, Nair, NN. Enhanced sampling and free energy calculations with hybrid functionals and plane waves. J Chem Phys. 2018;149:144113.
Laio, A, Parrinello, M. Escaping free energy minima. Proc Natl Acad Sci USA. 2002;99:12562.
Laio, A, Parrinello, M. Computing free energies and accelerating rare events with metadynamics. In: Ferrario, M, Ciccotti, G, Binder, K, editors. Computer simulations in condensed matter: From materials to chemical biology. Volume 1. Berlin and Heidelberg: Springer Verlag, 2006; p. 315–347.
Ensing, B, Vivo, MD, Liu, Z, Moore, P, Klein, ML. Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc Chem Res. 2006;39:73–81.
Barducci, A, Bonomi, M, Parrinello, M. Metadynamics. WIREs Comput Mol Sci. 2011;1:826–843.
Laio, A, Gervasio, FL. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys. 2008;71:126601.
Sutto, L, Marsili, S, Gervasio, FL. New advances in metadynamics. WIREs Comput Mol Sci. 2012;2:771–779.
Bussi, G. In: Branduardi, D, Parrill AL, Lipkowitz KB, editors. Free energy calculations with metadynamics: Theory and practice. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015; p. 1–49.
Branduardi, D, Bussi, G, Parrinello, M. Metadynamics with adaptive Gaussians. J Chem Theory Comput. 2012;8:2247–2254.
Dama, JF, Parrinello, M, Voth, GA. Well‐tempered metadynamics converges asymptotically. Phys Rev Lett. 2014;112:240602.
Bian, Y, Zhang, J, Wang, J, Wang, W. On the accuracy of metadynamics and its variations in a protein folding process. Mol Simul. 2015;41:752–763.
Piana, S, Laio, A. A Bias‐exchange approach to protein folding. J Phys Chem B. 2007;111:4553–4559.
Galvelis, R, Sugita, Y. Replica state exchange metadynamics for improving the convergence of free energy estimates. J Comput Chem. 2015;36:1446–1455.
Baftizadeh, F, Cossio, P, Pietrucci, F, Laio, A. Protein folding and ligand‐enzyme binding from bias‐exchange metadynamics simulations. Curr Phys Chem. 2012;2:79–91.
Kumar, S, Rosenberg, JM, Bouzida, D, Swendsen, RH, Kollman, PA. The weighted histogram analysis method for free energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13:1011–1021.
Biarnes, X, Pietrucci, F, Marinelli, F, Laio, A. METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations. Comput Phys Commun. 2012;183:203–211.
Yu, H, Lin, YS. Toward structure prediction of cyclic peptides. Phys Chem Chem Phys. 2015;17:4210–4219.
Awasthi, S, Kapil, V, Nair, NN. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics. J Comput Chem. 2016;37:1413–1424.
Marinelli, F, Pietrucci, F, Laio, A, Piana, S. A kinetic model of Trp‐cage folding from multiple biased molecular dynamics simulations. PLoS Comput Biol. 2009;5:e1000452.
Delor, M, Dai, J, Roberts, TD, et al. Exploiting chromophore‐protein interactions through linker engineering to tune photoinduced dynamics in a biomimetic light‐harvesting platform. J Am Chem Soc. 2018;140:6278–6287.
Mlýnský, V, Bussi, G. Molecular dynamics simulations reveal an interplay between SHAPE reagent binding and RNA flexibility. J Phys Chem Lett. 2018;9:313–318.
Bian, Y, Tan, C, Wang, J, Sheng, Y, Zhang, J, Wang, W. Atomistic picture for the folding pathway of a hybrid‐1 type human telomeric DNA G‐quadruplex. PLoS Comput Biol. 2014;10:e1003562.
Bian, Y, Zhang, J, Wang, J, Wang, J, Wang, W. Free energy landscape and multiple folding pathways of an H‐type RNA pseudoknot. PLoS One. 2015;10:e0129089.
Pietrucci, F, Marinelli, F, Carloni, P, Laio, A. Substrate binding mechanism of HIV‐1 protease from explicit‐solvent atomistic simulations. J Am Chem Soc. 2009;131:11811–11818.
Herbert, C, Schieborr, U, Saxena, K, et al. Molecular mechanism of SSR128129E, an extra‐cellularly acting, small‐molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell. 2013;23:489–501.
Li, Y, Lavey, NP, Coker, JA, et al. Consequences of depsipeptide substitution on the ClpP activation activity of antibacterial acyldepsipeptides. ACS Med Chem Lett. 2017;8:1171–1176.
Duan, M, Liu, N, Zhou, W, Li, D, Yang, M, Hou, T. Structural diversity of ligand‐binding androgen receptors revealed by microsecond long molecular dynamics simulations and enhanced sampling. J Chem Theory and Comput. 2016;12:4611–4619.
Paloncýová, M, Navrátilová, V, Berka, K, Laio, A, Otyepka, M. Role of enzyme flexibility in ligand access and egress to active site: Bias‐exchange metadynamics study of 1,3,7‐trimethyluric acid in cytochrome P450 3A4. J Chem Theory and Comput. 2016;12:2101–2109.
Zhu, L, Jiang, H, Sheong, FK, et al. A flexible domain‐domain hinge promotes an induced‐fit dominant mechanism for the loading of guide‐DNA into argonaute protein in Thermus thermophilus. J Phys Chem B. 2016;120:2709–2720.
Marinelli, F, Kuhlmann, SI, Grell, E, Kunte, HJ, Ziegler, C, Faraldo‐Gómez, JD. Evidence for an allosteric mechanism of sub‐ strate release from membrane‐transporter accessory binding proteins. Proc Natl Acad Sci. 2011;108:E1285–E1292.
Bisha, I, Rodriguez, A, Laio, A, Magistrato, A. Metadynamics simulations reveal a Na+ independent exiting path of galactose for the inward‐facing conformation of vSGLT. PLoS Comput Biol. 2014;10:1–8.
Thyparambil, AA, Bazin, I, Guiseppi‐Elie, A. Evaluation of ochratoxin recognition by peptides using explicit solvent molecular dynamics. Toxins. 2017;9:164.
Galassi, VV, Arantes, GM. Partition, orientation and mobility of ubiquinones in a lipid bilayer. Biochim Biophys Acta, Bioenerg. 2015;1847:1560–1573.
Żołnowska, B, Sławiński, J, Szafrański, K, et al. Novel 2‐(2‐arylmethylthio‐4‐chloro‐5‐ methylbenzenesulfonyl)‐1‐(1,3,5‐triazin‐2‐ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor‐associated isozymes IX and XII, anticancer activity, and molec‐ ular modeling studies. Eur J Med Chem. 2018;143:1931–1941.
Cunha, RA, Bussi, G. Unraveling Mg2+‐RNA binding with atomistic molecular dynamics. RNA. 2017;23:628–638.
Piana, S, Laio, A. Advillin folding takes place on a hypersurface of small dimensionality. Phys Rev Lett. 2008;101:208101.
Piana, S, Laio, A, Marinelli, F, et al. Predicting the effect of a point mutation on a protein fold: The villin and advillin headpieces and their Pro62Ala mutants. J Mol Biol. 2008;375:460–470.
Todorova, N, Marinelli, F, Piana, S, Yarovsky, I. Exploring the folding free energy landscape of insulin using bias exchange metadynamics. J Phys Chem B. 2009;113:3556–3564.
Pietrucci, F, Laio, A. A collective variable for the efficient exploration of protein beta‐sheet structures: Application to SH3 and GB1. J Chem Theory Comput. 2009;5:2197–2201.
Juraszek, J, Bolhuis, PG. (un)folding mechanisms of the FBP28 WW domain in explicit solvent revealed by multiple rare event simulation methods. Biophys J. 2010;98:646–656.
Cossio, P, Marinelli, F, Laio, A, Pietrucci, F. Optimizing the performance of bias‐exchange metadynamics: Folding a 48‐ residue LysM domain using a coarse‐grained model. J Phys Chem B. 2010;114:3259–3265.
Rossetti, G, Cossio, P, Laio, A, Carloni, P. Conformations of the huntingtin N‐term in aqueous solution from atomistic simulations. FEBS Lett. 2011;585:3086–3089.
Granata, D, Camilloni, C, Vendruscolo, M, Laio, A. Characterization of the free energy landscapes of proteins by NMR‐guided metadynamics. Proc Natl Acad Sci. 2013;110:6817–6822.
Benetti, F, Biarnes, X, Attanasio, F, Giachin, G, Rizzarelli, E, Legname, G. Structural determinants in prion protein folding and stability. J Mol Bol. 2014;426:3796–3810.
Rogers, JR, McHugh, SM, Lin, YS. Predictions for α‐helical glycopeptide design from structural bioinformatics analysis. J Chem Inf Model. 2017;57:2598–2611.
Ansari, SM, Coletta, A, Kirkeby Skeby, K, Sørensen, J, Schiøtt, B, Palmer, DS. Allosteric‐activation mechanism of bovine chymosin revealed by bias‐exchange metadynamics and molecular dynamics simulations. J Phys Chem B. 2016;120:10453–10462.
McHugh, SM, Rogers, JR, Yu, H, Lin, YS. Insights into how cyclic peptides switch conformations. J Chem Theory and Comput. 2016;12:2480–2488.
Slough, DP, Yu, H, McHugh, SM, Lin, YS. Toward accurately modeling N‐methylated cyclic peptides. Phys Chem Chem Phys. 2017;19:5377–5388.
Michel, J, Cuchillo, R. The impact of small molecule binding on the energy landscape of the intrinsically disordered protein C‐Myc. PLoS One. 2012;07:e41070.
Damas, JM, Filipe, LCS, Campos, SRR, et al. Predicting the thermodynamics and kinetics of helix formation in a cyclic peptide model. J Chem Theory Comput. 2013;9:5148–5157.
Mahajan, SP, Velez‐Vega, C, Escobedo, FA. Tilting the balance between canonical and noncanonical conformations for the H1 hypervariable loop of a llama VHH through point mutations. J Phys Chem B. 2013;117:13–24.
Do, TN, Choy, WY, Karttunen, M. Accelerating the conformational sampling of intrinsically disordered proteins. J Chem Theory Comput. 2014;10:5081–5094.
Zerze, GH, Miller, CM, Granata, D, Mittal, J. Free energy surface of an intrinsically disordered protein: Comparison between temperature replica exchange molecular dynamics and bias‐exchange metadynamics. J Chem Theory Comput. 2015;11:2776–2782.
Camilloni, C, Vendruscolo, M. Statistical mechanics of the denatured state of a protein using replica‐averaged metadynamics. J Am Chem Soc. 2014;136:8982–8991.
Camilloni, C, Vendruscolo, M. Using Pseudocontact shifts and residual dipolar couplings as exact NMR restraints for the determination of protein structural ensembles. Biochemistry. 2015;54:7470–7476.
Cheng Chiu, C, Singh, S, de Pablo, J. Effect of proline mutations on the monomer conformations of amylin. Biophys J. 2013;105:1227–1235.
Pietrucci, F, Mollica, L, Blackledge, M. Mapping the native conformational ensemble of proteins from a combination of simulations and experiments: New insight into the src‐SH3 domain. J Phys Chem Lett. 2013;4:1943–1948.
Corbi‐Verge, C, Marinelli, F, Zafra‐Ruano, A, Ruiz‐Sanz, J, Luque, I, Faraldo‐Gómez, JD. Two‐state dynamics of the SH3–SH2 tandem of Abl kinase and the allosteric role of the N‐cap. Proc Natl Acad Sci. 2013;110:E3372–E3380.
Buchanan, LE, Dunkelberger, EB, Tran, HQ, et al. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient‐sheet. Proc Natl Acad Sci. 2013;110:19285–19290.
Scarabelli, G, Provasi, D, Negri, A, Filizola, M. Bioactive conformations of two seminal delta opioid receptor pentapeptides inferred from free energy profiles. Biopolymers. 2014;101:21–27.
Ceballos, JA, Giraldo, MA, Cossio, P. Effects of a disulfide bridge prior to amyloid formation of the ABRI peptide. RSC Adv. 2014;4:36923–36928.
Li, D, Liu, M, Ji, B. Mapping the dynamics landscape of conformational transitions in enzyme: The adenylate kinase case. Biophys J. 2015;109:647–660.
Hoffmann, KQ, McGovern, M, Cc, C, de Pablo, JJ. Secondary structure of rat and human amylin across force fields. PLoS One. 2015;10:e0134091.
Gomez‐Sicilia, A, Sikora, M, Cieplak, M, Carrion‐Vazquez, M. An exploration of the universe of polyglutamine structures. PLoS Comput Biol. 2015;11:e1004541.
Cristina, P, Michela, G, Laura, B, Andrea, S, Giovanna, M. Metadynamics simulations rationalise the conformational effects induced by N‐methylation of RGD cyclic hexapeptides. Chem A Eur J. 2015;21:14165–14170.
Camilloni, C, Sala, BM, Sormanni, P, et al. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability. Sci Rep. 2016;6:25559.
Singh, R, Bansal, R, Rathore, AS, Goel, G. Equilibrium ensembles for insulin folding from bias‐exchange metadynamics. Biophys J. 2017;112:1571–1585.
Domene, C, Barbini, P, Furini, S. Bias‐exchange metadynamics simulations: An efficient strategy for the analysis of conduction and selectivity in ion channels. J Chem Theory Comput. 2015;11:1896–1906.
Furini, S, Domene, C. Computational studies of transport in ion channels using metadynamics. Biochim Biophys Acta, Biomembr. 2016;1858:1733–1740.
Jorgensen, C, Furini, S, Domene, C. Energetics of ion permeation in an open‐activated TRPV1 channel. Biophys J. 2016;111:1214–1222.
Borkar, AN, Vallurupalli, P, Camilloni, C, Kay, LE, Vendruscolo, M. Simultaneous NMR characterisation of multiple minima in the free energy landscape of an RNA UUCG tetraloop. Phys Chem Chem Phys. 2017;19:2797–2804.
Liu, N, Duan, M, Yang, M. Structural properties of human IAPP dimer in membrane environment studied by all‐atom molecular dynamics simulations. Sci Rep. 2017;7:7915.
McGovern, M, Abbott, N, Pablo, J. Dimerization of helical β‐peptides in solution. Biophys J. 2012;102:1435–1442.
Baftizadeh, F, Pietrucci, F, Biarnés, X, Laio, A. Nucleation process of a fibril precursor in the C‐terminal segment of amyloid‐β. Phys Rev Lett. 2013;110:168103.
Chiu Cc, d PJJ. Fibrillar dimer formation of islet amyloid polypeptides. AIP Adv. 2015;5:092501.
Borkar, AN, Bardaro, MF, Camilloni, C, Aprile, FA, Varani, G, Vendruscolo, M. Structure of a low‐population binding inter‐mediate in protein‐RNA recognition. Proc Natl Acad Sci. 2016;113:7171–7176.
Lousa, D, Pinto, ART, Victor, BL, Laio A, Veiga AS, Castanho MA, Soares CM. Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide. Sci Rep. 2016;6:28099.
Bulo, RE, Van Schoot, H, Rohr, D, Michel, C. Bias‐exchange metadynamics applied to the study of chemical reactivity. Int J Quant Chem. 2010;110:2299–2307.
Pfaendtner, J, Bonomi, M. Efficient sampling of high‐dimensional free energy landscapes with parallel bias metadynamics. J Chem Theory Comput. 2015;11:5062.
Heller, GT, Aprile, FA, Bonomi, M, Camilloni, C, Simone, AD, Vendruscolo, M. Sequence specificity in the entropy‐driven binding of a small molecule and a disordered peptide. J Mol Biol. 2017;429:2772–2779.
Löhr, T, Jussupow, A, Camilloni, C. Metadynamic metainference: Convergence towards force field independent structural ensembles of a disordered peptide. J Chem Phys. 2017;146:165102.
Prakash, A, Baer, MD, Mundy, CJ, Pfaendtner, J. Peptoid backbone flexibilility dictates its interaction with water and surfaces: A molecular dynamics investigation. Biomacromolecules. 2018;19:1006–1015.
Fu, CD, Pfaendtner, J. Lifting the curse of dimensionality on enhanced sampling of reaction networks with parallel bias metadynamics. J Chem Theory Comput. 2018;14:2516–2525.
Pietrucci, F, Andreoni, W. Graph theory meets ab initio molecular dynamics: Atomic structures and transformations at the nanoscale. Phys Rev Lett. 2011;107:85504.
Rosso, L, Abrams, JB, Tuckerman, ME. Mapping the backbone dihedral free energy surfaces in small peptides in solution using adiabatic free energy dynamics. J Phys Chem B. 2005;109:4162–4167.
Abrams, JB, Tuckerman, ME. Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations. J Phys Chem B. 2008;112:15742–15757.
Yu, TQ, Tuckerman, ME. Temperature‐accelerated method for exploring polymorphism in molecular crystals based on free energy. Phys Rev Lett. 2011;107:015701.
Abrams, CF, Vanden‐Eijnden, E. Large‐scale conformational sampling of proteins using temperature‐accelerated molecular dynamics. Proc Natl Acad Sci. 2010;107:4961–4966.
Vashisth, H, Maragliano, L, Abrams, CF. DFG‐Flip in the insulin receptor kinase is facilitated by a helical intermediate state of the activation loop. Biophys J. 2012;102:1979–1987.
Maragliano, L, Cottone, G, Ciccotti, G, Vanden‐Eijnden, E. Mapping the network of pathways of CO diffusion in myoglobin. J Am Chem Soc. 2010;132:1010–1017.
Lapelosa, M, Abrams, CF. A computational study of water and CO migration sites and channels inside myoglobin. J Chem Theory Comput. 2013;9:1265–1271.
Tzanov, AT, Cuendet, MA, Tuckerman, ME. How accurately do current force fields predict experimental peptide conformations? An adiabatic free energy dynamics study. J Phys Chem B. 2014;118:6539–6552.
Cortes‐Ciriano, I, Bouvier, G, Nilges, M, Maragliano, L, Malliavin, TE. Temperature accelerated molecular dynamics with soft‐ratcheting criterion orients enhanced sampling by low‐resolution information. J Chem Theory Comput. 2015;11:3446–3454.
Geslin, PA, Ciccotti, G, Meloni, S. An observable for vacancy characterization and diffusion in crystals. J Chem Phys. 2013;138:144103.
Lucid, J, Meloni, S, MacKernan, D, Spohr, E, Ciccotti, G. Probing the structures of hydrated Nafion in different morphologies using temperature‐accelerated molecular dynamics simulations. J Phys Chem C. 2013;117:774–782.
Yu, TQ, Chen, PY, Chen, M, Samanta, A, Vanden‐Eijnden, E, Tuckerman, M. Order‐parameter‐aided temperature‐ accelerated sampling for the exploration of crystal polymorphism and solid‐liquid phase transitions. J Chem Phys. 2014;140:214109.
Schneider, E, Vogt, METL. Exploring polymorphism of benzene and naphthalene with free energy based enhanced molecular dynamics. Acta Crystallogr B. 2016;72:542–550.
Samanta, A, Morales, MA, Schwegler, E. Exploring the free energy surface using ab initio molecular dynamics. J Chem Phys. 2016;144:164101.
Shtukenberg, AG, Zhu, Q, Carter, DJ, et al. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chem Sci. 2017;8:4926–4940.
Samanta, A, Chen, M, Yu, TQ, Tuckerman, MEW. Sampling saddle points on a free energy surface. J Chem Phys. 2014;140:164109.
Abrams, JB, Rosso, L, Tuckerman, ME. Efficient and precise solvation free energies via alchemical adiabatic molecular dynamics. J Chem Phys. 2006;125:074115.
Cuendet, MA, Tuckerman, ME. Alchemical free energy differences in flexible molecules from thermodynamic integration or free energy perturbation combined with driven adiabatic dynamics. J Chem Theory Comput. 2012;8:3504–3512.
Cuendet, MA, Margul, DT, Schneider, E, Vogt‐Maranto, L, Tuckerman, ME. Endpoint‐restricted adiabatic free energy dynamics approach for the exploration of biomolecular conformational equilibria. J Chem Phys. 2018;149:072316.
Ferrenberg, AM, Swendsen, RH. Optimized Monte Carlo data analysis. Phys Rev Lett. 1989;63:1195.
Kästner, J. Umbrella sampling. WIREs Comput Mol Sci. 2011;1:932–942.
Awasthi, S, Nair, NN. Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling. J Chem Phys. 2017;146:094108.
Awasthi, S, Gupta, S, Tripathi, R, Nair, NN. Mechanism and kinetics of aztreonam hydrolysis catalyzed by class‐C β‐lactamase: A temperature‐accelerated sliced sampling study. J Phys Chem B. 2018;122:4299–4308.
Sahoo, SK, Nair, NN. Interfacing the core‐shell or the drude polarizable force field with Car‐Parrinello molecular dynamics for QM/MM simulations. Front Chem. 2018;6:275.