Geng, J, Yao, C, Kou, X, Tang, J, Luo, D, Yang, D. A fluorescent biofunctional DNA hydrogel prepared by enzymatic polymerization. Adv Healthc Mater. 2017;7:1700998.
Ciric‐Marjanovic, G, Milojevic‐Rakic, M, Janosevic‐Lezaic, A, Luginbuhl, S, Walde, P. Enzymatic oligomerization and polymerization of arylamines: State of the art and perspectives. Chem Zvesti. 2017;71:199–242.
Satoh, K, Kamigaito, M. Stereospecific living radical polymerization: Dual control of chain length and tacticity for precision polymer synthesis. Chem Rev. 2009;109:5120–5156.
Moura, M, Finkle, J, Stainbrook, S, Greene, J, Broadbelt, LJ, Tyo, KEJ. Evaluating enzymatic synthesis of small molecule drugs. Metab Eng. 2016;33:138–147.
Metzner, R, Hummel, W, Wetterich, F, König, B, Gröger, H. Integrated biocatalysis in multistep drug synthesis without intermediate isolation: A de novo approach toward a Rosuvastatin key building block. Org Process Res Dev. 2015;19:635–638.
Shoda, S, Uyama, H, Kadokawa, J, Kimura, S, Kobayashi, S. Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev. 2016;116:2307–2413.
Robinson, PK. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015;59:1–41.
Kobayashi, S. New developments of polysaccharide synthesis via enzymatic polymerization. Proc Jpn Acad Ser B Phys Biol Sci. 2007;83:215–247.
Sherman, W, Day, T, Jacobson, MP, Friesner, RA, Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 2006;49:534–553.
Poshyvailo, L, von Lieres, E, Kondrat, S. Does metabolite channeling accelerate enzyme‐catalyzed cascade reactions? PLoS One. 2017;12:e0172673.
Schomburg, I, Chang, A, Placzek, S, et al. BRENDA in 2013: Integrated reactions, kinetic data, enzyme function data, improved disease classification: New options and contents in BRENDA. Nucleic Acids Res. 2013;41:D764–D772.
Mifsud, M, Gargiulo, S, Iborra, S, Arends, IW, Hollmann, F, Corma, A. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat Commun. 2014;5:3145.
Ngoka, LC. Dramatic down‐regulation of oxidoreductases in human hepatocellular carcinoma hepG2 cells: Proteomics and gene ontology unveiling new frontiers in cancer enzymology. Proteome Sci. 2008;6:29.
Wagner, AM, Fegley, MW, Warner, JB, Grindley, CL, Marotta, NP, Petersson, EJ. N‐terminal protein modification using simple aminoacyl transferase substrates. J Am Chem Soc. 2011;133:15139–15147.
Jongkees, SA, Withers, SG. Glycoside cleavage by a new mechanism in unsaturated glucuronyl hydrolases. J Am Chem Soc. 2011;133:19334–19337.
Chambers, KA, Abularrage, NS, Scheck, RA. Selectivity within a family of bacterial phosphothreonine lyases. Biochemistry. 2018;57:3790–3796.
Li, Q, Qin, X, Liu, J, et al. Deciphering the biosynthetic origin of l‐allo‐isoleucine. J Am Chem Soc. 2016;138:408–415.
Cohen, JD, Thompson, S, Ting, AY. Structure‐guided engineering of a Pacific Blue fluorophore ligase for specific protein imaging in living cells. Biochemistry. 2011;50:8221–8225.
Hutt, AG, O`Grady, J. Drug chirality: A consideration of the significance of the stereochemistry of antimicrobial agents. J Antimicrob Chemother. 1996;37:7–32.
Nguyen, LA, He, H, Pham‐Huy, C. Chiral drugs: An overview. Int J Biomed Sci. 2006;2:85–100.
Pearson, AA, Gaffney, TE, Walle, T, Privitera, PJ. A stereoselective central hypotensive action of atenolol. J Pharmacol Exp Ther. 1989;250:759–763.
Stoschitzky, K, Egginger, G, Zernig, G, Klein, W, Lindner, W. Stereoselective features of (R)‐ and (S)‐atenolol: Clinical pharmacological, pharmacokinetic, and radioligand binding studies. Chirality. 1993;5:15–19.
Shi, W, Nacev, BA, Bhat, S, Liu, JO. Impact of absolute stereochemistry on the antiangiogenic and antifungal activities of Itraconazole. ACS Med Chem Lett. 2010;1:155–159.
Kunze, KL, Nelson, WL, Kharasch, ED, Thummel, KE, Isoherranen, N. Stereochemical aspects of itraconazole metabolism in vitro and in vivo. Drug Metab Dispos. 2006;34:583–590.
Teo, SK, Colburn, WA, Tracewell, WG, et al. Clinical pharmacokinetics of thalidomide. Clin Pharmacokinet. 2004;43:311–327.
Eriksson, T, Bjorkman, S, Roth, B, Fyge, A, Hoglund, P. Stereospecific determination, chiral inversion in vitro and pharmacokinetics in humans of the enantiomers of thalidomide. Chirality. 1995;7:44–52.
Siegel, JB, Zanghellini, A, Lovick, HM, et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels‐Alder reaction. Science. 2010;329:309–313.
Kuhlman, B, Baker, D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A. 2000;97:10383–10388.
Lu, P, Min, D, DiMaio, F, et al. Accurate computational design of multipass transmembrane proteins. Science. 2018;359:1042–1046.
Classen, T, Korpak, M, Schölzel, M, Pietruszka, J. Stereoselective enzyme cascades: An efficient synthesis of chiral γ‐butyrolactones. ACS Catal. 2014;4:1321–1331.
Minami, A, Oikawa, H. Recent advances of Diels‐Alderases involved in natural product biosynthesis. J Antibiot (Tokyo). 2016;69:500–506.
Zanghellini, A, Jiang, L, Wollacott, AM, et al. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 2006;15:2785–2794.
Dou, J, Vorobieva, AA, Sheffler, W, et al. De novo design of a fluorescence‐activating beta‐barrel. Nature. 2018;561:485–491.
Szaleniec, M, Wojtkiewicz, AM, Bernhard, R, Borowski, T, Donova, M. Bacterial steroid hydroxylases: Enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol. 2018;102:8153–8171.
Khatri, Y, Jozwik, IK, Ringle, M, et al. Structure‐based engineering of steroidogenic CYP260A1 for stereo‐ and regioselective hydroxylation of progesterone. ACS Chem Biol. 2018;13:1021–1028.
Trott, O, Olson, AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461.
Reetz, MT. Laboratory evolution of stereoselective enzymes: A prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed Engl. 2011;50:138–174.
Huang, WC, Cullis, PM, Raven, EL, Roberts, GC. Control of the stereo‐selectivity of styrene epoxidation by cytochrome P450 BM3 using structure‐based mutagenesis. Metallomics. 2011;3:410–416.
Jones, G, Willett, P, Glen, RC, Leach, AR, Taylor, R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267:727–748.
Chan, HCS, Wang, J, Palczewski, K, et al. Exploring a new ligand binding site of G protein‐coupled receptors. Chem Sci. 2018;9:6480–6489.
Li, G, Maria‐Solano, MA, Romero‐Rivera, A, Osuna, S, Reetz, MT. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution. Chem Commun (Camb). 2017;53:9454–9457.
Dodani, SC, Kiss, G, Cahn, JK, Su, Y, Pande, VS, Arnold, FH. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat Chem. 2016;8:419–425.
Wombacher, R, Keiper, S, Suhm, S, Serganov, A, Patel, DJ, Jaschke, A. Control of stereoselectivity in an enzymatic reaction by backdoor access. Angew Chem Int Ed Engl. 2006;45:2469–2472.
Morris, GM, Huey, R, Lindstrom, W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791.
Heinisch, T, Ward, TR. Artificial metalloenzymes based on the biotin‐streptavidin technology: Challenges and opportunities. Acc Chem Res. 2016;49:1711–1721.
Kohler, V, Wilson, YM, Durrenberger, M, et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat Chem. 2013;5:93–99.
Li, G, Reetz, MT. Learning lessons from directed evolution of stereoselective enzymes. Org Chem Front. 2016;3:1350–1358.
Hammer, SC, Knight, AM, Arnold, FH. Design and evolution of enzymes for non‐natural chemistry. Curr Opin Green Sustain Chem. 2017;7:23–30.
Arnold, FH. Directed evolution: Bringing new chemistry to life. Angew Chem Int Ed Engl. 2018;57:4143–4148.
Kan, SB, Lewis, RD, Chen, K, Arnold, FH. Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science. 2016;354:1048–1051.
Kan, SBJ, Huang, X, Gumulya, Y, Chen, K, Arnold, FH. Genetically programmed chiral organoborane synthesis. Nature. 2017;552:132–136.
Vischer, HF, Vink, C, Smit, MJ. A viral conspiracy: Hijacking the chemokine system through virally encoded pirated chemokine receptors. Curr Top Microbiol Immunol. 2006;303:121–154.
Reetz, MT, Carballeira, JD. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc. 2007;2:891–903.
Reetz, MT, Bocola, M, Carballeira, JD, Zha, D, Vogel, A. Expanding the range of substrate acceptance of enzymes: Combinatorial active‐site saturation test. Angew Chem Int Ed Engl. 2005;44:4192–4196.
Patrick, WM, Firth, AE. Strategies and computational tools for improving randomized protein libraries. Biomol Eng. 2005;22:105–112.
Sun, Z, Wikmark, Y, Backvall, JE, Reetz, MT. New concepts for increasing the efficiency in directed evolution of stereoselective enzymes. Chemistry. 2016;22:5046–5054.
Sun, Z, Lonsdale, R, Wu, L, et al. Structure‐guided triple‐code saturation mutagenesis: Efficient tuning of the stereoselectivity of an epoxide hydrolase. ACS Catal. 2016;6:1590–1597.
Tinoco, A, Steck, V, Tyagi, V, Fasan, R. Highly diastereo‐ and enantioselective synthesis of trifluoromethyl‐substituted cyclopropanes via myoglobin‐catalyzed transfer of trifluoromethylcarbene. J Am Chem Soc. 2017;139:5293–5296.
Bajaj, P, Sreenilayam, G, Tyagi, V, Fasan, R. Gram‐scale synthesis of chiral cyclopropane‐containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity. Angew Chem Int Ed Engl. 2016;55:16110–16114.
Schwizer, F, Okamoto, Y, Heinisch, T, et al. Artificial metalloenzymes: Reaction scope and optimization strategies. Chem Rev. 2018;118:142–231.
Key, HM, Dydio, P, Clark, DS, Hartwig, JF. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature. 2016;534:534–537.
Dydio, P, Key, HM, Nazarenko, A, et al. An artificial metalloenzyme with the kinetics of native enzymes. Science. 2016;354:102–106.
Jeschek, M, Reuter, R, Heinisch, T, et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature. 2016;537:661–665.
Hestericova, M, Heinisch, T, Alonso‐Cotchico, L, Marechal, JD, Vidossich, P, Ward, TR. Directed evolution of an artificial imine reductase. Angew Chem Int Ed Engl. 2018;57:1863–1868.
Wang, L, Berne, BJ, Friesner, RA. On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities. Proc Natl Acad Sci U S A. 2012;109:1937–1942.
Gilson, MK, Zhou, HX. Calculation of protein–ligand binding affinities. Annu Rev Biophys Biomol Struct. 2007;36:21–42.
Maguire, JJ, Kuc, RE, Davenport, AP. Radioligand binding assays and their analysis. Methods Mol Biol. 2012;897:31–77.
Hulme, EC, Trevethick, MA. Ligand binding assays at equilibrium: Validation and interpretation. Br J Pharmacol. 2010;161:1219–1237.
Mould, R, Brown, J, Marshall, FH, Langmead, CJ. Binding kinetics differentiates functional antagonism of orexin‐2 receptor ligands. Br J Pharmacol. 2014;171:351–363.
Andersen, ME, Moffat, JK, Gibson, QH. The kinetics of ligand binding and of the association–dissociation reactions of human hemoglobin. Properties of deoxyhemoglobin dimers. J Biol Chem. 1971;246:2796–2807.
Dong, C, Liu, Z, Wang, F. Radioligand saturation binding for quantitative analysis of ligand–receptor interactions. Biophys Rep. 2015;1:148–155.
Feau, C, Arnold, LA, Kosinski, A, Guy, RK. A high‐throughput ligand competition binding assay for the androgen receptor and other nuclear receptors. J Biomol Screen. 2009;14:43–48.
Zhai, D, Godoi, P, Sergienko, E, et al. High‐throughput fluorescence polarization assay for chemical library screening against anti‐apoptotic Bcl‐2 family member Bfl‐1. J Biomol Screen. 2012;17:350–360.
Lea, WA, Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discovery. 2011;6:17–32.
Sekar, RB, Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160:629–633.
Tang, Y, Zeng, X, Liang, J. Surface plasmon resonance: An introduction to a surface spectroscopy technique. J Chem Educ. 2010;87:742–746.
Chavanieu, A, Pugniere, M. Developments in SPR fragment screening. Expert Opin Drug Discovery. 2016;11:489–499.
Genheden, S, Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand‐binding affinities. Expert Opin Drug Discovery. 2015;10:449–461.
Jorgensen, WL, Thomas, LL. Perspective on free‐energy perturbation calculations for chemical equilibria. J Chem Theory Comput. 2008;4:869–876.
Ruiter, A, Oostenbrink, C. Extended thermodynamic integration: Efficient prediction of lambda derivatives at nonsimulated points. J Chem Theory Comput. 2016;12:4476–4486.
Wang, JB, Ilie, A, Yuan, S, Reetz, MT. Investigating substrate scope and enantioselectivity of a defluorinase by a stereochemical probe. J Am Chem Soc. 2017;139:11241–11247.
Sun, Z, Wu, L, Bocola, M, et al. Structural and computational insight into the catalytic mechanism of limonene epoxide hydrolase mutants in stereoselective transformations. J Am Chem Soc. 2018;140:310–318.
Liao, RZ, Siegbahn, PEM. Mechanism and selectivity of the dinuclear iron benzoyl‐coenzyme A epoxidase BoxB. Chem Sci. 2015;6:2754–2764.
Noey, EL, Tibrewal, N, Jimenez‐Oses, G, et al. Origins of stereoselectivity in evolved ketoreductases. Proc Natl Acad Sci U S A. 2015;112:E7065–E7072.
Yuan, H, Zhang, J, Cai, Y, et al. GyrI‐like proteins catalyze cyclopropanoid hydrolysis to confer cellular protection. Nat Commun. 2017;8:1485.
Mehvar, R, Brocks, DR. Stereospecific pharmacokinetics and pharmacodynamics of beta‐adrenergic blockers in humans. J Pharm Pharm Sci. 2001;4:185–200.
Lukša, J, Josić, D, Podobnik, B, Furlan, B, Kremser, M. Semi‐preparative chromatographic purification of the enantiomers S‐(−)‐amlodipine and R‐(+)‐amlodipine. J Chromatogr B Biomed Sci Appl. 1997;693:367–375.
Antonaccio, MJ. Angiotensin converting enzyme (ACE) inhibitors. Annu Rev Pharmacol Toxicol. 1982;22:57–87.
Flesch, G, Müller, P, Lloyd, P. Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol. 1997;52:115–120.
Landoni, MF, Soraci, A. Pharmacology of chiral compounds 2‐arylpropionic acid derivatives. Curr Drug Metab. 2001;2:37–51.
Brossi, A, Pei, X‐F. Biological activity of unnatural alkaloid enantiomers. In: Cordell, GA, editor. The alkaloids: Chemistry and biology. Volume 50. Academic Press, 1998; p. 109–139.
Mitra, S, Chopra, P. Chirality and anaesthetic drugs: A review and an update. Indian J Anaesth. 2011;55:556–562.
Gascon, AR, Campo, E, Hernandez, RM, Calvo, B, Errasti, J, Pedraz Munoz, JL. Pharmacokinetics of ofloxacin enantiomers after intravenous administration for antibiotic prophylaxis in biliary surgery. J Clin Pharmacol. 2000;40:869–874.
Weinberg, ED, Tonnis, SM. Action of chloramphenicol and its isomers on secondary biosynthetic processes of bacillus. Appl Microbiol. 1966;14:850–856.
Korhonova, M, Doricakova, A, Dvorak, Z. Optical isomers of atorvastatin, rosuvastatin and fluvastatin enantiospecifically activate Pregnane X receptor PXR and induce CYP2A6, CYP2B6 and CYP3A4 in human hepatocytes. PLoS One. 2015;10:e0137720.
Dinis‐Oliveira, RJ. Metabolic profile of oxazepam and related benzodiazepines: Clinical and forensic aspects. Drug Metab Rev. 2017;49:451–463.
Greenblatt, DJ, Zammit, GK. Pharmacokinetic evaluation of eszopiclone: Clinical and therapeutic implications. Expert Opin Drug Metab Toxicol. 2012;8:1609–1618.
Blake, K, Raissy, H. Chiral switch drugs for asthma and allergies: True benefit or marketing hype. Pediatr Allergy Immunol Pulmonol. 2013;26:157–160.
Jeon, SH, Kim, M, Han, HK, Lee, W. Direct enantiomer separation of thyroxine in pharmaceuticals using crown ether type chiral stationary phase. Arch Pharm Res. 2010;33:1419–1423.