Frischkorn, C, Wolf, M. Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem Rev. 2006;106:4207–4233.
Yuan, K, Dixon, RN, Yang, X. Photochemistry of the water molecule: Adiabatic versus nonadiabatic dynamics. Acc Chem Res. 2011;44:369–378.
Tully, JC. Perspective: Nonadiabatic dynamics theory. J Chem Phys. 2012;137:22A301.
Nelson, T, Fernandez‐Alberti, S, Roitberg, AE, Tretiak, S. Nonadiabatic excited‐state molecular dynamics: Modeling photophysics in organic conjugated materials. Acc Chem Res. 2014;47:1155–1164.
Curchod, BFE, Martínez, TJ. Ab initio nonadiabatic quantum molecular dynamics. Chem Rev. 2018;118:3305–3336.
Prezhdo, OV, Kisil, VV. Mixing quantum and classical mechanics. Phys Rev A. 1997;56:162–175.
Tully, JC. Mixed quantum‐classical dynamics. Faraday Discuss. 1998;110:407–419.
Kapral, R. Progress in the theory of mixed quantum‐classical dynamics. Annu Rev Phys Chem. 2006;57:129–157.
Wang, L, Prezhdo, OV, Beljonne, D. Mixed quantum‐classical dynamics for charge transport in organics. Phys Chem Chem Phys. 2015;17:12395–12406.
Crespo‐Otero, R, Barbatti, M. Recent advances and perspectives on nonadiabatic mixed quantum‐classical dynamics. Chem Rev. 2018;118:7026–7068.
Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z Phys. 1927;45:455–457.
Tully, JC. Molecular dynamics with electronic transitions. J Chem Phys. 1990;93:1061–1071.
Parandekar, PV, Tully, JC. Mixed quantum‐classical equilibrium. J Chem Phys. 2005;122:094102.
Parandekar, PV, Tully, JC. Detailed balance in Ehrenfest mixed quantum‐classical dynamics. J Chem Theory Comput. 2006;2:229–235.
Schmidt, JR, Parandekar, PV, Tully, JC. Mixed quantum‐classical equilibrium: Surface hopping. J Chem Phys. 2008;129:044104.
Wang, L, Beljonne, D. Charge transport in organic semiconductors: Assessment of the mean field theory in the hopping regime. J Chem Phys. 2013;139:064316.
Tully, JC, Preston, RK. Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2. J Chem Phys. 1971;55:562–572.
Chu, T‐S, Zhang, Y, Han, K‐L. The time‐dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions. Int Rev Phys Chem. 2006;25:201–235.
Hammes‐Schiffer, S, Tully, JC. Proton transfer in solution: Molecular dynamics with quantum transitions. J Chem Phys. 1994;101:4657–4667.
Fang, J‐Y, Hammes‐Schiffer, S. Comparison of surface hopping and mean field approaches for model proton transfer reactions. J Chem Phys. 1999;110:11166–11175.
Ciminelli, C, Granucci, G, Persico, M. The photoisomerization mechanism of azobenzene: A semiclassical simulation of nonadiabatic dynamics. Chem A Eur J. 2004;10:2327–2341.
Xia, S‐H, Cui, G, Fang, W‐H, Thiel, W. How photoisomerization drives peptide folding and unfolding: Insights from QM/MM and MM dynamics simulations. Angew Chem Int Ed. 2016;55:2067–2072.
Li, X, Hu, D, Xie, Y, Lan, Z. Analysis of trajectory similarity and configuration similarity in on‐the‐fly surface‐hopping simulation on multi‐channel nonadiabatic photoisomerization dynamics. J Chem Phys. 2018;149:244104.
Wang, L, Olivier, Y, Prezhdo, OV, Beljonne, D. Maximizing singlet fission by intermolecular packing. J Phys Chem Lett. 2014;5:3345–3353.
Akimov, AV, Prezhdo, OV. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface. J Am Chem Soc. 2014;136:1599–1608.
Topaler, MS, Hack, MD, Allison, TC, et al. Validation of trajectory surface hopping methods against accurate quantum mechanical dynamics and semiclassical analysis of electronic‐to‐vibrational energy transfer. J Chem Phys. 1997;106:8699–8709.
Huang, J, Du, L, Wang, J, Lan, Z. Photoinduced excited‐state energy‐transfer dynamics of a nitrogen‐cored symmetric dendrimer: From the perspective of the Jahn‐teller effect. J Phys Chem C. 2015;119:7578–7589.
Gao, X, Peng, Q, Niu, Y, Wang, D, Shuai, Z. Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: A nonadiabatic molecular dynamics study. Phys Chem Chem Phys. 2012;14:14207–14216.
Oberhofer, H, Reuter, K, Blumberger, J. Charge transport in molecular materials: An assessment of computational methods. Chem Rev. 2017;117:10319–10357.
Eckert‐Maksić, M, Antol, I. Study of the mechanism of the N‐CO photodissociation in N,N‐dimethylformamide by direct trajectory surface hopping simulations. J Phys Chem A. 2009;113:12582–12590.
Hazra, A, Soudackov, AV, Hammes‐Schiffer, S. Isotope effects on the nonequilibrium dynamics of ultrafast photoinduced proton‐coupled electron transfer reactions in solution. J Phys Chem Lett. 2011;2:36–40.
Cui, G, Lan, Z, Thiel, W. Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore. J Am Chem Soc. 2012;134:1662–1672.
Long, R, English, NJ, Prezhdo, OV. Minimizing electron‐hole recombination on TiO2 sensitized with PbSe quantum dots: Time‐domain ab initio analysis. J Phys Chem Lett. 2014;5:2941–2946.
Gan, Y, Yue, L, Guo, X, Zhu, C, Cao, Z. Multi‐state nonadiabatic deactivation mechanism of coumarin revealed by ab initio on‐the‐fly trajectory surface hopping dynamic simulation. Phys Chem Chem Phys. 2017;19:12094–12106.
Hu, D, Xie, Y, Li, X, Li, L, Lan, Z. Inclusion of machine learning kernel ridge regression potential energy surfaces in on‐the‐fly nonadiabatic molecular dynamics simulation. J Phys Chem Lett. 2018;9:2725–2732.
Wang, L, Akimov, A, Prezhdo, OV. Recent progress in surface hopping: 2011‐2015. J Phys Chem Lett. 2016;7:2100–2112.
Bittner, ER, Rossky, PJ. Quantum decoherence in mixed quantum‐classical systems: Nonadiabatic processes. J Chem Phys. 1995;103:8130–8143.
Schwartz, BJ, Bittner, ER, Prezhdo, OV, Rossky, PJ. Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J Chem Phys. 1996;104:5942–5955.
Prezhdo, OV, Rossky, PJ. Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems. Phys Rev Lett. 1998;81:5294–5297.
Zhu, CY, Nangia, S, Jasper, AW, Truhlar, DG. Coherent switching with decay of mixing: An improved treatment of electronic coherence for non‐Born‐Oppenheimer trajectories. J Chem Phys. 2004;121:7658–7670.
Bedard‐Hearn, MJ, Larsen, RE, Schwartz, BJ. Mean‐field dynamics with stochastic decoherence (MF‐SD): A new algorithm for nonadiabatic mixed quantum/classical molecular‐dynamics simulations with nuclear‐induced decoherence. J Chem Phys. 2005;123:234106.
Granucci, G, Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J Chem Phys. 2007;126:134114.
Granucci, G, Persico, M, Zoccante, A. Including quantum decoherence in surface hopping. J Chem Phys. 2010;133:134111.
Shenvi, N, Subotnik, JE, Yang, W. Simultaneous‐trajectory surface hopping: A parameter‐free algorithm for implementing decoherence in nonadiabatic dynamics. J Chem Phys. 2011;134:144102.
Subotnik, JE, Shenvi, N. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J Chem Phys. 2011;134:024105.
Jaeger, HM, Fischer, S, Prezhdo, OV. Decoherence‐induced surface hopping. J Chem Phys. 2012;137:22A545.
Nelson, T, Fernandez‐Alberti, S, Roitberg, AE, Tretiak, S. Nonadiabatic excited‐state molecular dynamics: Treatment of electronic decoherence. J Chem Phys. 2013;138:224111.
Chen, H‐T, Reichman, DR. On the accuracy of surface hopping dynamics in condensed phase non‐adiabatic problems. J Chem Phys. 2016;144:094104.
Gao, X, Thiel, W. Non‐Hermitian surface hopping. Phys Rev E. 2017;95:013308.
Xu, J, Wang, L. Branching corrected surface hopping: Resetting wavefunction coefficients based on judgement of wave packet reflection. J Chem Phys. 2019;150:164101.
Granucci, G, Persico, M, Toniolo, A. Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J Chem Phys. 2001;114:10608–10615.
Fernandez‐Alberti, S, Roitberg, AE, Nelson, T, Tretiak, S. Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. J Chem Phys. 2012;137:014512.
Wang, L, Prezhdo, OV. A simple solution to the trivial crossing problem in surface hopping. J Phys Chem Lett. 2014;5:713–719.
Qiu, J, Bai, X, Wang, L. Crossing classified and corrected fewest switches surface hopping. J Phys Chem Lett. 2018;9:4319–4325.
Bai, X, Qiu, J, Wang, L. An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping. J Chem Phys. 2018;148:104106.
Giannini, S, Carof, A, Blumberger, J. Crossover from hopping to band‐like charge transport in an organic semiconductor model: Atomistic nonadiabatic molecular dynamics simulation. J Phys Chem Lett. 2018;9:3116–3123.
Barbatti, M. Nonadiabatic dynamics with trajectory surface hopping method. WIREs Comput Mol Sci. 2011;1:620–633.
Wang, L, Long, R, Prezhdo, OV. Time‐domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. Annu Rev Phys Chem. 2015;66:549–579.
Subotnik, JE, Jain, A, Landry, B, Petit, A, Ouyang, W, Bellonzi, N. Understanding the surface hopping view of electronic transitions and decoherence. Annu Rev Phys Chem. 2016;67:387–417.
Weingart, O. Combined quantum and molecular mechanics (QM/MM) approaches to simulate ultrafast photodynamics in biological systems. Curr Org Chem. 2017;21:586–601.
Wang, L, Sifain, AE, Prezhdo, OV. Fewest switches surface hopping in Liouville space. J Phys Chem Lett. 2015;6:3827–3833.
Wang, L, Sifain, AE, Prezhdo, OV. Communication: Global flux surface hopping in Liouville space. J Chem Phys. 2015;143:191102.
Hellmann, H. Einführung in die Quantenchemie. Leipzig, Germany: Deuticke, 1937.
Feynman, RP. Forces in molecules. Phys Rev. 1939;56:340–343.
Landry, BR, Subotnik, JE. Communication: Standard surface hopping predicts incorrect scaling for Marcus` golden‐rule rate: The decoherence problem cannot be ignored. J Chem Phys. 2011;135:191101.
Landry, BR, Subotnik, JE. How to recover Marcus theory with fewest switches surface hopping: Add just a touch of decoherence. J Chem Phys. 2012;137:22A513.
Yarkony, DR. Diabolical conical intersections. Rev Mod Phys. 1996;68:985–1013.
Bernardi, F, Olivucci, M, Robb, MA. Potential energy surface crossings in organic photochemistry. Chem Soc Rev. 1996;25:321–328.
Worth, GA, Cederbaum, LS. Beyond Born‐Oppenheimer: Molecular dynamics through a conical intersection. Annu Rev Phys Chem. 2004;55:127–158.
Levine, BG, Martínez, TJ. Isomerization through conical intersections. Annu Rev Phys Chem. 2007;58:613–634.
Yarkony, DR. Nonadiabatic quantum chemistry – Past, present, and future. Chem Rev. 2012;112:481–498.
Holstein, T. Studies of polaron motion part II. The “small” polaron. Ann Phys. 1959;8:343–389.
Hannewald, K, Bobbert, PA. Ab initio theory of charge‐carrier conduction in ultrapure organic crystals. Appl Phys Lett. 2004;85:1535–1537.
Wang, L, Peng, Q, Li, Q, Shuai, Z. Roles of inter‐ and intramolecular vibrations and band‐hopping crossover in the charge transport in naphthalene crystal. J Chem Phys. 2007;127:044506.
Wang, L, Li, Q, Shuai, Z. Effects of pressure and temperature on the carrier transports in organic crystal: A first‐principles study. J Chem Phys. 2008;128:194706.
Wang, L, Beljonne, D, Chen, L, Shi, Q. Mixed quantum‐classical simulations of charge transport in organic materials: Numerical benchmark of the Su‐Schrieffer‐Heeger model. J Chem Phys. 2011;134:244116.
Johansson, å, Stafström, S. Polaron dynamics in a system of coupled conjugated polymer chains. Phys Rev Lett. 2001;86:3602–3605.
Troisi, A, Orlandi, G. Charge‐transport regime of crystalline organic semiconductors: Diffusion limited by thermal off‐diagonal electronic disorder. Phys Rev Lett. 2006;96:086601.
Wang, L, Akimov, AV, Chen, L, Prezhdo, OV. Quantized Hamiltonian dynamics captures the low‐temperature regime of charge transport in molecular crystals. J Chem Phys. 2013;139:174109.
Akimov, AV. A simple phase correction makes a big difference in nonadiabatic molecular dynamics. J Phys Chem Lett. 2018;9:6096–6102.
Ryabinkin, IG, Nagesh, J, Izmaylov, AF. Fast numerical evaluation of time‐derivative nonadiabatic couplings for mixed quantum‐classical methods. J Phys Chem Lett. 2015;6:4200–4203.
Virshup, AM, Levine, BG, Martínez, TJ. Steric and electrostatic effects on photoisomerization dynamics using QM/MM ab initio multiple spawning. Theor Chem Acc. 2014;133:1506.
Wang, L, Beljonne, D. Flexible surface hopping approach to model the crossover from hopping to band‐like transport in organic crystals. J Phys Chem Lett. 2013;4:1888–1894.
Spörkel, L, Thiel, W. Adaptive time steps in trajectory surface hopping simulations. J Chem Phys. 2016;144:194108.
Fabiano, E, Groenhof, G, Thiel, W. Approximate switching algorithms for trajectory surface hopping. Chem Phys. 2008;351:111–116.
Fabiano, E, Keal, TW, Thiel, W. Implementation of surface hopping molecular dynamics using semiempirical methods. Chem Phys. 2008;349:334–347.
Meek, GA, Levine, BG. Evaluation of the time‐derivative coupling for accurate electronic state transition probabilities from numerical simulations. J Phys Chem Lett. 2014;5:2351–2356.
Mulliken, RS. Molecular compounds and their spectra. II. J Am Chem Soc. 1952;74:811–824.
Hush, NS. Intervalence‐transfer absorption. Part 2. Theoretical considerations and spectroscopic data. Prog Inorg Chem. 1967;8:391–444.
Baer, M. Adiabatic and diabatic representations for atom‐molecule collisions: Treatment of the collinear arrangement. Chem Phys Lett. 1975;35:112–118.
Baer, M. Electronic non‐adiabatic transitions: Derivation of the general adiabatic‐diabatic transformation matrix. Mol Phys. 1980;40:1011–1013.
Pacher, T, Cederbaum, LS, Köppel, H. Approximately diabatic states from block diagonalization of the electronic Hamiltonian. J Chem Phys. 1988;89:7367–7381.
Wesolowski, TA, Warshel, A. Frozen density functional approach for ab initio calculations of solvated molecules. J Phys Chem. 1993;97:8050–8053.
Nakamura, H, Truhlar, DG. The direct calculation of diabatic states based on configurational uniformity. J Chem Phys. 2001;115:10353–10372.
Nakamura, H, Truhlar, DG. Direct diabatization of electronic states by the fourfold way. II. Dynamical correlation and rearrangement processes. J Chem Phys. 2002;117:5576–5593.
Truhlar, DG. Valence bond theory for chemical dynamics. J Comput Chem. 2007;28:73–86.
Song, L, Gao, J. On the construction of diabatic and adiabatic potential energy surfaces based on ab initio valence bond theory. J Phys Chem A. 2008;112:12925–12935.
Voorhis, TV, Kowalczyk, T, Kaduk, B, Wang, L‐P, Cheng, C‐L, Wu, Q. The diabatic picture of electron transfer, reaction barriers, and molecular dynamics. Annu Rev Phys Chem. 2010;61:149–170.
Hoyer, CE, Xu, X, Ma, D, Gagliardi, L, Truhlar, DG. Diabatization based on the dipole and quadrupole: The DQ method. J Chem Phys. 2014;141:114104.
Mandal, A, Yamijala, SS, Huo, P. Quasi‐diabatic representation for nonadiabatic dynamics propagation. J Chem Theory Comput. 2018;14:1828–1840.
Plasser, F, Granucci, G, Pittner, J, Barbatti, M, Persico, M, Lischka, H. Surface hopping dynamics using a locally diabatic formalism: Charge transfer in the ethylene dimer cation and excited state dynamics in the 2‐pyridone dimer. J Chem Phys. 2012;137:22A514.
Mai, S, Marquetand, P, González, L. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int J Quantum Chem. 2015;115:1215–1231.
Barbatti, M, Granucci, G, Persico, M, et al. The on‐the‐fly surface‐hopping program system NEWTON‐X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. J Photoch Photobio A. 2007;190:228–240.
Barbatti, M, Ruckenbauer, M, Plasser, F, et al. Newton‐X: A surface‐hopping program for nonadiabatic molecular dynamics. WIREs Comput Mol Sci. 2014;4:26–33.
Richter, M, Marquetand, P, González‐Vázquez, J, Sola, I, González, L. SHARC: Ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J Chem Theory Comput. 2011;7:1253–1258.
Mai, S, Marquetand, P, González, L. Nonadiabatic dynamics: The SHARC approach. WIREs Comput Mol Sci. 2018;8:e1370.
Humeniuk, A, Mitrić, R. DFTBaby: A software package for non‐adiabatic molecular dynamics simulations based on long‐range corrected tight‐binding TD‐DFT(B). Comput Phys Commun. 2017;221:174–202.
Wang, L, Trivedi, D, Prezhdo, OV. Global flux surface hopping approach for mixed quantum‐classical dynamics. J Chem Theory Comput. 2014;10:3598–3605.
Lisinetskaya, PG, Mitrić, R. Simulation of laser‐induced coupled electron‐nuclear dynamics and time‐resolved harmonic spectra in complex systems. Phys Rev A. 2011;83:033408.
Sifain, AE, Wang, L, Prezhdo, OV. Mixed quantum‐classical equilibrium in global flux surface hopping. J Chem Phys. 2015;142:224102.
Sifain, AE, Wang, L, Prezhdo, OV. Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping. J Chem Phys. 2016;144:211102.
Trivedi, DJ, Wang, L, Prezhdo, OV. Auger‐mediated electron relaxation is robust to deep hole traps: Time‐domain ab initio study of CdSe quantum dots. Nano Lett. 2015;15:2086–2091.
Pal, S, Casanova, D, Prezhdo, OV. Effect of aspect ratio on multiparticle Auger recombination in single‐walled carbon nanotubes: Time domain atomistic simulation. Nano Lett. 2018;18:58–63.
Dong, S, Pal, S, Lian, J, Chan, Y, Prezhdo, OV, Loh, Z‐H. Sub‐picosecond Auger‐mediated hole‐trapping dynamics in colloidal CdSe/CdS core/shell nanoplatelets. ACS Nano. 2016;10:9370–9378.
Qiu, J, Bai, X, Wang, L. Subspace surface hopping with size‐independent dynamics. J Phys Chem Lett. 2019;10:637–644.
Akimov, AV, Neukirch, AJ, Prezhdo, OV. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem Rev. 2013;113:4496–4565.
Long, R, Prezhdo, OV, Fang, W. Nonadiabatic charge dynamics in novel solar cell materials. WIREs Comput Mol Sci. 2017;7:e1305.
Akimov, AV, Prezhdo, OV. The PYXAID program for non‐adiabatic molecular dynamics in condensed matter systems. J Chem Theory Comput. 2013;9:4959–4972.
Akimov, AV, Prezhdo, OV. Advanced capabilities of the PYXAID program: Integration schemes, decoherence effects, multiexcitonic states, and field‐matter interaction. J Chem Theory Comput. 2014;10:789–804.
Pal, S, Trivedi, DJ, Akimov, AV, Aradi, B, Frauenheim, T, Prezhdo, OV. Nonadiabatic molecular dynamics for thousand atom systems: A tight‐binding approach toward PYXAID. J Chem Theory Comput. 2016;12:1436–1448.
Zheng, Q, Saidi, WA, Xie, Y, et al. Photon‐assisted ultrafast charge transfer at van der Waals heterostructure interface. Nano Lett. 2017;17:6435–6442.
Zhang, L, Zheng, Q, Xie, Y, et al. Delocalized impurity phonon induced electron‐hole recombination in doped semiconductors. Nano Lett. 2018;18:1592–1599.
Zheng, Q, Chu, W, Zhao, C, et al. Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems. WIREs Comput Mol Sci. 2019;9:e1411.
Zeh, HD. On the interpretation of measurement in quantum theory. Found Phys. 1970;1:69–76.
Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev Mod Phys. 2004;76:1267–1305.
Zhu, C, Jasper, AW, Truhlar, DG. Non‐Born‐Oppenheimer trajectories with self‐consistent decay of mixing. J Chem Phys. 2004;120:5543–5557.
Zhu, C, Jasper, AW, Truhlar, DG. Non‐Born‐Oppenheimer Liouville‐von Neumann dynamics. Evolution of a subsystem controlled by linear and population‐driven decay of mixing with decoherent and coherent switching. J Chem Theory Comput. 2005;1:527–540.
Du, L, Lan, Z. An on‐the‐fly surface‐hopping program JADE for nonadiabatic molecular dynamics of polyatomic systems: Implementation and applications. J Chem Theory Comput. 2015;11:1360–1374.
Heller, EJ. Time‐dependent approach to semiclassical dynamics. J Chem Phys. 1975;62:1544–1555.
Neria, E, Nitzan, A. Semiclassical evaluation of nonadiabatic rates in condensed phases. J Chem Phys. 1993;99:1109–1123.
Subotnik, JE. Fewest‐switches surface hopping and decoherence in multiple dimensions. J Phys Chem A. 2011;115:12083–12096.
Jain, A, Alguire, E, Subotnik, JE. An efficient, augmented surface hopping algorithm that includes decoherence for use in large‐scale simulations. J Chem Theory Comput. 2016;12:5256–5268.
Fang, J‐Y, Hammes‐Schiffer, S. Improvement of the internal consistency in trajectory surface hopping. J Phys Chem A. 1999;103:9399–9407.
Colbert, DT, Miller, WH. A novel discrete variable representation for quantum mechanical reactive scattering via the S‐matrix Kohn method. J Chem Phys. 1992;96:1982–1991.
Manolopoulos, DE. Derivation and reflection properties of a transmission‐free absorbing potential. J Chem Phys. 2002;117:9552–9559.
Wang, L, Nan, G, Yang, X, Peng, Q, Li, Q, Shuai, Z. Computational methods for design of organic materials with high charge mobility. Chem Soc Rev. 2010;39:423–434.
Shenvi, N, Subotnik, JE, Yang, W. Phase‐corrected surface hopping: Correcting the phase evolution of the electronic wavefunction. J Chem Phys. 2011;135:024101.
Shenvi, N, Yang, W. Achieving partial decoherence in surface hopping through phase correction. J Chem Phys. 2012;137:22A528.
Zhu, C. Restoring electronic coherence/decoherence for a trajectory‐based nonadiabatic molecular dynamics. Sci Rep. 2016;6:24198.
Gorshkov, VN, Tretiak, S, Mozyrsky, D. Semiclassical Monte‐Carlo approach for modelling non‐adiabatic dynamics in extended molecules. Nat Commun. 2013;4:2144.
Song, L, Shi, Q. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations. J Chem Phys. 2015;142:174103.
Bai, S, Song, K, Shi, Q. Effects of different quantum coherence on the pump‐probe polarization anisotropy of photosynthetic light‐harvesting complexes: A computational study. J Phys Chem Lett. 2015;6:1954–1960.
Fratini, S, Ciuchi, S, Mayou, D, Trambly de Laissardière, G, Troisi, A. A map of high‐mobility molecular semiconductors. Nat Mater. 2017;16:998–1002.
Martens, CC. Surface hopping by consensus. J Phys Chem Lett. 2016;7:2610–2615.
Lambert, C, Nöll, G, Schelter, J. Bridge‐mediated hopping or superexchange electron‐transfer processes in bis(triarylamine) systems. Nat Mater. 2002;1:69–73.
Berkelbach, TC, Hybertsen, MS, Reichman, DR. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J Chem Phys. 2013;138:114103.
Martens, CC. Surface hopping without momentum jumps: A quantum‐trajectory‐based approach to nonadiabatic dynamics. J Phys Chem A. 2019;123:1110–1128.
Tempelaar, R, Reichman, DR. Generalization of fewest‐switches surface hopping for coherences. J Chem Phys. 2018;148:102309.
Porezag, D, Frauenheim, Th, Köhler, Th, Seifert, G, Kaschner, R. Construction of tight‐binding‐like potentials on the basis of density‐functional theory: Application to carbon. Phys Rev B. 1995;51:12947–12957.
Gaus, M, Cui, Q, Elstner, M. DFTB3: Extension of the self‐consistent‐charge density‐functional tight‐binding method (SCC‐DFTB). J Chem Theory Comput. 2011;7:931–948.
Elstner, M, Seifert, G. Density functional tight binding. Phil Trans R Soc A. 2014;372:20120483.
Cerrillo, J, Cao, J. Non‐Markovian dynamical maps: Numerical processing of open quantum trajectories. Phys Rev Lett. 2014;112:110401.
Kananenka, AA, Hsieh, C‐Y, Cao, J, Geva, E. Accurate long‐time mixed quantum‐classical Liouville dynamics via the transfer tensor method. J Phys Chem Lett. 2016;7:4809–4814.