Amaro, RE, Mulholland, AJ. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat Rev Chem. 2018;2:0148.
Hollingsworth, SA, Dror, RO. Molecular dynamics simulation for all. Neuron. 2018;99(6):1129–1143.
Katiyar, RS, Jha, PK. Molecular simulations in drug delivery: Opportunities and challenges. WIREs Comput Mol Sci. 2018;8:e1358.
Baker, D, Sali, A. Protein structure prediction and structural genomics. Science. 2001;294(93):93–96.
Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte Der Deutschen Chemischen Gesellschaft. 1894;27(3):2985–2993.
Gilson, MK, Zhou, HX. Calculation of protein‐ligand binding affinities. Annu Rev Biophys Biomol Struct. 2007;36(1):21–42.
Mihailescu, M, Gilson, MK. On the theory of noncovalent binding. Biophys J. 2004;87(1):23–36.
Morrison, JF, Walsh, CT. The behaviour and significance of slow‐binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301.
Copeland, RA. The drug‐target residence time model: A 10‐year retrospective. Nat Rev Drug Dis. 2015;15(2):87–95.
Bernetti, M, Masetti, M, Rocchia, W, Cavalli, A. Kinetics of drug binding and residence time. Annu Rev Phys Chem. 2019;70:173–201.
Du, X, Li, Y, Xia, YL, et al. Insights into protein–ligand interactions: Mechanisms, models and methods. Int J Mol Sci. 2016;17(2):144.
Gilson, MK, Given, JA, Bush, BL, McCammon, JA. The statistical‐thermodynamic basis for computation of binding affinities: A critical review. Biophys J. 1997;72(3):1047–1069.
Friesner, RA, Banks, JL, Murphy, RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749.
Goodsell, DS, Olson, AJ. Automated docking of substrates to proteins by simulated annealing. Protein Struct. Funct. Genet. 1990;8(3):195–202.
Abagyan, R, Totrov, M, Kuznetsov, D. ICM—a new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15(5):488–506.
Meiler, J, Baker, D. ROSETTALIGAND: Protein–small molecule docking with full side‐chain flexibility. Proteins Struct Funct Bioinf. 2006;65(3):538–548.
Morris, GM, Goodsell, DS, Halliday, RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–1662.
Shoichet, BK. Virtual screening of chemical libraries. Nature. 2004;432:862–865.
Kontoyianni, M, McClellan, LM, Sokol, GS. Evaluation of docking performance: Comparative data on docking algorithms. J Med Chem. 2004;47(3):558–565.
Salmaso, V, Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand‐protein recognition process: An overview. Front Pharmacol. 2018;9:923.
Sherman, W, Beard, HS, Farid, R. Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des. 2006;67(1):83–84.
Morris, GM, Huey, R, Lindstrom, W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.
Amaro, RE, Baron, R, McCammon, JA. An improved relaxed complex scheme for receptor flexibility in computer‐aided drug design. J Comput Aided Mol Des. 2008;22(9):693–705.
Durrant, JD, McCammon, JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9:71.
Spyrakis, F, Benedetti, P, Decherchi, S, et al. A pipeline to enhance ligand virtual screening: Integrating molecular dynamics and fingerprints for ligand and proteins. J Chem Inf Model. 2015;55(10):1156–2274.
Lin, JH, Perryman, AL, Schames, JR, McCammon, JA. The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers. 2002;68(1):47–62.
Ivetac, A, McCammon, JA. Molecular recognition in the case of flexible targets. Curr Pharm Des. 2011;17(17):1663–1671.
Lin, JH, Perryman, AL, Schames, JR, McCammon, JA. Computational drug design accommodating receptor flexibility: The relaxed complex scheme. J Am Chem Soc. 2002;124(20):5632–5633.
Schames, JR, Henchman, RH, Siegel, JS, Sotriffer, CA, Ni, H, McCammon, JA. Discovery of a novel binding trench in HIV integrase. J Med Chem. 2004;47(8):1879–1881.
Amaro, RE, Schnaufer, A, Interthal, H, Hol, W, Stuart, KD, McCammon, JA. Discovery of drug‐like inhibitors of an essential RNA‐editing ligase in Trypanosoma brucei. PNAS. 2008;105(45):17278–17283.
Durrant, JD, Hall, L, Swift, RV, Landon, M, Schnaufer, A, Amaro, RE. Novel naphthalene‐based inhibitors of Trypanosoma brucei RNA editing ligase 1. PLoS Negl Trop Dis. 2010;4(8):e803.
Liu, HY, Kuntz, ID, Zou, X. Pairwise GB/SA scoring function for structure‐based drug design. J Phys Chem B. 2004;108(17):5453–5462.
Majeux, N, Scarsi, M, Apostolakis, J, Ehrhardt, C, Caflisch, A. Exhaustive docking of molecular fragments with electrostatic solvation. Protein Struct. Funct. Genet. 1999;37(1):88–105.
Maple, JR, Cao, Y, Damm, W, et al. A polarizable force field and continuum solvation methodology for modeling of protein‐ligand interactions. J Chem Theor Comput. 2005;1(4):694–715.
Ferrara, P, Gohlke, H, Price, DJ, Klebe, G, Brooks, CL. Assessing scoring functions for protein‐ligand interactions. J Med Chem. 2004;47(12):3032–3047.
Shoichet, BK, Leach, AR, Kuntz, ID. Ligand solvation in molecular docking. Protein Struct. Funct. Genet. 1999;34(1):4–16.
Zou, X, Sun, YX, Kuntz, ID. Inclusion of solvation in ligand binding free energy calculations using the generalized‐born model. J Am Chem Soc. 1999;121(35):8033–8043.
Limongelli, V, Marinelli, L, Cosconati, S, et al. Sampling protein motion and solvent effect during ligand binding. PNAS. 2012;109(5):1467–1472.
Garcia‐Sosa, AT, Mancera, RL, Dean, PM. WaterScore: A novel method for distinguishing between bound and displaceable water molecules in the crystal. J Mol Model. 2003;9(3):172–182.
Rarey, M, Kramer, B, Lengauer, T. The particle concept: Placing discrete water molecules during protein‐ligand docking predictions. Protein Struct Funct Genet. 1999;34:17–28.
Verdonk, ML, Chessari, G, Cole, JC, et al. Modeling water molecules in protein‐ligand docking using GOLD. J Med Chem. 2005;48(20):6504–6515.
Chang, CE, Gilson, MK. Free energy, entropy, and induced fit in host‐guest recognition: Calculations with the second‐generation mining minima algorithm. J Am Chem Soc. 2004;126(40):13156–13164.
Rarey, M, Kramer, B, Lengauer, T, Klebe, G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996;261(3):470–489.
Wang, R, Lai, L, Wang, S. Further development and validation of empirical scoring functions for structure‐based binding affinity prediction. J Comput Aided Mol Des. 2002;16(1):11–26.
Friesner, RA, Murphy, RB, Repasky, MP. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein‐ligand complexes. J Med Chem. 2006;49(21):6177–6196.
Gohlke, H, Hendlich, M, Klebe, G. Knowledge‐based scoring function to predict protein‐ligand interactions. J Mol Biol. 2000;295(2):337–356.
Liu, J, Wang, R. Classification of current scoring functions. J Chem Inf Model. 2015;55(3):475–482.
Bender, A, Glen, RC. A discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication. J Chem Inf. 2005;45(5):1369–1375.
Anighoro, A, Bajorath, J. Binding mode similarity measures for ranking of docking poses: A case study on the adenosine A2A receptor. J Comput Aided Mol Des. 2016;30(6):447–456.
Kooistra, AJ, Vischer, HF, McNaught‐Flores, D, Leurs, R, de Esch, IJP, de Graaf, C. Function‐specific virtual screening for GPCR ligands using a combined scoring method. Sci Rep. 2016;6(1):28288.
Charifson, PS, Corkey, JJ, Murcko, MA, Walters, WP. Consensus scoring: A method for obtaining improved hit rates from docking databases of three‐dimensional structures into proteins. J Med Chem. 1999;42(25):5100–5109.
Yuriev, E, Holien, J, Ramsland, PA. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. J Mol Recognit. 2015;28(10):581–604.
Di Leva, FS, Festa, C, Carino, A, et al. Discovery of ((1,2,4‐oxadiazol‐5‐yl) pyrrolidin‐3‐yl)ureidyl derivatives as selective non‐steroidal agonists of the G‐protein coupled bile acid receptor‐1. Sci Rep. 2504;9(1):2019.
Di Leva, FS, Festa, C, Renga, B, et al. Structure‐based drug design targeting the cell membrane receptor GPBAR1: Exploiting the bile acid scaffold towards selective agonism. Sci Rep. 2015;5(1):16605.
D`Amore, C, Di Leva, FS, Sepe, V, et al. Design, synthesis, and biological evaluation of potent dual agonists of nuclear and membrane bile acid receptors. J Med Chem. 2014;57(3):937–954.
De Marino, S, Carino, A, Masullo, D, et al. Epoxide functionalization on cholane side chains in the identification of G‐protein coupled bile acid receptor (GPBAR1) selective agonists. RSC Adv. 2017;7(52):32877–32885.
Festa, C, Finamore, C, Marchianò, S, et al. Investigation around the oxadiazole core in the discovery of a new chemotype of potent and selective FXR antagonists. ACS Med Chem Lett. 2019 (just accepted);10:504–510.
Di Leva, FS, Di Marino, D, Limongelli, V. Structural insight into the binding mode of FXR and GPBAR1 modulators. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors (vol 256). Springer, Cham: Handbook of Experimental Pharmacology, 2019.
Finamore, C, Baronissi, G, Marchianò, S, et al. Introduction of nonacidic side chains on 6‐ethylcholane scaffolds in the identification of potent bile acid receptor agonists with improved pharmacokinetic properties. Molecules. 2019;24(6):1043.
Sepe, V, Marchianò, S, Finaomore, C, et al. Novel Isoxazole derivatives with potent FXR agonistic activity prevent acetaminophen‐induced liver injury. ACS Med Chem Lett. 2018;10(4):407–412.
Festa, C, De Marino, S, Carino, A, et al. Targeting bile acid receptors: discovery of a potent and selective Farnesoid X receptor agonist as a new lead in the pharmacological approach to liver diseases. Front Pharmacol. 2017;8:162.
Mccammon, JA, Gelin, BR, Karplus, M. Dynamics of folded proteins. Nature. 1977;267(5612):585–590.
Merz, KM, Kollman, PA. Free‐energy perturbation simulations of the inhibition of thermolysin—Prediction of the free‐energy of binding of a new inhibitor. J Am Chem Soc. 1989;111(15):5649–5658.
Mobley, DL, Gilson, MK. Predicting binding free energies: Frontiers and benchmarks. Annu Rev Biophys. 2017;46:531–558.
Limongelli, V, Bonomi, M, Marinelli, L, et al. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc Natl Acad Sci U S A. 2010;107(12):5411–5416.
Grazionso, G, Limongelli, V, Branduardi, D, et al. Investigating the mechanism of substrate uptake and release in the glutamate transporter homologue Glt(Ph) through metadynamics simulations. J Am Chem Soc. 2012;134(1):453–463.
Limongelli, V, Bonomi, M, Parrinello, M. Funnel metadynamics as accurate binding free‐energy method. Proc Natl Acad Sci USA. 2013;111(16):6358–6363.
Wang, L, Wu, YJ, Deng, Y, et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free‐energy calculation protocol and force field. J Am Chem Soc. 2015;137(7):2695–2703.
De Vivo, M, Cavalli, A. Recent advances in dynamic docking for drug discovery. WIREs Comput Mol Sci. 2017;7(6):e1320.
De Vivo, M, Masetti, M, Bottegoni, G, Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J Med Chem. 2016;59(9):4035–4061.
Gervasio, FL, Laio, A, Parrinello, M. Flexible docking in solution using metadynamics. J Am Chem Soc. 2005;127(8):2600–2607.
Shaw, DE, Deneroff, MM, Dror, RO, et al. Anton, a special‐purpose machine for molecular dynamics simulation. Commun ACM. 2008;51(7):91–97.
Aqvist, J, Medina, C, Samuelsson, JE. A new method for predicting binding affinity in computer‐aided drug design. Protein Eng. 1994;7(3):385–391.
Aqvist, J, Luzhkov, VB, Brandsdal, BO. Ligand binding affinities from MD simulations. Accounts Chem. Res. 2002;35(6):358–365.
Guitierrez‐de‐Teran, H, Aqvist, J. Linear interaction energy: Method and applications in drug design. Methods Mol Biol. 2012;819:305–323.
Lee, FS, Chu, ZT, Bolger, MB, Warshel, A. Calculations of antibody‐antigen interactions: Microscopic and semi‐microscopic evaluation of the free energies of binding of phosphorylcholine analogs to McPC603. Prot Eng. 1992;5(3):215–228.
Muegge, I, Tao, H, Warshel, A. A fast estimate of electrostatic group contributions to the free energy of protein‐inhibitor binding. Protein Eng. 1997;10(12):1363–1372.
Gouda, H, Kuntz, ID, Case, DA, Kollman, PA. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM‐PBSA and thermodynamic integration methods. Biopolymers. 2003;68:16–34.
Kuhn, B, Kollman, PA. Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem. 2000;43(20):3786–3791.
Gohlke, H, Case, DA. Converging free energy estimates: MM‐PB(GB)SA studies on the protein‐protein complex Ras‐Raf. J Comput Chem. 2004;25(2):238–250.
Foloppe, N, Hubbard, R. Towards predictive ligand design with free‐energy based computational methods? Curr Med Chem. 2006;13(29):3583–3608.
Wang, J, Hou, T, Xu, X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput Aided Drug Des. 2006;2(3):287–306.
Homeyer, N, Gohlke, H. Free energy calculations by the molecular mechanics Poisson‐Boltzmann surface area method. Mol Inform. 2012;31(2):114–122.
Kollman, PA, Massova, I, Reyes, C, et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem Res. 2000;33(12):889–897.
Li, Y, Liu, ZH, Wang, RX. Test MM‐PB/SA on true conformational ensembles of protein‐ligand complexes. J Chem Inf Model. 2010;50(9):1682–1692.
Rastelli, G, Del Rio, A, Degliesposti, G, Fast, SM. Accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA. J Comput Chem. 2010;31(4):797–810.
Srinivasan, J, Cheatham, TE, Cieplak, P, Kollman, PA, Case, DA. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate‐DNA helices. J Am Chem Soc. 1998;120(37):9401–9409.
Genheden, S, Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand‐binding affinities. Expert Opin Drug Discov. 2015;10(5):449–461.
Weis, A, Katebzadeh, K, Soderhjelm, P, Nilsson, I, Ryde, U. Ligand affinities predicted with the MM/PBSA method: Dependence on the simulation method and the force field. J Med Chem. 2006;49(22):6596–6606.
Raha, K, Merz, KM. Large‐scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein‐ligand complexes. J Med Chem. 2005;48(14):4558–4575.
Mikulskis, P, Genheden, S, Wichmann, K, Ryde, U. A semiempirical approach to ligand‐binding affinities: Dependence on the Hamiltonian and corrections. J Comput Chem. 2012;33(12):1179–1189.
Soderhjelm, P, Ryde, U. How accurate can a force field become? A polarizable multipole model combined with fragment‐wise quantum‐mechanical calculations. J Phys Chem A. 2009;113(3):617–627.
Genheden, S, Ryde, U. How to obtain statistically converged MM/GBSA results. J Comput Chem. 2010;31(4):837–846.
Genheden, S. MM/GBSA and LIE estimates of host‐guest affinities: Dependence on charges and solvation model. J Comput Aided Mol Des. 2011;25(11):1085–1093.
Wong, S, Amaro, RE, McCammon, JA. MM‐PBSA captures key role of intercalating water molecules at a protein‐protein Interface. J. Chem. Theory Comput. 2009;5(2):422–429.
Mikulskis, P, Genheden, S, Rydberg, P, Sandberg, L, Olsen, L, Ryde, U. Binding affinities in the SAMPL3 trypsin and host‐guest blind tests estimated with the MM/PBSA and LIE methods. J Comput Aided Mol Des. 2012;26(5):527–541.
Kirkwood, JG. Statistical mechanics of fluid mixtures. J Chem Phys. 1935;3(5):300–313.
Zwanzig, RW. High‐temperature equation of state by a perturbation method. 1. Nonpolar gases. J Chem Phys. 1954;22(8):1420–1426.
Bennett, CH. Efficient estimation of free‐energy differences from Monte‐Carlo data. J Comput Phys. 1976;22(2):245–268.
Shirts, MR, Chodera, JD. Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys. 2008;129(12):124105.
Kong, XJ, Brooks, CL. Lambda‐dynamics: A new approach to free energy calculations. J Chem Phys. 1996;105(6):2414–2423.
Lee, FS, Chu, ZT, Bolger, MB, Warshel, A. Calculations of antibody antigen interactions—Microscopic and semimicroscopic evaluation of the free‐energies of binding of phosphorylcholine analogs to Mcpc603. Protein Eng. 1992;5(3):215–228.
Zwanzig, RW, Kirkwood, JG, Oppenheim, I, Alder, BJ. Statistical mechanical theory of transport processes. 7. The coefficient of thermal conductivity of monatomic liquids. J Chem Phys. 1954;22(5):783–790.
Jorgensen, WL, Ravimohan, C. Monte Carlo simulation of differences in free energies of hydration. J Chem Phys. 1985;83(6):3050–3054.
Jorgensen, WL, Thomas, LL. Perspective on free‐energy perturbation calculations for chemical equilibria. J Chem Theory Comput. 2008;4(6):869–876.
Wong, CF, McCammon, JA. Dynamics and design of enzymes and inhibitors. J Am Chem Soc. 1986;108(13):3830–3832.
Bash, PA, Singh, UC, Brown, FK, Langridge, R, Kollman, PA. Calculation of the relative change in binding free energy of a protein‐inhibitor complex. Science. 1987;235(4788):574–576.
Jorgensen, WL, Buckner, JK, Boudon, S, Tirado‐Rives, J. Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water. J Chem Phys. 1988;89(6):3742–3746.
Boresch, S, Tettinger, F, Leitgeb, M. Absolute binding free energies: A quantitative approach for their calculation. J Phys Chem B. 2003;107(35):9535–9551.
Hermans, J, Shankar, S. The free energy of xenon binding to myoglobin from molecular dynamics simulation. Israel J Chem. 1986;27(2):225–227.
Mobley, DL, Chodera, JD, Dill, K. On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys. 2006;125(8):084902.
Mobley, DL, Graves, AP, Chodera, JD, McReynolds, AC, Shoichet, BK, Ka, D. Predicting absolute ligand binding free energies to a simple model site. J Mol Biol. 2007;371(4):1118–1134.
Woods, CJ, Malaisree, M, Hannongbua, S, Mulholland, AJ. A water‐swap reaction coordinate for the calculation of absolute protein‐ligand binding free energies. J Chem Phys. 2011;134(5):054114.
Hermans, J, Wang, L. Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme. J Am Chem Soc. 1997;119(11):2707–2714.
Hamelberg, D, McCammon, JA. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: Double‐decoupling method. J Am Chem Soc. 2004;126(24):7683–7689.
Wang, J, Deng, Y, Roux, B. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J. 2006;91(8):2798–2814.
Helms, V, Wade, RC. Computational alchemy to calculate absolute protein‐ligand binding free energy. J Am Chem Soc. 1998;120(12):2710–2713.
Shirts, MR, Bair, E, Hooker, G, Pande, VS. Equilibrium free energies from nonequilibrium measurements using maximum‐likelihood methods. Phys Rev Lett. 2003;91(14):140601.
Lapelosa, M, Gallicchio, E, Levy, RM. Conformational transitions and convergence of absolute binding free energy calculations. J Chem Theory Comput. 2012;8(1):47–60.
de Ruiter, A, Boresch, S, Oostenbrink, C. Comparison of thermodynamic integration and Bennett acceptance ratio for calculating relative protein‐ligand binding free energies. J Comput Chem. 2013;34(12):1024–1034.
Kollman, PA. Free‐energy calculations ‐ applications to chemical and biochemical phenomena. Chem Rev. 1993;93(7):2395–2417.
Ferguson, DM, Radmer, RJ, Kollman, PA. Determination of the relative binding free energies of peptide inhibitors to the HIV‐1 protease. J Med Chem. 1991;34(8):2654–2659.
Rao, BG, Murcko, MA. Free energy perturbation studies on binding of A‐74704 and its diester analog to HTV‐1 protease. Protein Eng. 1996;9(9):767–771.
Reddy, MR, Viswanadhan, VN, Weinstein, JN. Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: A thermodynamic cycle‐perturbation approach. Proc Natl Acad Sci USA. 1991;88(22):10287–10291.
Luccarelli, J, Michel, J, Tirado‐Rives, J, Jorgensen, WL. Effects of water placement on predictions of binding affinities for p38 alpha MAP kinase inhibitors. J. Chem. Theory Comput. 2010;6(12):3850–3856.
Steinbrecher, T, Case, DA, Labahn, A. A multistep approach to structure‐based drug design: Studying ligand binding at the human neutrophil elastase. J Med Chem. 2006;49(6):1837–1844.
Stembrecher, T, Hrenn, A, Dormann, KL, Merfort, I, Labahn, A. Bornyl (3,4,5‐ trihydroxy)‐cinnamate—An optimized human neutrophil elastase inhibitor designed by free energy calculations. Bioorgan Med Chem. 2008;16(5):2385–2390.
Lawrenz, M, Wereszczynski, J, Amaro, RE, Walker, R, Roitberg, A, McCammon, JA. Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy. Proteins Struct Funct Bioinf. 2010;78(11):2523–2532.
Reddy, MR, Erion, MD. Calculation of relative binding free energy differences for fructose 1,6‐bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J Am Chem Soc. 2001;123(26):6246–6252.
Palma, PN, Bonifacio, MJ, Loureiro, AI, Soares‐da‐Silva, P. Computation of the binding affinities of catechol‐O‐methyltransferase inhibitors: Multisubstate relative free energy calculations. J Comput Chem. 2012;33(9):970–986.
Erion, MD, Dang, Q, Reddy, MR, et al. Structure‐guided design of AMP mimics that inhibit fructose‐1,6‐bisphosphatase with high affinity and specificity. J Am Chem Soc. 2007;129(50):15480–15490.
Bollini, M, Domaoal, RA, Thakur, VV, et al. Computationally‐guided optimization of a docking hit to yield catechol diethers as potent anti‐HIV agents. J Med Chem. 2011;54(24):8582–8591.
Lee, WG, Gallardo‐Macias, R, Frey, KM, et al. Picomolar inhibitors of HIV reverse transcriptase featuring bicyclic replacement of a cyanovinylphenyl group. J Am Chem Soc. 2013;135(44):16705–16713.
Dziedzic, P, Cisneros, JA, Robertson, MJ, et al. Design, synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor. J Am Chem Soc. 2015;137(8):2996–3003.
Jiang, W, Hodoscek, M, Roux, B. Computation of absolute hydration and binding free energy with free energy perturbation distributed replica‐exchange molecular dynamics (FEP/REMD). J Chem Theory Comput. 2009;5(10):2583–2588.
Jiang, W, Thirman, J, Jo, S, Roux, B. Reduced free energy perturbation/Hamiltonian replica exchange molecular dynamics method with unbiased alchemical thermodynamic Axis. J Phys Chem B. 2018;122(41):9435–9442.
Jiang, W, Roux, B. Free energy perturbation Hamiltonian replica‐exchange molecular dynamics (FEP/H‐REMD) for absolute ligand binding free energy calculations. J. Chem. Theory Comput. 2010;6(9):2559–2565.
Jorgensen, WL. Efficient drug lead discovery and optimization. Acc Chem Res. 2009;42(6):724–733.
Fratev, F, Steinbrecher, T, Jonsdottir, SO. Prediction of accurate binding modes using combination of classical and accelerated molecular dynamics and free‐energy perturbation calculations: An application to toxicity studies. ACS Omega. 2018;3(4):4357–4371.
Lim, NM, Wang, L, Abel, R, Mobley, DL. Sensitivity in binding free energies due to protein reorganization. J. Chem. Theory Comput. 2016;12(9):4620–4631.
Wang, L, Berne, BJ, Friesner, RA. On achieving high accuracy and reliability in the calculation of relative protein‐ligand binding affinities. Proc Natl Acad Sci USA. 2012;109(6):1937–1942.
Wang, L, Freisner, RA, Berne, BJ. Replica exchange with solute scaling: A more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B. 2011;115(30):9431–9438.
Wang, L, Deng, Y, Knight, JL, et al. Modeling local structural rearrangements using FEP/REST: Application to relative binding affinity predictions of CDK2 inhibitors. J. Chem. Theory Comput. 2013;9(2):1282–1293.
Mobley, DL, Chodera, JD, The, DKA. Confine‐and‐release method: Obtaining correct binding free energies in the presence of protein conformational change. J. Chem. Theory Comput. 2007;3(4):1231–1235.
Kaus, JW, Harder, E, Lin, T, Abel, R, McCammon, JA, Wang, L. How to deal with multiple binding poses in alchemical relative protein‐ligand binding free energy calculations. J. Chem. Theory Comput. 2015;11(6):2670–2679.
Cole, DJ, Tirado‐Rives, J, Jorgensen, WL. Enhanced Monte Carlo sampling through replica exchange with solute tempering. J. Chem. Theory Comput. 2014;10(62):565–571.
Boyce, SE, Mobley, DL, Rocklin, GJ, Graves, AP, Dill, KA, Shoichet, BK. Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. J Mol Biol. 2009;394(4):747–763.
Klimovich, PV, Shirts, MR, Mobley, DL. Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des. 2015;29(5):397–411.
Wood, RH, Muhlbauer, WCF. Systematic errors in free energy perturbation calculations due to a finite sample of configuration space: Sample‐size hysteresis. J Phys Chem. 1991;95(17):6670–6675.
Pohorille, A, Jarzynski, C, Chipot, C. Good practices in free‐energy calculations. J Phys Chem B. 2010;114(32):10235–10253.
Sherborne, B, Shanmugasundaram, V, Chen, AC, et al. Collaborating to improve the use of free‐energy and other quantitative methods in drug discovery. J Comput Aided Mol Des. 2016;30(12):1139–1141.
Constantine, KL, Mueller, L, Metzler, WJ, et al. Multiple and single binding modes of fragment‐like kinase inhibitors revealed by molecular modeling, residue type‐selective protonation, and nuclear overhauser effects. J Med Chem. 2008;51(19):6225–6229.
Montfort, WR, Perry, KM, Fauman, EB, et al. Structure, multiple site binding, and segmental accommodation in thymidylate synthase on binding dUMP and an anti‐folate. Biochemistry. 1990;29(30):6964–6977.
Mobley, DL, Dill, KA. Binding of small‐molecule ligands to proteins: "what you see" is not always “what you get”. Structure. 2009;17(4):489–498.
Chen, W, Deng, Y, Russell, E, Wu, Y, Abel, R, Wang, L. Accurate calculation of relative binding free energies between ligands with different net charges. J. Chem. Theory Comput. 2018;14(12):6346–6358.
Souaille, M, Roux, B. Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations. Comput Phys Commun. 2001;135(1):40–57.
Torrie Gm, VJP. Nonphysical sampling distributions in Monte Carlo free‐energy estimation: Umbrella sampling. J Comp Phys. 1977;23(2):187–199.
Izrailev, S, Stepaniants, S, Balsera, M, Oono, Y, Schulten, K. Molecular dynamics study of unbinding of the Avidin‐biotin complex. Biophys J. 1997;72(4):1568–1581.
Laio, A, Parrinello, M. Escaping free‐energy minima. Proc Natl Acad Sci USA. 2002;99(20):12562–12566.
Barducci, A, Bussi, G, Parrinello, M. Well‐tempered metadynamics: A smoothly converging and tunable free‐energy method. Phys Rev Lett. 2008;100(2):020603.
Comitani, F, Limongelli, V, Molteni, C. The free energy landscape of GABA binding to a Pentameric ligand‐gated Ion Channel and its disruption by mutations. J. Chem. Theory Comput. 2016;12(7):3398–3406.
Moraca, F, Amato, J, Ortuso, F, et al. Ligand binding to telomeric G‐quadruplex DNA investigated by funnel‐metadynamics simulations. Proc Natl Acad Sci USA. 2017;114(11):E2136–E2145.
Yuan, X, Raniolo, S, Limongelli, V, Xu, Y. The molecular mechanism underlying ligand binding to the membrane‐embedded site of a G‐protein‐coupled receptor. J. Chem. Theory Comput. 2018;14(5):2761–2770.
Brotzakis, ZF, Limongelli, V, Parrinello, M. Accelerating the calculation of protein–ligand binding free energy and residence times using dynamically optimized collective variables. J. Chem. Theory Comput. 2019;15(1):743–750.
Troussicot, L, Guillière, F, Limongelli, V, Walker, O, Lancelin, JM. Funnel‐Metadynamics and solution NMR to estimate protein‐ligand affinities. J Am Chem Soc. 2015;137(3):1273–1281.
Saleh, N, Saladino, G, Gervasio, FL, et al. A three‐site mechanism for agonist/antagonist selective binding to vasopressin receptors. Angew Chem Int Ed Engl. 2016;55(28):8008–8012.
Sun, H, Chen, P, Li, D, Li, Y, Hou, T. Directly binding rather than induced‐fit dominated binding affinity difference in (S)‐ and (R)‐Crizotinib bound MTH1. J. Chem. Theory Comput. 2016;12(2):851–860.
D`Annessa I, Raniolo S, Limongelli V, Di Marino D, Colombo G. Ligand binding, unbinding, and allosteric effects: Deciphering small‐molecule modulation of HSP90. J. Chem. Theory Comput. 2019;15(11):6368–6381.
Saleh et al. An efficient metadynamics‐based protocol to model the binding affinity and the transition state ensemble of G‐protein‐couples receptors ligands. J. Chem. Inf. Model. 2017;57(5):1210–1217.
Saleh et al. Multiple binding sites contribute to the mechanism of mixed agonistic and positive allosteric modulators of the cannabinoid CB1 receptor. Angew. Chem. Int. Ed. Engl. 2018;57(10):2580–2585.
Mattedi et al. Understanding ligand binding selectivity in a prototypical GPCR family. J. Chem. Inf. Model. 2019;59(6):2830–2836.
McCarty, J, Parrinello, M. A variational conformational dynamics approach to the selection of collective variables in metadynamics. J Chem Phys. 2017;147(20):204109.
Piana, S, Laio, A. A bias‐exchange approach to protein folding. J Phys Chem B. 2007;111(17):4553–4559.
Pietrucci, F, Marinelli, F, Carloni, P, Laio, A. Substrate binding mechanism of HIV‐1 protease from explicit‐solvent atomistic simulations. J Am Chem Soc. 2009;131(33):11811–11818.
Kumar, S, Bouzida, D, Swendsen, RH, Kollman, PA, Rosenberg, JM. The weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13(8):1011–1021.
Kumar, S, Rosenberg, JM, Bouzida, D, Swendsen, RH, Kollman, PA. Mu1ti dimensional free‐energy calculations using the weighted histogram analysis method. J Comput Chem. 1995;16(11):1339–1350.
Kastner, J, Thiel, W. Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: "umbrella integration". J Chem Phys. 2005;123(14):144104.
Kastner, J, Thiel, W. Analysis of the statistical error in umbrella sampling simulations by umbrella integration. J Chem Phys. 2006;124(23):234106.
Kastner, J. Umbrella integration in two or more reaction coordinates. J Chem Phys. 2009;131(3):034109.
Kastner, J. Umbrella sampling. WIREs Comput Mol Sci. 2011;1(6):932–942.
Lee, TS, Radak, BK, Pabis, A, York, DM. A new maximum likelihood approach for free energy profile construction from molecular simulations. J. Chem. Theory Comput. 2013;9(1):153–164.
Lee, TS, Radak, BK, Pabis, A, York, DM. Roadmaps through free energy landscapes calculated using the multi‐dimensional vFEP approach. J. Chem. Theory Comput. 2014;10(1):24–34.
Allen, TW, Andersen, OS, Roux, B. Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci USA. 2004;101(1):117–122.
Woo, HJ, Roux, B. Calculation of absolute protein‐ligand binding free energy from computer simulations. Proc Natl Acad Sci USA. 2005;102(19):6825–6830.
Doudou, S, Burton, NA, Henchman, RH. Standard free energy of binding from a one‐dimensional potential of mean force. J. Chem. Theory Comput. 2009;5(4):909–918.
Lee, MS, Olson, MA. Calculation of absolute protein‐ligand binding affinity using path and endpoint approaches. Biophys J. 2006;90(3):864–877.
Lee, MS, Olson, MA. Calculation of absolute ligand binding free energy to a ribosome‐targeting protein as a function of solvent model. J Phys Chem B. 2008;112(42):13411–13417.
Deng, Y, Roux, B. Calculation of standard binding free energies: Aromatic molecules in the T4 lysozyme L99A mutant. J. Chem. Theory Comput. 2006;2(5):1255–1273.
Lau, AY, Roux, B. The hidden energetics of ligand binding and activation in a glutamate receptor. Nat Struct Mol Biol. 2011;18(3):283–287.
Bui, JM, Henchman, RH, McCammon, JA. The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge. Biophys J. 2003;85(4):2267–2272.
Kokubo, H, Tanaka, T, Okamoto, Y. Ab initio prediction of protein‐ligand binding structures by replica‐exchange umbrella sampling simulations. J Comput Chem. 2011;32(13):2810–2821.
Kokubo, H, Tanaka, T, Okamoto, Y. Prediction of protein‐ligand binding structures by replica‐exchange umbrella sampling simulations: Application to kinase systems. J. Chem. Theory Comput. 2013;9(10):4660–4671.
Sugita, Y, Kitao, A, Okamoto, Y. Multidimensional replica‐exchange method for free‐energy calculations. J Chem Phys. 2000;113(15):6042–6051.
Beutler, TC, van Gusteren, WF. The computation of a potential of mean force: Choice of the biasing potential in the umbrella sampling technique. J Chem Phys. 1994;100(2):1492–1497.
Rosta, E, Woodcock, HL, Brooks, B, Hummer, G. Artificial reaction coordinate "tunneling" in free‐energy calculations: The catalytic reaction of RNase H. J Comput Chem. 2009;30(11):1634–1641.
Huber, T, Torda, AE, van Gusteren, WF. Local elevation: A method for improving the searching properties of molecular dynamics simulation. J Comp Aided Mol Des. 1994;8(6):695–708.
Hansen, HS, Hunenberger, PH. Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water. J Comput Chem. 2010;31(1):1–23.
Hansen, HS, Hunenberger, PH. Ball‐and‐stick local elevation umbrella sampling: Molecular simulations involving enhanced sampling within conformational or alchemical subspaces of low internal dimensionalities, minimal irrelevant volumes, and problem‐adapted geometries. J. Chem. Theory Comput. 2010;6(9):2622–2646.
Kong, X, Brooks, CL. λdynamics: A new approach to free energy calculations. J Chem Phys. 1996;105(6):2414–2423.
Mezei, M. Adaptive umbrella sampling: Self‐consistent determination of the non‐Boltzmann Bias. J Comput Phys. 1987;68(1):237–248.
Hooft, RWW, van Eijck, BP, Kroon, J. An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol. J Chem Phys. 1992;97(9):6690–6694.
Bartels, C, Karplus, M. Multidimensional adaptive umbrella sampling: Applications to main chain and side chain peptide conformations. J Comput Chem. 1997;18(12):1450–1462.
Bartels, C, Karplus, M. Probability distributions for complex systems: Adaptive umbrella sampling of the potential energy. J Phys Chem. 1998;102(5):865–880.
Zeller, F, Zacharias, M. Adaptive biasing combined with Hamiltonian replica exchange to improve umbrella sampling free energy simulations. J. Chem. Theory Comput. 2014;10(2):703–710.
Wojtas‐Niziurski, W, Meng, Y, Roux, B, Bernèche, S. Self‐learning adaptive umbrella sampling method for the determination of free energy landscapes in multiple dimensions. J Chem Theory Comput. 2013;9(4):1885–1895.
Grubmüller, H, Heymann, B, Tavan, P. Ligand binding: Molecular mechanics calculation of the streptavidin‐biotin rupture force. Science. 1996;271(5251):997–999.
Jarzynski, C. Nonequilibrium equality for free energy differences. Phys Rev Lett. 1997;78(14):2690–2693.
Jarzynski, C. Equilibrium free‐energy differences from nonequilibrium measurements: A master‐equation approach. Phys Rev E. 1997;56(5):5018–5035.
Vaikuntanathan, S, Jarzynski, C. Escorted free energy simulations: Improving convergence by reducing dissipation. Phys Rev Lett. 2008;100(19):190601.
Sotomayor, M, Schulten, K. Single‐molecule experiments in vitro and in silico. Science. 2007;316(5828):1144–1148.
Palermo, G, Minniti, E, Greco, ML, et al. An optimized polyamine moiety boosts the potency of human type II topoisomerase poisons as quantified by comparative analysis centered on the clinical candidate F14512. Chem Commun (Camb). 2015;51(76):14310–14313.
Colizzi, F, Perozzo, R, Scapozza, L, Recanatini, M, Cavalli, A. Single‐molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc. 2010;132(21):7361–7371.
Patel, JS, Berteotti, A, Ronsisvalle, S, Rocchia, W, Cavalli, A. Steered molecular dynamics simulations for studying protein‐ligand interaction in cyclin‐dependent kinase 5. J Chem Inf Model. 2014;54(2):470–480.
Jarzynski, C. Rare events and the convergence of exponentially averaged work values. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;73(4 Pt 2):046105.
Liphardt, J, Dumont, S, Smith, SB, Tinoco, I, Bustamente, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski`s equality. Science. 2002;296(5574):1832–1835.
Park, S, Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys. 2004;120(13):5946–5961.
Chelli, R, Procacci, P. A potential of mean force estimator based on nonequilibrium work exponential averages. Phys Chem Chem Phys. 2009;11(8):1152–1158.
Forney, MW, Janosi, L, Kosztin, I. Calculating free‐energy profiles in biomolecular systems from fast nonequilibrium processes. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;78(5 Pt 1):051913.
Vuong, QV, Nguyen, TT, Li, MS. A new method for navigating optimal direction for pulling ligand from binding pocket: Application to ranking binding affinity by steered molecular dynamics. J Chem Inf Model. 2015;55(12):2731–2738.
Ludemann, SK, Lounnas, V, Wade, RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol. 2000;303(5):797–811.
Wang, T, Duan, Y. Ligand entry and exit pathways in the beta2‐adrenergic receptor. J Mol Biol. 2009;392(4):1102–1115.
Hamelberg, D, Mongan, J, McCammon, JA. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J Chem Phys. 2004;120(24):11919–11929.
Miao, Y, Feher, VA, McCammon, JA. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput. 2015;11(8):3584–3595.
Kappel, K, Miao, Y, McCammon, JA. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G‐protein‐coupled receptor. Q Rev Biophys. 2015;48(4):479–487.
Miao, Y, McCammon, JA. Mechanism of the G‐protein mimetic nanobody binding to a muscarinic G‐protein‐coupled receptor. Proc Natl Acad Sci USA. 2018;115(12):3036–3041.
Bruce, NJ, Ganotra, GK, Kokh, DB, Sadiq, SK, Wade, RC. New approaches for computing ligand‐receptor binding kinetics. Curr Opin Struct Biol. 2018;49:1–10.
Dickson, A, Tiwary, P, Vashisth, H. Kinetics of ligand binding through advanced computational approaches: A review. Curr Top Med Chem. 2017;17(23):2626–2641.
Pang, X, Zhou, HX. Rate constants and mechanisms of protein‐ligand binding. Annu Rev Biophys. 2017;46:105–130.
Danielson, UH. Integrating surface plasmon resonance biosensor‐based interaction kinetic analyses into the lead discovery and optimization process. Future Med Chem. 2009;1(8):1399–1414.
Decherchi, S, Berteotti, A, Bottegoni, G, Rocchia, W, Cavalli, A. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning. Nat Commun. 2015;6:6155.
Shan, Y, Kim, ET, Eastwood, MP, Dror, RO, Seeliger, MA, Shaw, DE. How does a drug molecule find its target binding site? J Am Chem Soc. 2011;133(24):9181–9183.
Drop, RO, Arlow, DH, Maragakis, P, et al. Activation mechanism of the β2‐adrenergic receptor. Proc Natl Acad Sci USA. 2011;108(46):18684–18689.
Kruse, AC, Hu, J, Arlow, DH, et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482(7386):552–556.
Dror, RO, Pan, AC, Arlow, DH, et al. Pathway and mechanism of drug binding to G‐protein‐coupled receptors. Proc Natl Acad Sci USA. 2011;108(32):13118–13123.
Huang, D, Caflisch, A. The free energy landscape of small molecule unbinding. PLoS Comput Biol. 2011;7(2):e1002002.
Mark, AE, van Gusteren, WF, Berendsen, HJC. Calculation of relative free energy via indirect pathways. J Chem Phys. 1991;94(5):3808–3816.
Mollica, L, Decherchi, S, Zia, SR, Gaspari, R, Cavalli, A, Rocchia, W. Kinetics of protein‐ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep. 2015;5:11539.
Mollica, L, Theret, I, Perron‐Sierra, F, et al. Molecular dynamics simulations and kinetic measurements to estimate and predict protein‐ligand residence times. J Med Chem. 2016;59(15):7167–7176.
Shirts, M, Pande, VS. COMPUTING: Screen savers of the world unite! Science. 2000;290(5498):1903–1904.
Pande, VS, Baker, I, Chapman, J, et al. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers. 2003;68(1):91–109.
Buch, I, Giorgino, T, De Fabritiis, G. Complete reconstruction of an enzyme‐inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci USA. 2011;108(25):10184–10189.
Plattner, N, Noé, F. Protein conformational plasticity and complex ligand‐binding kinetics explored by atomistic simulations and Markov models. Nat Commun. 2015;6:7653.
Zhou, G, Pantelopulos, GA, Mukherjee, S, Voelz, VA. Bridging microscopic and macroscopic mechanisms of p53‐MDM2 binding with kinetic network models. Biophys J. 2017;113(4):785–793.
Pande, VS, Beauchamp, K, Bowman, GR. Everything you wanted to know about Markov state models but were afraid to ask. Methods. 2010;52(1):99–105.
Hyre, DE, Le Trong, I, Merritt, EA, et al. Cooperative hydrogen bond interactions in the streptavidin‐biotin system. Protein Sci. 2006;15(3):459–467.
Maschera, B, Darby, G, Palú, G, et al. Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease‐saquinavir complex. J Biol Chem. 1996;271(52):33231–33235.
Basavapathruni, A, Jin, L, Daigle, SR, et al. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem Biol Drug Des. 2012;80(6):971–980.
Lu, H, England, K, am Ende, C, et al. Slow‐onset inhibition of the FabI enoyl reductase from francisella tularensis: Residence time and in vivo activity. ACS Chem Biol. 2009;4(3):221–231.
Guo, D, Mulder‐Krieger, T, IJzerman, AP, Heitman, LH. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol. 2012;166(6):1846–1859.
Bowman, GR, Ensign, DL, Pande, VS. Enhanced modeling via network theory: Adaptive sampling of Markov state models. J. Chem. Theory Comput. 2010;6(3):787–794.
Doerr, S, De Fabritiis, G. On‐the‐Fly learning and sampling of ligand binding by high‐throughput molecular simulations. J Chem Theory Comput. 2014;10(5):2064–2069.
Singhal, N, Pande, VS. Error analysis and efficient sampling in Markovian state models for molecular dynamics. J Chem Phys. 2005;123(20):204909.
Hinrichs, NS, Pande, VS. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. J Chem Phys. 2007;126(24):244101.
Weber, JK, Pande, VS. Characterization and rapid sampling of protein folding Markov state model topologies. J. Chem. Theory Comput. 2011;7(10):3405–3411.
Ermak, DL, McCammon, JA. Brownian dynamics with hydrodynamic interactions. J Chem Phys. 1978;69(4):1352–1360.
Sung, JC, Van Wynsberghe, AW, Amaro, RE, Li, WW, McCammon, JA. Role of secondary sialic acid binding sites in influenza N1 neuraminidase. J Am Chem Soc. 2010;132(9):2883–2885.
Votapka, LW, Amaro, RE. Multiscale estimation of binding kinetics using Brownian dynamics, molecular dynamics and milestoning. PLoS Comput Biol. 2015;11(10):e1004381.
Votapka, LW, Jagger, BR, Heyneman, AL, Amaro, RE. SEEKR: Simulation enabled estimation of kinetic rates, a computational tool to estimate molecular kinetics and its application to trypsin‐Benzamidine binding. J Phys Chem B. 2017;121(15):3597–3606.
Zeller, F, Luitz, MP, Bomblies, R, Zacharias, M. Multiscale simulation of receptor‐drug association kinetics: Application to neuraminidase inhibitors. J. Chem. Theory Comput. 2017;13(10):5097–5105.
Huber, GA, Kim, S. Weighted‐ensemble Brownian dynamics simulations for protein association reactions. Biophys J. 1996;70(1):97–110.
Darve, E, Ryu, E. Computing reaction rates in bio‐molecular systems using discrete macro‐states. Innov Biomol Model Simul. 2012;1:138–206.
Dickson, A, Brooks, CL. WExplore: Hierarchical exploration of high‐dimensional spaces using the weighted ensemble algorithm. J Phys Chem B. 2014;118(13):3532–3542.
Dickson, A, Lotz, SD. Ligand release pathways obtained with WExplore: Residence times and mechanisms. J Phys Chem B. 2016;120(24):5377–5385.
Dickson, A, Lotz, SD. Multiple ligand unbinding pathways and ligand‐induced destabilization revealed by WExplore. Biophys J. 2017;112(4):620–629.
Lotz, SD, Dickson, A. Unbiased molecular dynamics of 11 min timescale drug unbinding reveals transition state stabilizing interactions. J Am Chem Soc. 2018;140(2):618–628.
Zwier, MC, Pratt, AJ, Adelman, JL, Kaus, JW, Zuckerman, DM, Chong, LT. Efficient atomistic simulation of pathways and calculation of rate constants for a protein‐peptide binding process: Application to the MDM2 protein and an intrinsically disordered p53 peptide. J Phys Chem Lett. 2016;7(17):3440–3445.
Cérou, F, Guyader, A. Adaptive multilevel splitting for rare event analysis. Stochastic Anal Appl. 2007;25(2):417–443.
Aristoff, D, Lelièvre, T, Mayne, CG, Teo, I. Adaptive multilevel splitting in molecular dynamics simulations. ESAIM Proc Surv. 2015;48:215–225.
Teo, I, Mayne, CG, Schulten, K, Lelièvre, T. Adaptive multilevel splitting method for molecular dynamics calculation of Benzamidine‐trypsin dissociation time. J Chem Theory Comput. 2016;12(6):2983–2989.
Tiwary, P, Parrinello, M. From metadynamics to dynamics. Phys Rev Lett. 2013;111(23):230602.
Tiwary, P, Limongelli, V, Salvalaglio, M, Parrinello, M. Kinetics of protein‐ligand unbinding: Predicting pathways, rates, and rate‐limiting steps. Proc Natl Acad Sci USA. 2015;112(5):E386–E391.
Salvalaglio, M, Tiwary, P, Parrinello, M. Assessing the reliability of the dynamics reconstructed from Metadynamics. J. Chem. Theory Comput. 2014;10(4):1420–1425.
Wang, Y, Martins, JM, Lindorff‐Larsen, K. Biomolecular conformational changes and ligand binding: From kinetics to thermodynamics. Chem Sci. 2017;8(9):6466–6473.
Tiwary, P, Mondal, J, Berne, BJ. How and when does an anticancer drug leave its binding site? Sci Adv. 2017;3(5):e1700014.
Casasnovas, R, Limongelli, V, Tiwary, P, Carloni, P, Parrinello, M. Unbinding kinetics of a p38 MAP kinase type II inhibitor from Metadynamics simulations. J Am Chem Soc. 2017;139(13):4780–4788.
Sun, H, Li, Y, Shen, M, Li, D, Kang, Y, Hou, T. Characterizing drug‐target residence time with Metadynamics: How to achieve dissociation rate efficiently without losing accuracy against time‐consuming approaches. J Chem Inf Model. 2017;57(8):1895–1906.
Bussi, G, Gervasio, FL, Laio, A, Parrinello, M. Free‐energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc. 2006;128(41):13435–13441.
Morando, MA, Saladino, G, D`Amelio, N, et al. Conformational selection and induced fit mechanism in the binding of an anticancer drug to the c‐Src kinase. Sci Rep. 2016;6:24439.
Haldar, S, Comitani, F, Saladino, G, et al. A multiscale simulation approach to modeling drug‐protein binding kinetics. J. Chem. Theory Comput. 2018;14(11):6093–6101.
Callegari, D, Lodola, A, Pala, D, et al. Metadynamics simulations distinguish short‐ and long‐residence‐time inhibitors of Cyclin‐dependent kinase 8. J Chem Inf Model. 2017;57(2):159–169.
Marchi, M, Ballone, P. Adiabatic bias molecular dynamics: A method to navigate the conformational space of complex molecular systems. J Chem Phys. 1999;110(8):3697–3702.
Paci, E, Karplus, M. Forced unfolding of fibronectin type 3 modules: An analysis by biased molecular dynamics simulations. J Mol Biol. 1999;288(3):441–459.
Bortolato, A, Deflorian, F, Weiss, DR, Mason, JS. Decoding the role of water dynamics in ligand‐protein unbinding: CRF1R as a test Case. J Chem Inf Model. 2015;55(9):1857–1866.
Niu, Y, Li, S, Pan, D, Liu, H, Yao, X. Computational study on the unbinding pathways of B‐RAF inhibitors and its implication for the difference of residence time: Insight from random acceleration and steered molecular dynamics simulations. Phys Chem Chem Phys. 2016;18(7):5622–5629.
Kokh, DB, Amaral, M, Bomke, J, et al. Estimation of drug‐target residence times by τ‐random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 2018;14(7):3859–3869.
Kokh, DB, Kaufmann, T, Kister, B, Wade, RC. Machine learning analysis of τRAMD trajectories to decipher molecular determinants of drug‐target residence times. Front Mol Biosci. 2019;6:36.
Levitt, M, Warshel, A. Computer simulation of protein folding. Nature. 1975;253(5494):694–698.
Kim, FJ, Manel, N, Boublik, Y, Battini, JL, Sitbon, M. Human T‐cell leukemia virus type 1 envelope‐mediated syncytium formation can be activated in resistant mammalian cell lines by a carboxy‐terminal truncation of the envelope cytoplasmic domain. J Virol. 2003;77(2):963–969.
Vauquelin, G, Bostoen, S, Vanderheyden, P, Seeman, P. Clozapine, atypical antipsychotics, and the benefits of fast‐off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(4):337–372.
González, B, Pajares, MA, Hermoso, JA. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine‐binding site. J Mol Biol. 2000;300(2):363–375.
Pearce, FG, Andrews, TJ. The relationship between side reactions and slow inhibition of ribulose‐bisphosphate carboxylase revealed by a loop 6 mutant of the tobacco enzyme. J Biol Chem. 2003;278(35):32526–32536.
Liu, Y, Stoll, VS, Richardson, PL, et al. Hepatitis C NS3 protease inhibition by peptidyl‐alpha‐ketoamide inhibitors: Kinetic mechanism and structure. Arch Biochem Biophys. 2004;421(2):207–216.
Kapoor, M, Mukhi, PL, Surolia, N, Suguna, K, Surolia, A. Kinetic and structural analysis of the increased affinity of enoyl‐ACP (acyl‐carrier protein) reductase for triclosan in the presence of NAD+. Biochem J. 2004;381(Pt 3):725–733.
Carroll, MJ, Mauldin, RV, Gromova, AV, Singleton, SF, Collins, EJ, Lee, AL. Evidence for dynamics in proteins as a mechanism for ligand dissociation. Nat Chem Biol. 2012;8(3):246–252.
Luckner, SR, Liu, N, am Ende, CW, Tonge, PJ, Kisker, C. A slow, tight binding inhibitor of InhA, the enoyl‐acyl carrier protein reductase from Mycobacterium tuberculosis. J Biol Chem. 2010;285(19):14330–14337.
Kupitz, C, Basu, S, Grotjohann, I, et al. Serial time‐resolved crystallography of photosystem II using a femtosecond X‐ray laser. Nature. 2014;513(7517):261–265.
Tenboer, J, Basu, S, Zatsepin, N, et al. Time‐resolved serial crystallography captures high‐resolution intermediates of photoactive yellow protein. Science. 2014;346(6214):1242–1246.
Anisimov, VM, Lamoureux, G, Vorobyov, IV, Huang, N, Roux, B, MacKerell, AD. Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. J. Chem. Theory Comput. 2005;1(1):153–168.
Yu, H, Whitfield, TW, Harder, E, et al. Simulating monovalent and divalent ions in aqueous solution using a Drude polarizable force field. J. Chem. Theory Comput. 2010;6(3):774–786.
Zhang, C, Lu, C, Jing, Z, et al. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. J. Chem. Theory Comput. 2018;14(4):2084–2108.
Liu, C, Piquemal, JP, Ren, P. AMOEBA+ classical potential for modeling molecular interactions. J. Chem. Theory Comput. 2019;15(7):4122–4139.
Kolář, MH, Hobza, P. Computer modeling of halogen bonds and other σ‐hole interactions. Chem Rev. 2016;116(9):5155–5187.
Ryde, U, Söderhjelm, P. Ligand‐binding affinity estimates supported by quantum‐mechanical methods. Chem Rev. 2016;116(9):5520–5566.
Jiménez, J, Škalič, M, Martínez‐Rosell, G, De Fabritiis, G. KDEEP: Protein‐ligand absolute binding affinity prediction via 3D‐convolutional neural networks. J Chem Inf Model. 2018;58(2):287–296.
Ribeiro, JML, Bravo, P, Wang, Y, Tiwary, P. Reweighted autoencoded variational Bayes for enhanced sampling (RAVE). J Chem Phys. 2018;149(7):072301.
Lamim Ribeiro, JM, Tiwary, P. Toward achieving efficient and accurate ligand‐protein unbinding with deep learning and molecular dynamics through RAVE. J. Chem. Theory Comput. 2019;15(1):708–719.
van Gunsteren, WF, Daura, X, Hansen, N, et al. Validation of molecular simulation: An overview of issues. Angew Chem Int Ed Engl. 2018;57(4):884–902.
Kendrew, JC, Bodo, G, Dintzis, HM, Parrish, RG, Wyckoff, H, Phillips, DC. A three‐dimensional model of the myoglobin molecule obtained by x‐ray analysis. Nature. 1958;181(4610):662–666.