Butler, KT, Davies, DW, Cartwright, H, Isayev, O, Walsh, A. Machine learning for molecular and materials science. Nature. 2018;559:547–555.
National Science and Technology Council. Materials genome initiative for global competitiveness, Technical report; 2011.
Hachmann, J, Windus, TL, McLean, JA, et al. Framing the role of big data and modern data science in chemistry. Technical report; 2018.
Haghighatlari, M, Hachmann, J. Advances of machine learning in molecular modeling and simulation. Curr Opin Chem Eng. 23:51–57.
Wang, H, Ji, Y, Li, Y. Simulation and design of energy materials accelerated by machine learning. WIREs Comput Mol Sci. 2019;e1421.
Hachmann, J, Afzal, MAF, Haghighatlari, M, Pal, Y. Building and deploying a cyberinfrastructure for the data‐driven design of chemical systems and the exploration of chemical space. Mol Simul. 2018;44:921–929. https://doi.org/10.1080/08927022.2018.1471692.
Afzal, MAF, Vishwakarma, G, Dudwadkar, JA, Haghighatlari, M, Hachmann, J. ChemLG – A program suite for the generation of compound libraries and the survey of chemical space; 2019. Available from https://github.com/hachmannlab/chemlg
Pal, Y, Evangelista, WS, Afzal,, MAF, Haghighatlari, M, Hachmann, J. ChemHTPS – An automated computational chemistry high‐throughput screening platform; 2019. Available from https://github.com/hachmannlab/chemhtps
Sonpal, A, Agrawal, S, Sivaraj, S, Hachmann, J. ChemBDDB – A big data database toolkit for chemical and materials data storage; 2019. Available from https://github.com/hachmannlab/chembddb
Haghighatlari, M, Hachmann, J. ChemML – A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data; 2019. Available from https://hachmannlab.github.io/chemml
Mitchell, JBO. Machine learning methods in chemoinformatics. WIREs Comput Mol Sci. 2014;4:468–481. https://doi.org/10.1002/wcms.1183.
Pedregosa, F, Varoquaux, G, Gramfort, A, et al. Scikit‐learn: Machine learning in python. J Mach Learn Res. 2011;12:2825–2830.
O`Boyle, NM, Banck, M, James, CA, Morley, C, Vandermeersch, T, Hutchison, GR. Open Babel: An open chemical toolbox. J Chem. 2011;3:33.
Landrum, G. RDKit: Open‐source cheminformatics. Availabe from http://www.rdkit.org
Ward, L, Agrawal, A, Choudhary, A, Wolverton, C. A general‐purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater. 2016;2:16028.
Rupp, M, Tkatchenko, A, Müller, K‐R, von Lilienfeld, OA. Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett. 2012;108:058301.
Hansen, K, Biegler, F, Ramakrishnan, R, et al. Machine learning predictions of molecular properties: Accurate many‐body potentials and nonlocality in chemical space. J Phys Chem Lett. 2015;6:2326–2331.
Duvenaud, D, Maclaurin, D, Aguilera‐Iparraguirre, J, et al. Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf Proces Syst. 2015;2224–2232.
DRAGON (Software for Molecular Descriptor Calculation); 2011. Availabe from http://www.talete.mi.it/
Martin, A, Ashish, A, Paul, B, et al. TensorFlow: Large‐scale machine learning on heterogeneous systems; 2015. Available from https://www.tensorflow.org/
Chollet, F. Keras; 2015. Available from https://keras.io
Berthold, MR, Cebron, N, Fabian Dill, TR, et al. KNIME: The Konstanz information miner. In: Preisach, C, Burkhardt, H, Schmidt‐Thieme, L, Decker, R, editors. Data Analysis, Machine Learning and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008; p. 319–326.
Schütt, KT, Arbabzadah, F, Chmiela, S, Müller, K‐R, Tkatchenko, A. Quantum‐chemical insights from deep tensor neural networks. Nat Commun. 2017;8:13890.
Isayev, O, Oses, C, Toher, C, Gossett, E, Curtarolo, S, Tropsha, A. Universal fragment descriptors for predicting electronic properties of inorganic crystals. Nat Commun. 2017;8:15679.
Ferré, G, Haut, T, Barros, K. Learning molecular energies using localized graph kernels. J Chem Phys. 2017;146:114107.
Collins, CR, Gordon, GJ, von Lilienfeld, OA, Yaron, DJ. Constant size molecular descriptors for accurate machine learning models of molecular properties. J Chem Phys. 2017;148:241718.
Settle, B. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan %26 Claypool, 2012; p. 1–114.
Cai, W, Zhang, M, Zhang, Y. Batch mode active learning for regression with expected model change. IEEE Trans Neural Netw Learn Syst. 2017;28:1668–1681.
Pan, SJ, Yang, Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22:1345–1359.
Vishwakarma, G. Machine learning model selection for predicting properties of high‐refractive‐index polymers [M.Sc. thesis]. University at Buffalo; 2018.
Afzal, MAF, Sonpal, A, Haghighatlari, M, Schultz, AJ, Hachmann, J. A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules. ChemRxiv. 2019;8217758.v1.
Afzal, MAF, Haghighatlari, M, Ganesh, SP, Cheng, C, Hachmann, J. Accelerated discovery of high‐refractive‐index polyimides via first‐principles molecular modeling, virtual high‐throughput screening, and data mining. J Phys Chem C. 2019;123:14610–14618.
Afzal, MAF, Cheng, C, Hachmann, J. Combining first‐principles and data modeling for the accurate prediction of the refractive index of organic polymers. J Chem Phys. 2018;148:241712.
Afzal, MAF, Hachmann, J. Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers. Phys Chem Chem Phys. 2019;21:4452–4460.
Afzal, MAF. From virtual high‐throughput screening and machine learning to the discovery and rational design of polymers for optical applications [Ph.D. thesis]. University at Buffalo; 2018.
Sonpal, A. Predicting melting points of deep eutectic solvents [M.Sc. thesis]. University at Buffalo; 2018.
Tian, Y. Inheritance of molecular orbital energies from monomer building blocks to larger copolymers in organic semiconductors [M.Sc. thesis]. University at Buffalo; 2016.
Shih, C‐Y. Systematic trends in results from different density functional theory models [M.Sc. thesis]. University at Buffalo; 2015.
Hachmann, J, Olivares‐Amaya, R, Atahan‐Evrenk, S, et al. The Harvard clean energy project: Large‐scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett. 2011;2:2241–2251.
Olivares‐Amaya, R, Amador‐Bedolla, C, Hachmann, J, et al. Accelerated computational discovery of high‐performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci. 2011;4:4849–4861.
Amador‐Bedolla, C, Olivares‐Amaya, R, Hachmann, J, Aspuru‐Guzik, A. Organic photovoltaics. In: Rajan, K, editor. Informatics for Materials Science and Engineering: Data‐driven Discovery for Accelerated Experimentation and Application. Oxford: Butterworth‐Heinemann, 2013; p. 423–442 [chapter 17].
Hachmann, J, Olivares‐Amaya, R, Jinich, A, et al. Lead candidates for high‐performance organic photovoltaics from high‐throughput quantum chemistry – The Harvard clean energy project. Energy Environ Sci. 2014;7:698–704.
Lopez, SA, Pyzer‐Knapp, EO, Simm, GN, et al. The Harvard organic photovoltaic dataset. Sci Data. 2016;3:160086.
Sanchez‐Lengeling, B, Aspuru‐Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science. 2018;361:360–365.
Duran‐Frigola, M, Fernández‐Torras, A, Bertoni, M, Aloy, P. Formatting biological big data for modern machine learning in drug discovery. WIREs Comput Mol Sci. 2018;e1408. https://doi.org/10.1002/wcms.1408.
Xue, D, Gong, Y, Yang, Z, et al. Advances and challenges in deep generative models for de novo molecule generation. WIREs Comput Mol Sci. 2019;9:e1395. https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1395.
Jørgensen, PB, Schmidt, MN, Winther, O. Deep generative models for molecular science. Mol Inform. 2018;37:1700133. https://doi.org/10.1002/minf.201700133.
Haghighatlari, M. Making machine learning work in chemistry: Methodological innovation, software development, and application studies [Ph.D. thesis]. University at Buffalo; 2019.
Krylov, A, Windus, TL, Barnes, T, et al. Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J Chem Phys. 2018;149:180901.
Wilkins‐Diehr, N, Crawford, TD. NSF`s inaugural software institutes: The science gateways community institute and the molecular sciences software institute. Comput Sci Eng. 2018;20:26–38.