Kaplan, IG. Intermolecular interactions: Physical picture, computational methods and model potentials. Wiley: UK, 2006.
Otero de la Roza, A, Dilabio, GA, editors. Non‐covalent interactions in quantum chemistry and Physics: Theory and applications. Amsterdam, Netherlands: Elsevier, 2017.
Stone, AJ. The theory of intermolecular forces. Oxford, UK: Oxford University Press, 1996.
Chałasiński, G, Szczȩśniak, MM. State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev. 2000;100:4227–4252.
Jeziorski, B, Moszynski, R, Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev. 1994;94:1887–1930.
Bickelhaupt, FM, Baerends, EJ. Kohn‐Sham density functional theory: Predicting and understanding chemistry. In: Lipkowitz, KB, Boyd, DB, editors. Reviews in computational chemistry. Volume 15. New York, NY: Wiley‐VCH, 2000.
Hohenstein, EG, Sherrill, CD. Wavefunction methods for noncovalent interactions. WIREs Comput Mol Sci. 2012;2:304–326.
Szalewicz, K. Symmetry‐adapted perturbation theory of intermolecular forces. WIREs Comput Mol Sci. 2012;2:254–272.
Jansen, G. Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions. WIREs Comput Mol Sci. 2014;4:127–144.
Phipps, MJ, Fox, T, Tautermann, CS, Skylaris, CK. Energy decomposition analysis approaches and their evaluation on prototypical protein‐drug interaction patterns. Chem Soc Rev. 2015;44:3177–3211.
Pastorczak, E, Corminboeuf, C. Perspective: Found in translation: Quantum chemical tools for grasping non‐covalent interactions. J Chem Phys. 2017;146:120901.
Zhao, L, von Hopffgarten, M, Andrada, DM, Frenking, G. Energy decomposition analysis. WIREs Comput Mol Sci. 2018;8:e1345.
Andrés, J, Ayers, PW, Boto, RA, et al. Nine questions on energy decomposition analysis. J Comput Chem. 2019;40:2248–2283.
Kitaura, K, Morokuma, K. A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation. Int J Quantum Chem. 1976;10:325–340.
Stevens, WJ, Fink, WH. Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer. Chem Phys Lett. 1987;139:15–22.
Chen, W, Gordon, MS. Energy decomposition analyses for many‐body interaction and applications to water complexes. J Phys Chem. 1996;100:14316–14328.
Bagus, PS, Hermann, K, Bauschlicher, CW Jr. A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3. J Chem Phys. 1984;80:4378–4386.
Bagus, PS, Illas, F. Decomposition of the chemisorption bond by constrained variations: Order of the variations and construction of the variational spaces. J Chem Phys. 1992;96:8962–8970.
Ziegler, T, Rauk, A. On the calculation of bonding energies by the Hartree Fock Slater method. Theoret Chim Acta. 1977;46:1–10.
Ziegler, T, Rauk, A. A theoretical study of the ethylene‐metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree‐Fock‐Slater transition‐state method. Inorg Chem. 1979;18:1558–1565.
Ziegler, T, Rauk, A. Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree‐Fock‐Slater transition‐state method. Inorg Chem. 1979;18:1755–1759.
Mitoraj, MP, Michalak, A, Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput. 2009;5:962–975.
Mo, Y, Gao, J, Peyerimhoff, SD. Energy decomposition analysis of intermolecular interactions using a block‐localized wave function approach. J Chem Phys. 2000;112:5530–5538.
Mo, Y, Bao, P, Gao, J. Energy decomposition analysis based on a block‐localized wavefunction and multistate density functional theory. Phys Chem Chem Phys. 2011;13:6760–6775.
Khaliullin, RZ, Cobar, EA, Lochan, RC, Bell, AT, Head‐Gordon, M. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J Phys Chem A. 2007;111:8753–8765.
Wu, Q, Ayers, PW, Zhang, Y. Density‐based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies. J Chem Phys. 2009;131:164112.
Su, P, Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys. 2009;131:014102.
Fedorov, DG, Kitaura, K. Pair interaction energy decomposition analysis. J Comput Chem. 2007;28:222–237.
Kitaura, K, Ikeo, E, Asada, T, Nakano, T, Uebayasi, M. Fragment molecular orbital method: An approximate computational method for large molecules. Chem Phys Lett. 1999;313:701–706.
Nakano, T, Kaminuma, T, Sato, T, Akiyama, Y, Uebayasi, M, Kitaura, K. Fragment molecular orbital method: Application to polypeptides. Chem Phys Lett. 2000;318:614–618.
Fedorov, DG, Kitaura, K. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A. 2007;111:6904–6914.
Ge, Q, Head‐Gordon, M. Energy decomposition analysis for excimers using absolutely localized molecular orbitals within time‐dependent density functional theory and configuration interaction with single excitations. J Chem Theory Comput. 2018;14:5156–5168.
Ge, Q, Mao, Y, Head‐Gordon, M. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals. J Chem Phys. 2018;148:064105.
Raupach, M, Tonner, R. A periodic energy decomposition analysis method for the investigation of chemical bonding in extended systems. J Chem Phys. 2015;142:194105.
Pecher, L, Tonner, R. Deriving bonding concepts for molecules, surfaces, and solids with energy decomposition analysis for extended systems. WIREs Comput Mol Sci. 2019;9:e1401.
Bauschlicher, CW, Bagus, PS, Nelin, CJ, Roos, BO. The nature of the bonding in XCO for X = Fe, Ni, and Cu. J Chem Phys. 1986;85:354–364.
Bernardi, F, Robb, MA. A multi‐reference approach to energy decomposition for molecular interactions. Mol Phys. 2006;48:1345–1355.
Danovich, D, Shaik, S, Neese, F, Echeverria, J, Aullon, G, Alvarez, S. Understanding the nature of the CH···HC interactions in alkanes. J Chem Theory Comput. 2013;9:1977–1991.
Chang, X, Zhang, Y, Weng, X, Su, P, Wu, W, Mo, Y. Red‐shifting versus blue‐shifting hydrogen bonds: Perspective from ab initio valence bond theory. J Phys Chem A. 2016;120:2749–2756.
Wang, C, Danovich, D, Shaik, S, Mo, Y. A unified theory for the blue‐ and red‐shifting phenomena in hydrogen and halogen bonds. J Chem Theory Comput. 2017;13:1626–1637.
Zhang, Y, Chen, S, Ying, F, Su, P, Wu, W. Valence bond based energy decomposition analysis scheme and its application to cation−π interactions. J Phys Chem A. 2018;122:5886–5894.
Misquitta, AJ, Szalewicz, K. Intermolecular forces from asymptotically corrected density functional description of monomers. Chem Phys Lett. 2002;357:301–306.
Misquitta, AJ, Jeziorski, B, Szalewicz, K. Dispersion energy from density‐functional theory description of monomers. Phys Rev Lett. 2003;91:033201.
Heßelmann, A, Jansen, G. Intermolecular induction and exchange‐induction energies from coupled‐perturbed Kohn–Sham density functional theory. Chem Phys Lett. 2002;362:319–325.
Heßelmann, A, Jansen, G. First‐order intermolecular interaction energies from Kohn–Sham orbitals. Chem Phys Lett. 2002;357:464–470.
Heßelmann, A, Jansen, G. Intermolecular dispersion energies from time‐dependent density functional theory. Chem Phys Lett. 2003;367:778–784.
Gonthier, JF, Corminboeuf, C. Quantification and analysis of intramolecular interactions. Chimia. 2014;68:221–226.
Gonthier, JF, Corminboeuf, C. Exploration of zeroth‐order wavefunctions and energies as a first step toward intramolecular symmetry‐adapted perturbation theory. J Chem Phys. 2014;140:154107.
Lao, KU, Herbert, JM. An improved treatment of empirical dispersion and a many‐body energy decomposition scheme for the explicit polarization plus symmetry‐adapted perturbation theory (XSAPT) method. J Chem Phys. 2013;139:034107.
Carter‐Fenk, K, Lao, KU, Liu, KY, Herbert, JM. Accurate and efficient ab initio calculations for supramolecular complexes: Symmetry‐adapted perturbation theory with many‐body dispersion. J Phys Chem Lett. 2019;10:2706–2714.
Pendas, AM, Blanco, MA, Francisco, E. Two‐electron integrations in the quantum theory of atoms in molecules. J Chem Phys. 2004;120:4581–4592.
Blanco, MA, Martín Pendás, A, Francisco, E. Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput. 2005;1:1096–1109.
Francisco, E, Martín Pendás, A, Blanco, MA. A molecular energy decomposition scheme for atoms in molecules. J Chem Theory Comput. 2006;2:90–102.
Bader, R. Atoms in molecules: A quantum theory. Oxford, UK: Oxford University Press, 1996.
Su, P, Jiang, Z, Chen, Z, Wu, W. Energy decomposition scheme based on the generalized Kohn–Sham scheme. J Phys Chem A. 2014;118:2531–2542.
Seidl, A, Görling, A, Vogl, P, Majewski, JA, Levy, M. Generalized Kohn‐Sham schemes and the band‐gap problem. Phys Rev B. 1996;53:3764–3774.
Baer, R, Livshits, E, Salzner, U. Tuned range‐separated hybrids in density functional theory. Annu Rev Phys Chem. 2010;61:85–109.
Hayes, IC, Stone, AJ. An intermolecular perturbation theory for the region of moderate overlap. Mol Phys. 1984;53:83–105.
Boys, SF, Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19:553–566.
Su, P, Liu, H, Wu, W. Free energy decomposition analysis of bonding and nonbonding interactions in solution. J Chem Phys. 2012;137:034111.
Schwabe, T, Grimme, S. Double‐hybrid density functionals with long‐range dispersion corrections: Higher accuracy and extended applicability. Phys Chem Chem Phys. 2007;9:3397–3406.
Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem. 2006;27:1787–1799.
Chai, JD, Head‐Gordon, M. Long‐range corrected hybrid density functionals with damped atom‐atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620.
Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1997;78:1396.
Becke, AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
Zhao, Y, Truhlar, DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06‐class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241.
Tao, J, Perdew, JP, Staroverov, VN, Scuseria, GE. Climbing the density functional ladder: Nonempirical meta‐generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91:146401.
Tomasi, J, Mennucci, B, Cammi, R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999–3094.
Mennucci, B. Polarizable continuum model. WIREs Comput Mol Sci. 2012;2:386–404.
Barone, V, Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A. 1998;102:1995–2001.
Cossi, M, Rega, N, Scalmani, G, Barone, V. Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. J Comput Chem. 2003;24:669–681.
Cancès, E, Mennucci, B. Analytical derivatives for geometry optimization in solvation continuum models. I. Theory. J Chem Phys. 1998;109:249–259.
Cancès, E, Mennucci, B, Tomasi, J. Analytical derivatives for geometry optimization in solvation continuum models. II Numerical applications J Chem Phys. 1998;109:260–266.
Cossi, M, Barone, V. Analytical second derivatives of the free energy in solution by polarizable continuum models. J Chem Phys. 1998;109:6246–6254.
Mennucci, B, Cammi, R, Tomasi, J. Analytical free energy second derivatives with respect to nuclear coordinates: Complete formulation for electrostatic continuum solvation models. J Chem Phys. 1999;110:6858–6870.
Si, D, Li, H. Heterogeneous conductorlike solvation model. J Chem Phys. 2009;131:044123.
Su, P, Li, H. Continuous and smooth potential energy surface for conductorlike screening solvation model using fixed points with variable areas. J Chem Phys. 2009;130:074109.
Shen, D, Su, P, Wu, W. What kind of neutral halogen bonds can be modulated by solvent effects? Phys Chem Chem Phys. 2018;20:26126–26139.
Su, P, Chen, Z, Wu, W. An energy decomposition analysis study for intramolecular non‐covalent interaction. Chem Phys Lett. 2015;635:250–256.
Su, P, Chen, H, Wu, W. Energy decomposition analysis for intramolecular non‐covalent interaction in solvated environment. Sci China Chem. 2016;59:1025–1032.
Melengate, G, Quattrociocchi, D, Siqueira Júnior, J, Stoyanov, S, Costa, L, Ferreira, G. DFT study of the interaction between the Ni2+ and Zn2+ metal cations and the 1,2‐dithiolene ligands: Electronic, geometric and energetic analysis. J Braz Chem Soc. 2019;30:1161–1177.
Matczak, P. N → Sn coordination in the complexes of tin halides with pyridine: A comparison between Sn(II) and Sn(IV). Appl Organomet Chem. 2019;33:e4811.
da Costa Gouveia, TL, Campos, RB, Ribeiro, RR, Nunes, FS. DFT analysis of the linkage isomerism in penta(ammine)ruthenium(II/III) complexes of benzotriazole: Natural bond orbital method approach and a comprehensive energy decomposition analysis. J Comput Chem. 2019;40:1593–1598.
Andriani, KF, Heinzelmann, G, Caramori, GF. Shedding light on the hydrolysis mechanism of cis, trans‐[Ru(dmso)4Cl2] complexes and their interactions with DNA—A computational perspective. J Phys Chem B. 2019;123:457–467.
Amorim, AL, Peterle, MM, Guerreiro, A, et al. Synthesis, characterization and biological evaluation of new manganese metal carbonyl compounds that contain sulfur and selenium ligands as a promising new class of CORMs. Dalton Trans. 2019;48:5574–5584.
Malladi, S, Yarasi, S, Sastry, GN. Exploring the potential of iron to replace ruthenium in photosensitizers: A computational study. J Mol Model. 2018;24:341.
Costa, MPM, Prates, LM, Baptista, L, Cruz, MTM, Ferreira, ILM. Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study. Carbohyd Polym. 2018;198:51–60.
Zheng, J, Kusaka, S, Matsuda, R, Kitagawa, S, Sakaki, S. Characteristic features of CO2 and CO adsorptions to paddle‐wheel‐type porous coordination polymer. J Phys Chem C. 2017;121:19129–19139.
Radenković, S, Antić, M, Savić, ND, Glišić, BĐ. The nature of the Au–N bond in gold(iii) complexes with aromatic nitrogen‐containing heterocycles: The influence of Au(iii) ions on the ligand aromaticity. New J Chem. 2017;41:12407–12415.
Parreira, RLT, Nassar, EJ, EHd, S, et al. Electronic properties and metal‐ligand bonding situation in Eu(III) complexes containing tris(pyrazolyl)borate and phenantroline ligands. J Lumin. 2017;182:137–145.
Okoshi, M, Yamada, Y, Komaba, S, Yamada, A, Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J Electrochem Soc. 2017;164:A54–A60.
Galembeck, SE, Caramori, GF, Misturini, A, Garcia, LC, Orenha, RP. Metal–ligand bonding situation in ruthenophanes containing multibridged cyclophanes. Organometallics. 2017;36:3465–3470.
Cordon, J, Jimenez‐Oses, G, Lopez‐de‐Luzuriaga, JM, Monge, M. The key role of Au‐substrate interactions in catalytic gold subnanoclusters. Nat Commun. 2017;8:1657.
Becconi, O, Ahlstrand, E, Salis, A, Friedman, R. Protein‐ion interactions: Simulations of bovine serum albumin in physiological solutions of NaCl, KCl and LiCl. Isr J Chem. 2017;57:403–412.
de Lima Batista, AP, Braga, AAC. Mor‐Dalphos‐Pd (II) oxidative addition complexes and related NH3 adducts: Insights into bonding and nonbonding interactions. J Mol Struct. 2016;1120:245–249.
Meyer, J, Gonzalez‐Gallardo, S, Hohnstein, S, et al. Tris(3,5‐dimethylpyrazolyl)methane‐based heterobimetallic complexes that contain Zn—and Cd—transition‐metal bonds: Synthesis, structures, and quantum chemical calculations. Chem A Eur J. 2015;21:2905–2914.
Gao, M, Li, Q, Li, H‐B, Li, W, Cheng, J. How do organic gold compounds and organic halogen molecules interact? Comparison with hydrogen bonds. RSC Adv. 2015;5:12488–12497.
Da Silva, JCS, Rocha, WR. Insights into the coordination chemistry of alkanes to metal carbonyls from quantum chemical calculations. J Organomet Chem. 2015;793:241–247.
Andriani, KF, Caramori, GF, Muñoz‐Castro, A, Doro, FG. The influence of L ligands on the {RuNO}6/7 bonding situation in cis‐[Ru(NO)(NO2)L1–4]q complexes: A theoretical insight. RSC Adv. 2015;5:69057–69066.
Villanueva, EF, Mo, O, Yanez, M. On the existence and characteristics of pi‐beryllium bonds. Phys Chem Chem Phys. 2014;16:17531–17536.
Mondelli, MA, Graminha, AE, Corrêa, RS, et al. Ruthenium(II)/4,6‐dimethyl‐2‐mercaptopyrimidine complexes: Synthesis, characterization, X‐ray structures and in vitro cytotoxicity activities on cancer cell lines. Polyhedron. 2014;68:312–318.
Li, Z, Yang, X, Li, H, Guo, Z. Electronic structure of gold carbonyl compounds RAuL (R = CF3, BO, Br, Cl, CH3, HCC, Mes3P, SIDipp; L = CO, N2, BO) and origins of aurophilic interactions in the clusters [RAuL]n (n = 2–4): A theoretical study. Organometallics. 2014;33:5101–5110.
Friedman, R. Structural and computational insights into the versatility of cadmium binding to proteins. Dalton Trans. 2014;43:2878–2887.
Andriani, KF, Caramori, GF, Doro, FG, Parreira, RL. Ru‐NO and Ru‐NO2 bonding linkage isomerism in cis‐[Ru(NO)(NO)(bpy)2](2+/+) complexes: A theoretical insight. Dalton Trans. 2014;43:8792–8804.
Flock, J, Suljanovic, A, Torvisco, A, et al. The role of 2,6‐diaminopyridine ligands in the isolation of an unprecedented, low‐valent tin complex. Chem A Eur J. 2013;19:15504–15517.
Deshmukh, MM, Ohba, M, Kitagawa, S, Sakaki, S. Absorption of CO2 and CS2 into the Hofmann‐type porous coordination polymer: Electrostatic versus dispersion interactions. J Am Chem Soc. 2013;135:4840–4849.
da Costa, LM, Stoyanov, SR, Damasceno, RN, de M. Carneiro, JW. Density functional theory investigation of the binding interactions between phosphoryl, carbonyl, imino, and thiocarbonyl ligands and the pentaaqua nickel(II) complex: Coordination affinity and associated parameters. Int J Quantum Chem. 2013;113:2621–2628.
Caramori, GF, Kunitz, AG, Coimbra, DF, Garcia, LC, Fonseca, DEP. The Ru—NO bonding in nitrosyl‐[poly(1‐pyrazolyl)borate]ruthenium complexes: A theoretical insight based on EDA. J Braz Chem Soc. 2013;24:1487–1496.
Sahoo, DK, Jena, S, Dutta, J, Rana, A, Biswal, HS. Nature and strength of M‐H…S and M‐H…Se (M = Mn, Fe, %26 Co) hydrogen bond. J Phys Chem A. 2019;123:2227–2236.
Iribarren, I, Montero‐Campillo, MM, Alkorta, I, Elguero, J, Quinonero, D. Cations brought together by hydrogen bonds: The protonated pyridine‐boronic acid dimer explained. Phys Chem Chem Phys. 2019;21:5796–5802.
Zou, W, Zhang, X, Dai, H, Yan, H, Cremer, D, Kraka, E. Description of an unusual hydrogen bond between carborane and a phenyl group. J Organomet Chem. 2018;865:114–127.
Sheng, X, Jiang, X, Zhao, H, et al. FTIR study of hydrogen bonding interaction between fluorinated alcohol and unsaturated esters. Spectrochim Acta A. 2018;198:239–247.
Mukhopadhyay, DP, Biswas, S, Chattopadhyay, A, Chakraborty, T. Conformational preference determined by C‐H…pi interaction of an O‐H…O hydrogen‐bonded binary complex of p‐fluorophenol with 2,5‐dihydrofuran: A laser‐induced fluorescence spectroscopy study. J Phys Chem A. 2018;122:3787–3797.
Karir, G, Kumar, G, Kar, BP, Viswanathan, KS. Multiple hydrogen bond tethers for grazing formic acid in its complexes with phenylacetylene. J Phys Chem A. 2018;122:2046–2059.
Zhao, H, Jiang, X, Du, L. Contribution of methane sulfonic acid to new particle formation in the atmosphere. Chemosphere. 2017;174:689–699.
Zhao, H, Du, L. Atmospheric implication of the hydrogen bonding interaction in hydrated clusters of HONO and dimethylamine in the nighttime. Environ Sci: Processes Impacts. 2017;19:65–77.
Samanta, AK, Banerjee, P, Bandyopadhyay, B, Pandey, P, Chakraborty, T. Antagonistic interplay between an intermolecular CH…O and an intramolecular OH…O hydrogen bond in a 1:1 complex between 1,2‐cyclohexanedione and chloroform: A combined matrix isolation infrared and quantum chemistry study. J Phys Chem A. 2017;121:6012–6020.
Liu, Y, Yuan, K, Liu, L, Yuan, Z, Zhu, Y. Anion recognition based on a combination of double‐dentate hydrogen bond and double‐side anion‐pi noncovalent interactions. J Phys Chem A. 2017;121:892–900.
Gu, Q, Su, P, Xia, Y, Yang, Z, Trindle, CO, Knee, JL. Quantitative probing of subtle interactions among H‐bonds in alpha hydroxy carboxylic acid complexes. Phys Chem Chem Phys. 2017;19:24399–24411.
Gu, Q, Shen, D, Tang, Z, et al. Dissection of H‐bonding interactions in a glycolic acid–water dimer. Phys Chem Chem Phys. 2017;19:14238–14247.
Zhao, H, Tang, S, Xu, X, Du, L. Hydrogen bonding interaction between atmospheric gaseous amides and methanol. Int J Mol Sci. 2017;18:4–19.
Yuan, C, Wu, H, Jia, M, Su, P, Luo, Z, Yao, J. A theoretical study of weak interactions in phenylenediamine homodimer clusters. Phys Chem Chem Phys. 2016;18:29249–29257.
Yuan, C, An, P, Chen, J, Luo, Z, Yao, J. Unraveling weak interactions in aniline‐pyrrole dimer clusters. Sci China Chem. 2016;59:1270–1276.
Tang, S, Zhao, H, Du, L. Hydrogen bonding in alcohol–ethylene oxide and alcohol–ethylene sulfide complexes. RSC Adv. 2016;6:91233–91242.
Gu, Q, Tang, Z, Su, P, et al. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes. J Chem Phys. 2016;145:051101.
Alkorta, I, Mata, I, Molins, E, Espinosa, E. Charged versus neutral hydrogen‐bonded complexes: Is there a difference in the nature of the hydrogen bonds? Chem A Eur J. 2016;22:9226–9234.
Verma, K, Dave, K, Viswanathan, KS. Hydrogen‐bonded complexes of phenylacetylene‐acetylene: Who is the proton donor? J Phys Chem A. 2015;119:12656–12664.
Singh, SK, Kumar, S, Das, A. Competition between n → pi(Ar)* and conventional hydrogen bonding (N‐H…N) interactions: An ab initio study of the complexes of 7‐azaindole and fluorosubstituted pyridines. Phys Chem Chem Phys. 2014;16:8819–8827.
Jana, K, Ganguly, B. In silico studies to explore the mutagenic ability of 5‐halo/oxy/li‐oxy‐uracil bases with guanine of DNA base pairs. J Phys Chem A. 2014;118:9753–9761.
Lopez, AH, Caramori, GF, Coimbra, DF, Parreira, RL, da Silva, EH. The two faces of hydrogen‐bond strength on triple AAA‐DDD arrays. ChemPhysChem. 2013;14:3994–4001.
Kumar, S, Pande, V, Das, A. pi‐Hydrogen bonding wins over conventional hydrogen bonding interaction: a jet‐cooled study of indole…furan heterodimer. J Phys Chem A. 2012;116:1368–1374.
Kumar, S, Mukherjee, A, Das, A. Structure of indole…imidazole heterodimer in a supersonic jet: A gas phase study on the interaction between the aromatic side chains of tryptophan and histidine residues in proteins. J Phys Chem A. 2012;116:11573–11580.
Kumar, S, Das, A. Effect of acceptor heteroatoms on pi‐hydrogen bonding interactions: A study of indole…thiophene heterodimer in a supersonic jet. J Chem Phys. 2012;137:094309.
Kumar, S, Das, A. Mimicking trimeric interactions in the aromatic side chains of the proteins: a gas phase study of indole…(pyrrole)2 heterotrimer. J Chem Phys. 2012;136:174302.
Kumar, S, Biswas, P, Kaul, I, Das, A. Competition between hydrogen bonding and dispersion interactions in the indole…pyridine dimer and (indole)2…pyridine trimer studied in a supersonic jet. J Phys Chem A. 2011;115:7461–7472.
Cheng, N, Bi, F, Liu, Y, Zhang, C, Liu, C. The structures and properties of halogen bonds involving polyvalent halogen in complexes of FXOn (X = Cl, Br; n = 0–3)–CH3CN. New J Chem. 2014;38:1256.
Donoso‐Tauda, O, Jaque, P, Elguero, J, Alkorta, I. Traditional and ion‐pair halogen‐bonded complexes between chlorine and bromine derivatives and a nitrogen‐heterocyclic carbene. J Phys Chem A. 2014;118:9552–9560.
Azofra, LM, Alkorta, I, Scheiner, S. Strongly bound noncovalent (SO3)n:H2CO complexes (n = 1, 2). Phys Chem Chem Phys. 2014;16:18974–18981.
Shukla, R, Chopra, D. Understanding the effect of substitution on the formation of S…F chalcogen bond. J Chem Sci. 2016;128:1589–1596.
Bhandary, S, Sirohiwal, A, Kadu, R, Kumar, S, Chopra, D. Dispersion stabilized Se/Te…π double chalcogen bonding synthons in insitu cryocrystallized divalent organochalcogen liquids. Cryst Growth Des. 2018;18:3734–3739.
Li, Q, Guo, X, Yang, X, Li, W, Cheng, J, Li, HB. A sigma‐hole interaction with radical species as electron donors: Does single‐electron tetrel bonding exist? Phys Chem Chem Phys. 2014;16:11617–11625.
Liu, M, Li, Q, Cheng, J, Li, W, Li, HB. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction. J Chem Phys. 2016;145:224310.
Wei, Q, Li, Q, Cheng, J, Li, W, Li, H‐B. Comparison of tetrel bonds and halogen bonds in complexes of DMSO with ZF3X (Z = C and Si; X = halogen). RSC Adv. 2016;6:79245–79253.
Liu, M, Li, Q, Scheiner, S. Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3 and furanTF3 (T = C, Si, and Ge) with NH3. Phys Chem Chem Phys. 2017;19:5550–5559.
Wei, Y, Cheng, J, Li, W, Li, Q. Regulation of coin metal substituents and cooperativity on the strength and nature of tetrel bonds. RSC Adv. 2017;7:46321–46328.
Xu, H, Cheng, J, Yang, X, Liu, Z, Li, W, Li, Q. Comparison of sigma‐Hole and pi‐Hole tetrel bonds formed by pyrazine and 1,4‐dicyanobenzene: The interplay between anion‐pi and tetrel bonds. ChemPhysChem. 2017;18:2442–2450.
Yang, F, Yang, X, Wu, R, et al. Intermolecular interactions between sigma‐ and pi‐holes of bromopentafluorobenzene and pyridine: Computational and experimental investigations. Phys Chem Chem Phys. 2018;20:11386–11395.
Dong, W, Niu, B, Liu, S, Cheng, J, Liu, S, Li, Q. Comparison of sigma‐/pi‐Hole tetrel bonds between TH3 F/F2 TO and H2 CX (X = O, S, Se). ChemPhysChem. 2019;20:627–635.
Alkorta, I, Elguero, J, Solimannejad, M. Single electron pnicogen bonded complexes. J Phys Chem A. 2014;118:947–953.
Liu, F, Du, L, Gao, J, Wang, L, Song, B, Liu, C. Application of polarizable ellipsoidal force field model to pnicogen bonds. J Comput Chem. 2015;36:441–448.
Kumar, S, Das, A. Observation of exclusively pi‐stacked heterodimer of indole and hexafluorobenzene in the gas phase. J Chem Phys. 2013;139:104311.
Wang, Y, Wang, J, Yao, L. Computational study of peptide plane stacking with polar and ionizable amino acid side chains. J Phys Chem A. 2015;119:3471–3478.
Verma, K, Viswanathan, KS. “A tale of two structures”: The stacks and Ts of borazine and benzene hetero and homo dimers. ChemistrySelect. 2018;3:864–873.
Francese, T, Mota, F, Deumal, M, et al. Reorganization of intermolecular interactions in the polymorphic phase transition of a prototypical dithiazolyl‐based bistable material. Cryst Growth Des. 2019;19:2329–2339.
Carrazana‐Garcia, JA, Rodriguez‐Otero, J, Cabaleiro‐Lago, EM. A computational study of anion‐modulated cation‐pi interactions. J Phys Chem B. 2012;116:5860–5871.
Vijay, D, Sakurai, H, Subramanian, V, Sastry, GN. Where to bind in buckybowls? The dilemma of a metal ion. Phys Chem Chem Phys. 2012;14:3057–3065.
Caramori, GF, Garcia, LC, Andrada, DM, Frenking, G. Ruthenophanes: Evaluating cation−π interactions in [Ru(η6‐C16H12R4)(NH3)3]2+/3+ complexes. A computational insight. Organometallics. 2014;33:2301–2312.
Lo, R, Ganguly, B. Exploiting weak noncovalent cation…π interaction for designing a molecular container for storage of methane molecules with lithiated carbene superbases. J Phys Chem C. 2014;118:6680–6689.
Robledo, M, Aguirre, NF, Díaz‐Tendero, S, Martín, F, Alcamí, M. Bonding in exohedral metal–fullerene cationic complexes. RSC Adv. 2014;4:53010–53020.
Shekar, SC, Kumar Meena, S, Swathi, RS. Interlocked benzenes in triangular pi‐architectures: Anchoring groups dictate ion binding and transmission. Phys Chem Chem Phys. 2017;19:10264–10273.
Xi, J, Xu, X. Understanding the anion‐pi interactions with tetraoxacalix[2]arene[2]triazine. Phys Chem Chem Phys. 2016;18:6913–6924.
Hussain, MA, Mahadevi, AS, Sastry, GN. Estimating the binding ability of onium ions with CO(2) and pi systems: A computational investigation. Phys Chem Chem Phys. 2015;17:1763–1775.
Jimenez‐Moreno, E, Jimenez‐Oses, G, Gomez, AM, et al. A thorough experimental study of CH/pi interactions in water: Quantitative structure‐stability relationships for carbohydrate/aromatic complexes. Chem Sci. 2015;6:6076–6085.
Chen, Y, Li, H. Intermolecular interaction in water hexamer. J Phys Chem A. 2010;114:11719–11724.
Gao, M, Li, Q, Cheng, J, Li, W, Li, H. Complicated synergistic effects between metal–π interaction and halogen bonding involving MCCX. RSC Adv. 2015;5:105160–105168.
Varadwaj, PR, Varadwaj, A, Jin, BY. Unusual bonding modes of perfluorobenzene in its polymeric (dimeric, trimeric and tetrameric) forms: Entirely negative fluorine interacting cooperatively with entirely negative fluorine. Phys Chem Chem Phys. 2015;17:31624–31645.
Wei, Y, Li, Q, Li, W, Cheng, J, McDowell, SA. Influence of the protonation of pyridine nitrogen on pnicogen bonding: Competition and cooperativity. Phys Chem Chem Phys. 2016;18:11348–11356.
Liu, Z, Trindle, CO, Gu, Q, Wu, W, Su, P. Unravelling hydrogen bonding interactions of tryptamine–water dimer from neutral to cation. Phys Chem Chem Phys. 2017;19:25260–25269.
Gao, W, Tian, Y, Xuan, X. How the cation–cation π–π stacking occurs: A theoretical investigation into ionic clusters of imidazolium. J Mol Graph Model. 2015;60:118–123.
Xie, M, Lu, W. Theoretical insights into intermolecular interactions during d8 organometallic self‐aggregation. Dalton Trans. 2019;48:1275–1283.
An, P, Kang, L, Tang, Z, Su, P, Luo, Z. Spectroscopic identification towards tunable mesoscale aggregates of zinc tetraphenylporphyrin for materials. Chinese Chem Lett. 2018;29:361–365.
Wang, J, Chen, J, Li, J, et al. Arginine side chain stacking with peptide plane stabilizes the protein helix conformation in a cooperative way. Proteins. 2018;86:684–692.
Wolf, LM, Denmark, SE. A theoretical investigation on the mechanism and stereochemical course of the addition of (E)‐2‐butenyltrimethylsilane to acetaldehyde by electrophilic and nucleophilic activation. J Am Chem Soc. 2013;135:4743–4756.
Chang, X, Su, P, Wu, W. Internal rotation barrier of the XH3YH3 (X, Y = C or Si) molecules. An energy decomposition analysis study. Chem Phys Lett. 2014;610–611:246–250.
Chang, X, Chen, Z, Su, P, Wu, W. The C‐O rotation in the gaseous glycine. An energy decomposition analysis study. Chem Phys Lett. 2015;640:194–200.
Baranac‐Stojanović, M. Aromaticity and stability of azaborines. Chem A Eur J. 2014;20:16558–16565.
Baranac‐Stojanović, M, Aleksić, J, Stojanović, M. Energy decomposition analysis of gauche preference in 2‐haloethanol, 2‐haloethylamine (halogen = F, Cl), their protonated forms and anti preference in 1‐chloro‐2‐fluoroethane. RSC Adv. 2015;5:22980–22995.
Sladek, V, Holka, F, Tvaroska, I. Ab initio modelling of the anomeric and exo anomeric effects in 2‐methoxytetrahydropyran and 2‐methoxythiane corrected for intramolecular BSSE. Phys Chem Chem Phys. 2015;17:18501–18513.
Pontes, RM, Basso, EA, Martins, DE, Madeira, RM. Acidities under the perspective of energy decomposition analysis. J Phys Chem A. 2017;121:4993–5004.
Pontes, RM. Basicity of amines and some related compounds from energy decomposition analysis. Comput Theor Chem. 2018;1140:63–72.
Marenich, AV, Cramer, CJ, Truhlar, DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378–6396.
Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys. 1981;74:5737–5743.
Neese, F. Definition of corresponding orbitals and the diradical character in broken symmetry DFT calculations on spin coupled systems. J Phys Chem Solid. 2004;65:781–785.
Warshel, A, Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol. 1976;103:227–249.
Elstner, M, Porezag, D, Jungnickel, G, et al. Self‐consistent‐charge density‐functional tight‐binding method for simulations of complex materials properties. Phys Rev B. 1998;58:7260–7268.
Porezag, D, Frauenheim, T, Köhler, T, Seifert, G, Kaschner, R. Construction of tight‐binding‐like potentials on the basis of density‐functional theory: Application to carbon. Phys Rev B. 1995;51:12947–12957.