Shannon, CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.
Parr, RG, Yang, W. Density functional theory of atoms and molecules. Oxford: Oxford University Press, 1989.
Sears, SB, Parr, RG, Dinur, U. On the quantum‐mechanical kinetic energy as a measure of the information in a distribution. Isr J Chem. 1980;19:165–173.
Sears, SB, Gadre, SR. An information theoretic synthesis and analysis of Compton profiles. J Chem Phys. 1981;75:4626–4635.
Koga, T, Morita, M. Maximum‐entropy inference and momentum density approach. J Chem Phys. 1983;79:1933–1938.
Ghosh, SK, Berkowitz, M, Parr, RG. Transcription of ground‐state density‐functional theory into a local thermodynamics. Proc Natl Acad Sci U S A. 1984;81:8028–8031.
Gadre, SR, Sears, SB, Chakravorty, SJ, Bendale, RD. Some novel characteristics of atomic information entropies. Phys Rev A. 1985;32:2602–2606.
Gadre, SR, Bendale, RD. Maximization of atomic information‐entropy sum in configuration and momentum spaces. Int J Quantum Chem. 1985;28:311–314.
Gadre, SR, Bendale, RD. Rigorous relationships among quantum‐mechanical kinetic energy and atomic information entropies: Upper and lower bounds. Phys Rev A. 1987;36:1932–1935.
Massen, SE, Panos, CP. Universal property of the information entropy in atoms, nuclei and atomic clusters. Phys Lett A. 1998;246:530–533.
Massen, SE, Panos, CP. A link of information entropy and kinetic energy for quantum many‐body systems. Phys Lett A. 2001;280:65–69.
Nalewajski, RF, Parr, RG. Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A. 2001;105:7391–7400.
Sagar, RP, Ramírez, JC, Esquivel, RO, Hô, M, Smith, VH Jr. Relationships between Jaynes entropy of the one‐particle density matrix and Shannon entropy of the electron densities. J Chem Phys. 2002;116:9213–9221.
Nagy, Á. Fisher information in density functional theory. J Chem Phys. 2003;119:9401–9405.
Massen, SE. Application of information entropy to nuclei. Phys Rev C. 2003;67:014314.
Chatzisavvas, KC, Moustakidis, CC, Massen, SE. Information entropy, information distances, and complexity in atoms. J Chem Phys. 2005;123:174111.
Nalewajski, R. Information principles in the theory of electronic structure. Chem Phys Lett. 2003;372:28–34.
Nalewajski, R. Information principles in the loge theory. Chem Phys Lett. 2003;375:196–203.
Romera, E, Dehesa, JS. The Fisher–Shannon information plane, an electron correlation tool. J Chem Phys. 2004;120:8906–9812.
Borgoo, A, Godefroid, M, Sen, KD, De Proft, F, Geerlings, P. Quantum similarity of atoms: A numerical Hartree–Fock and Information theory approach. Chem Phys Lett. 2004;399:363–367.
Parr, RG, Ayers, PW, Nalewajski, RF. What is an atom in a molecule? J Phys Chem A. 2005;109:3957–3959.
Sen, KD. Characteristic features of Shannon information entropy of confined atoms. J Chem Phys. 2005;123:074110.
Nalewajski, RF, Broniatowska, E. Entropy/information indices of the “stockholder” atoms‐in‐molecules. Int J Quantum Chem. 2005;101:349–362.
Romera, E, Sanchez‐Moreno, P, Dehesa, JS. The Fisher information of single‐particle systems with a central potential. Chem Phys Lett. 2005;414:468–472.
Guevara, NL, Sagar, RP, Esquivel, RO. Local correlation measures in atomic systems. J Chem Phys. 2005;122:084101.
Sagar, RP, Guevara, NL. Mutual information and correlation measures in atomic systems. J Chem Phys. 2005;123:044108.
Nalewajski, RF, Köster, AM, Escalante, S. Electron localization function as information measure. J Phys Chem A. 2005;109:10038–10043.
Sen, KD, Katriel, J. Information entropies for eigendensities of homogeneous potentials. J Chem Phys. 2006;125:074117.
Nagy, Á. Fisher information in a two‐electron entangled artificial atom. Chem Phys Lett. 2006;425:154–156.
Ayers, PW. Information theory, the shape function, and the Hirshfeld atom. Theor Chem Acc. 2006;115:370–378.
Borgoo, A, Godefroid, M, Indelicato, P, De Proft, F, Geerlings, P. Quantum similarity study of atomic density functions: Insights from information theory and the role of relativistic effects. J Chem Phys. 2007;126:044102.
Nagy, Á, Romera, E. Relative Rényi entropy for atoms. Int J Quantum Chem. 2009;109:2490–2494.
Noorizadeh, S, Shakerzadeh, E. Shannon entropy as a new measure of aromaticity, Shannon aromaticity. Phys Chem Chem Phys. 2010;12:4742–4749.
López‐Rosa, S, Esquivel, RO, Angulo, JC, Antolín, J, Dehesa, JS, Flores‐Gallegos, N. Fisher information study in position and momentum spaces for elementary chemical reactions. J Chem Theory Comput. 2010;6:145–154.
Esquivel, RO, Liu, SB, Angulo, JC, Dehesa, JS, Antolín, J, Molina‐Espíritu, M. Fisher information and steric effect: Study of the internal rotation barrier of ethane. J Phys Chem A. 2011;115:4406–4415.
Esquivel, RO, Molina‐Espíritu, M, Dehesa, JS, Angulo, JC, Antolín, J. Concurrent phenomena at the transition region of selected elementary chemical reactions: An information‐theoretical complexity analysis. Int J Quantum Chem. 2012;112:3578–3586.
Welearegay, MA, Balawender, R, Holas, A. Information and complexity measures in molecular reactivity studies. Phys Chem Chem Phys. 2014;16:14928–14946.
Alipour, M, Safari, Z. From information theory to quantitative description of steric effects. Phys Chem Chem Phys. 2016;18:17917–17929.
Flores‐Gallegos, N. An informational approach about energy and temperature in atoms. Chem Phys Lett. 2016;659:203–208.
Esquivel, RO, López‐Rosa, S, Molina‐Espíritu, M, Angulo, JC, Dehesa, JS. Information‐theoretic space from simple atomic and molecular systems to biological and pharmacological molecules. Theor Chem Acc. 2016;135:253.
Flores‐Gallegos, N. Tsallis` entropy as a possible measure of the electron correlation in atomic systems. Chem Phys Lett. 2018;692:61–68.
Nagy, Á. Thermodynamical transcription of density functional theory with minimum Fisher information. Chem Phys Lett. 2018;695:149–152.
Levämäki, H, Nagy, Á, Vilja, I, Kokko, K, Vitos, L. Kullback–Leibler and relative Fisher information as descriptors of locality. Int J Quantum Chem. 2018;118:e25557.
Mukherjee, N, Roy, AK. Information‐entropic measures in free and confined hydrogen atom. Int J Quantum Chem. 2018;118:e25596.
Alipour, M, Badooei, Z. Toward electron correlation and electronic properties from the perspective of information functional theory. J Phys Chem A. 2018;122:6424–6437.
Alipour, M, Badooei, Z. Information theoretic approach provides a reliable description for kinetic component of correlation energy density functional. Int J Quantum Chem. 2018;118:e25791.
Liu, SB. Information‐theoretic approach in density functional reactivity theory. Acta Phys‐Chim Sin. 2016;32:98–118.
Nalewajski, RF. Information theory of molecular systems. Amsterdam: Elsevier Science, 2006.
Nalewajski, RF. Information origins of the chemical bond. New York: Nova Science Publishers, 2010.
Nalewajski, RF. Quantum information theory of molecular states. New York: Nova Science Publishers, 2016.
Fisher, RA. Theory of statistical estimation. Proc Cambridge Philos Soc. 1925;22:700–725.
Weizsäcker, CF. Zur theorie der kernmassen. Z Phys. 1935;96:431–458.
Liu, SB. On the relationship between densities of Shannon entropy and Fisher information for atoms and molecules. J Chem Phys. 2007;126:191107.
Zhou, X, Rong, CY, Lu, T, Zhou, P, Liu, SB. Information functional theory: Electronic properties as functionals of information for atoms and molecules. J Phys Chem A. 2016;120:3634–3642.
Rong, CY, Lu, T, Chattaraj, PK, Liu, SB. On the relationship among Ghosh–Berkowitz–Parr entropy, Shannon entropy and Fisher information. Indian J Chem Sect A. 2014;53:970–977.
Liu, SB, Rong, CY, Wu, Z, Lu, T. Rényi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory. Acta Phys‐Chim Sin. 2015;31:2057–2063.
Rényi, A. Probability theory. Amsterdam: North‐Holland, 1970.
Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys. 1988;52:479–487.
Onicescu, O. Theorie de l`information energie informationelle. C R Acad Sci Paris A. 1966;263:841–842.
Kullback, S, Leibler, RA. On information and sufficiency. Ann Math Stat. 1951;22:79–86.
Nagy, Á, Romera, E. Relative Rényi entropy and fidelity susceptibility. Europhys Lett. 2015;109:60002.
Liu, SB. Identity for Kullback–Leibler divergence in density functional reactivity theory. J Chem Phys. 2019;151:141103.
Parr, RG, Bartolotti, LJ. Some remarks on the density functional theory of few‐electron systems. J Phys Chem. 1983;87:2810–2815.
De Proft, F, Ayers, PW, Sen, KD, Geerlings, P. On the importance of the “density per particle” (shape function) in the density functional theory. J Chem Phys. 2004;120:9969–9973.
Ayers, PW. Density per particle as a descriptor of Coulombic systems. Proc Natl Acad Sci USA. 2000;97:1959–1964.
Rong, CY, Lu, T, Ayers, PW, Chattaraj, PK, Liu, SB. Scaling properties of information‐theoretic quantities in density functional reactivity theory. Phys Chem Chem Phys. 2015;17:4977–4988.
Rong, CY, Lu, T, Liu, SB. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory. J Chem Phys. 2014;140:024109.
Becke, AD. A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys. 1988;88:2547–2553.
Bader, RFW. Atoms in molecules: A quantum theory. Oxford: Oxford University Press, 1990.
Hirshfeld, F. Bonded‐atom fragments for describing molecular charge densities. Theor Chim Acc. 1977;44:129–138.
Chattaraj, PK, Sarkar, U, Roy, DR. Electrophilicity index. Chem Rev. 2006;106:2065–2091.
Liu, SB. Conceptual density functional theory and some recent developments. Acta Phys‐Chim Sin. 2009;25:590–600.
Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871.
Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138.
Kohn, W. Electronic structure of matter‐wave functions and density functionals. Rev Mod Phys. 1999;71:1253–1266.
Liu, SB. Steric effect: A quantitative description from density functional theory. J Chem Phys. 2007;126:244103.
Liu, SB, Rong, CY, Lu, T. Electronic forces as descriptors of nucleophilic and electrophilic regioselectivity and stereoselectivity. Phys Chem Chem Phys. 2017;19:1496–1503.
Liu, SB, Liu, LH, Yu, DH, Rong, CY, Lu, T. Steric charge. Phys Chem Chem Phys. 2018;20:1408–1420.
Bohórquez, HJ. Comment on “Scaling properties of information‐theoretic quantities in density functional reactivity theory”. Phys Chem Chem Phys. 2015;17:32053–32056.
Nalewajski, RF, Parr, RG. Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci. 2000;97:8879–8882.
Bultinck, P. Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys. 2007;126:144111.
Ayers, PW. Atoms in molecules, an axiomatic approach. I. Maximum transferability. J Chem Phys. 2000;113:10886–10898.
Matta, CF, Bader, RFW. An experimentalist`s reply to “What is an atom in a molecule?”. J Phys Chem A. 2006;110:6365–6371.
Cohen, MH, Wasserman, A. On the foundations of chemical reactivity theory. J Phys Chem A. 2007;111:2229–2242.
Heidar‐Zadeh, F, Ayers, PW, Verstraelen, T, Vinogradov, I, Vöhringer‐Martinez, E, Bultinck, P. Information‐theoretic approaches to atoms‐in‐molecules: Hirshfeld family of partitioning schemes. J Phys Chem A. 2018;122:4219–4245.
Liu, SB, Rong, CY, Lu, T. Information conservation principle determines electrophilicity, nucleophilicity, and regioselectivity. J Phys Chem A. 2014;118:3698–3704.
Zhou, X, Rong, CY, Lu, T, Liu, SB. Hirshfeld charge as a quantitative measure of electrophilicity and nucleophilicity: Nitrogen‐containing systems. Acta Phys‐Chim Sin. 2014;30:2055–2062.
Liu, SB. Where does the electron go? The nature of ortho/para and meta group directing in electrophilic aromatic substitution. J Chem Phys. 2014;141:194109.
Liu, SB. Quantifying reactivity for electrophilic aromatic substitution reactions with Hirshfeld charge. J Phys Chem A. 2015;119:3107–3111.
Wu, W, Wu, Z, Rong, CY, Lu, T, Huang, Y, Liu, SB. Computational study of chemical reactivity using information‐theoretic quantities from density functional reactivity theory for electrophilic aromatic substitution reactions. J Phys Chem A. 2015;119:8216–8224.
Wu, Z, Rong, CY, Lu, T, Ayers, PW, Liu, SB. Density functional reactivity theory study of SN2 reactions from the information‐theoretic perspective. Phys Chem Chem Phys. 2015;17:27052–27061.
Mayr, H, Patz, M. Scales of nucleophilicity and electrophilicity: A system for ordering polar organic and organometallic reactions. Angew Chem Int Ed. 1994;33:938–957.
Mayr, H, Bug, T, Gotta, MF, et al. Reference scales for the characterization of cationic electrophiles and neutral nucleophiles. J Am Chem Soc. 2001;123:9500–9512.
Lucius, R, Loos, R, Mayr, H. Kinetic studies of carbocation−carbanion combinations: Key to a general concept of polar organic reactivity. Angew Chem Int Ed. 2002;41:91–95.
Mayr, H, Kempf, B, Ofial, AR. π‐Nucleophilicity in carbon−carbon bond‐forming reactions. Acc Chem Res. 2003;36:66–77.
Nagy, Á. Fisher information and steric effect. Chem Phys Lett. 2007;449:212–215.
Badenhoop, JK, Weinhold, F. Natural bond orbital analysis of steric interactions. J Chem Phys. 1997;107:5406–5432.
March, NH. The local potential determining the square root of the ground‐state electron density of atoms and molecules from the Schrödinger equation. Phys Lett A. 1986;113:588–590.
Holas, A, March, NH. Construction of the Pauli potential, Pauli energy, and effective potential from the electron density. Phys Rev A. 1991;44:5521–5536.
Weisskopf, VF. Of atoms, mountains, and stars: A study in qualitative physics. Science. 1975;187:605–612.
Nagy, Á. Fisher and Shannon information in orbital‐free density functional theory. Int J Quantum Chem. 2015;115:1392–1395.
Flores, JA, Keller, J. Differential equations for the square root of the electronic density in symmetry‐constrained density‐functional theory. Phys Rev A. 1992;45:6259–6262.
Tsirelson, VG, Stash, AI, Liu, SB. Quantifying steric effect with experimental electron density. J Chem Phys. 2010;133:114110.
Liu, SB, Govind, N. Toward understanding the nature of internal rotation barriers with a new energy partition scheme: Ethane and n‐butane. J Phys Chem A. 2008;112:6690–6699.
Liu, SB, Govind, N, Pedersen, LG. Exploring the origin of the internal rotational barrier for molecules with one rotatable dihedral angle. J Chem Phys. 2008;129:094104.
Liu, SB, Hu, H, Pedersen, LG. Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J Phys Chem A. 2010;114:5913–5918.
Ess, DH, Liu, SB, De Proft, F. Density functional steric analysis of linear and branched alkanes. J Phys Chem A. 2010;114:12952–12957.
Huang, Y, Zhong, AG, Yang, Q, Liu, SB. Origin of anomeric effect: A density functional steric analysis. J Chem Phys. 2011;134:084103.
Fang, D, Piruemal, J‐P, Liu, SB, Ciseros, GA. DFT‐steric‐based energy decomposition analysis of intermolecular interactions. Theor Chem Acc. 2014;133:1484.
Tsirelson, VG, Stash, AI, Karasiev, VV, Liu, SB. Pauli potential and Pauli charge from experimental electron density. Comp Theor Chem. 2013;1006:92–99.
Torrent‐Sucarrat, M, Liu, SB, De Proft, F. Steric effect: Partitioning in atomic and functional group contributions. J Phys Chem A. 2009;113:3698–3702.
Liu, SB. Origin and nature of bond rotation barriers: A unified view. J Phys Chem A. 2013;117:962–965.
Liu, SB, Schauer, CK. Origin of molecular conformational stability: Perspectives from molecular orbital interactions and density functional reactivity theory. J Chem Phys. 2015;142:054107.
Liu, SB, Ayers, PW. Functional derivative of noninteracting kinetic energy density functional. Phys Rev A. 2004;70:022501.
Liu, SB, Ayers, PW, Parr, GR. Alternative definition of exchange‐correlation charge in density functional theory. J Chem Phys. 1999;111:6197–6203.
Menconi, G, Tozer, DJ, Liu, SB. Atomic and molecular exchange‐correlation charges in Kohn–Sham theory. Phys Chem Chem Phys. 2000;2:3739–3742.
Gorling, A. New KS method for molecules based on an exchange charge density generating the exact local KS exchange potential. Phys Rev Lett. 1999;83:5459–5462.
Ayers, PW, Levy, M. Sum rules for exchange and correlation potentials. J Chem Phys. 2001;115:4438–4443.
Monza, E, Gatti, C, Presti, LL, Ortileva, E. Revealing electron delocalization through the source function. J Phys Chem A. 2011;115:12864–12878.
Gatti, C, Cargnoni, F, Bertini, L. Chemical information from the source function. J Comput Chem. 2003;24:422–436.
Bader, RFW, Gatti, C. A Green`s function for the density. Chem Phys Lett. 1998;287:233–238.
Pophristic, V, Goodman, L. Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature. 2001;411:565–568.
Bickelhaupt, FM, Baerends, EJ. The case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed. 2003;42:4183–4188.
Weinhold, F. Rebuttal to the Bickelhaupt−Baerends case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed. 2003;42:4188–4194.
Mo, Y. Computational evidence that hyperconjugative interactions are not responsible for the anomeric effect. Nat Chem. 2010;2:666–671.
Mo, Y, Wu, W, Song, L, Lin, M, Zhang, Q, Gao, J. The magnitude of hyperconjugation in ethane: A perspective from ab initio valence bond theory. Angew Chem Int Ed. 2004;43:1986–1990.
Mo, Y, Gao, J. Theoretical analysis of the rotational barrier of ethane. Acc Chem Res. 2007;40:113–119.
Zhao, DB, Liu, S, Rong, CY, Zhong, AG, Liu, SB. Toward understanding the isomeric stability of fullerenes with density functional theory and the information‐theoretic approach. ACS Omega. 2018;3:17986–17990.
Zhou, X, Yu, D, Rong, CY, Lu, T, Liu, SB. Anomeric effect revisited: Perspective from information‐theoretic approach in density functional reactivity theory. Chem Phys Lett. 2017;684:97–102.
Cao, X, Liu, S, Rong, CY, Lu, T, Liu, SB. Is there a generalized anomeric effect? Analyses from energy components and information‐theoretic quantities from density functional reactivity theory. Chem Phys Lett. 2017;687:131–137.
Zhao, DB, Rong, CY, Jerkins, S, Kirk, SR, Yin, D, Liu, SB. Origin of cis‐effect: A density functional theory study of doubly substituted ethylenes. Acta Phys‐Chim Sin. 2013;29:43–54.
Wang, B, Yu, D, Zhao, DB, Rong, CY, Liu, SB. Nature and origin of γ‐gauche effect in sulfoxides: A density functional theory and information‐theoretic approach study. Chem Phys Lett. 2019;730:451–459.
Becke, AD, Edgecombe, KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys. 1990;92:5397–5403.
Liu, SB, Rong, CY, Lu, T, Hu, H. Identifying strong covalent interactions with Pauli energy. J Phys Chem A. 2018;122:3087–3095.
Huang, Y, Liu, L, Rong, CY, Lu, T, Ayers, PW, Liu, SB. SCI: A robust and reliable density‐based descriptor to determine multiple covalent bond orders. J Mol Model. 2018;24:213–220.
Liu, S, Zhao, DB, Rong, CY, Lu, T, Liu, SB. Using Pauli energy to appraise the quality of approximate semilocal non‐interacting kinetic energy density functionals. J Chem Phys. 2019;150:204106.
Rong, CY, Zhao, DB, Yu, D, Liu, SB. Quantification and origin of cooperativity: Insights from density functional reactivity theory. Phys Chem Chem Phys. 2018;20:17990–17998.
Zhou, T, Liu, S, Yu, D, Zhao, DB, Rong, CY, Liu, SB. On the negative cooperativity of argon clusters containing one lithium cation or fluorine anion. Chem Phys Lett. 2019;716:192–198.
Rong, CY, Zhao, DB, Zhou, T, Liu, S, Yu, D, Liu, SB. Homogeneous molecular systems are positively cooperative but charged molecular systems are negatively cooperative. J Phys Chem Lett. 2019;10:1716–1721.
Huang, Y, Rong, CY, Zhang, R, Liu, SB. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. J Mol Model. 2017;23:3–14.
Wu, J, Yu, D, Liu, S, et al. Is it possible to determine oxidation states for atoms in molecules using density‐based quantities? An information‐theoretic approach and conceptual density functional theory study. J Phys Chem A. 2019;123:6751–6760.
Liu, SB, Pedersen, LG. Estimation of molecular acidity via electrostatic potential at the nucleus and valence natural atomic orbitals. J Phys Chem A. 2009;113:3648–3655.
Liu, SB, Schauer, CK, Pedersen, LG. Molecular acidity: A quantitative conceptual density functional theory description. J Chem Phys. 2009;131:164107.
Huang, Y, Liu, L, Liu, W, Liu, S, Liu, SB. Modeling molecular acidity with electronic properties and Hammett constants for substituted benzoic acids. J Phys Chem A. 2011;115:14697–14707.
Burger, SK, Liu, SB, Ayers, PW. Practical calculation of molecular acidity with the aid of a reference molecule. J Phys Chem A. 2011;115:1293–1304.
Huang, Y, Liu, L, Liu, SB. Towards understanding proton affinity and gas‐phase basicity with density functional reactivity theory. Chem Phys Lett. 2012;527:73–78.
Zhao, DB, Rong, CY, Yin, D, Liu, SB. Molecular acidity of building blocks of biological systems: A density functional reactivity theory study. J Theor Comput Chem. 2013;12:1350034.
Cao, X, Rong, CY, Zhong, AG, Lu, T, Liu, SB. Molecular acidity: An accurate description with information‐theoretic approach in density functional reactivity theory. J Comput Chem. 2017;39:117–129.
Xiao, X, Cao, X, Zhao, DB, Rong, CY, Liu, SB. Quantification of molecular basicity for amines: A combined conceptual density functional theory and information‐theoretic approach study. Acta Phys‐Chim Sin. 2019. https://doi.org/10.3866/PKU.WHXB201906034.
Geerlings, P, De Proft, F, Langenaeker, W. Conceptual density functional theory. Chem Rev. 2003;103:1793–1847.
Yu, D, Rong, CY, Lu, T, Chattaraj, PK, De Proft, F, Liu, SB. Aromaticity and antiaromaticity of substituted fulvene derivatives: Perspectives from the information‐theoretic approach in density functional reactivity theory. Phys Chem Chem Phys. 2017;19:18635–18645.
Yu, D, Rong, CY, Lu, T, De Proft, F, Liu, SB. Aromaticity study of benzene‐fused fulvene derivatives using the information‐theoretic approach in density functional reactivity theory. Acta Phys‐Chim Sin. 2018;34:639–649.
Yu, D, Rong, CY, Lu, T, De Proft, F, Liu, SB. Baird`s rule in substituted fulvene derivatives: An information‐theoretic study on triplet‐state aromaticity and antiaromaticity. ACS Omega. 2018;3:18370–18379.
Yu, D, Stuyver, T, Rong, CY, et al. Global and local aromaticity of acenes from the information‐theoretic approach in density functional reactivity theory. Phys Chem Chem Phys. 2019;21:18195–18210.