Attwood, TK, Findlay, JB. Fingerprinting G‐protein‐coupled receptors. Protein Eng. 1994;7:195–203.
Foord, SM, Bonner, TI, Neubig, RR, et al. International Union of Pharmacology. XLVI. G protein‐coupled receptor list. Pharmacol Rev. 2005;57:279–288. https://doi.org/10.1124/pr.57.2.5.
Isberg, V, Mordalski, S, Munk, C, et al. GPCRdb: an information system for G protein‐coupled receptors. Nucleic Acids Res. 2017;45:2936. https://doi.org/10.1093/nar/gkw1218.
Munk, C, Isberg, V, Mordalski, S, et al. GPCRdb: the G protein‐coupled receptor database ‐ an introduction. Br J Pharmacol. 2016;173:2195–2207. https://doi.org/10.1111/bph.13509.
Conner, M, Hicks, MR, Dafforn, T, et al. Functional and biophysical analysis of the C‐terminus of the CGRP‐receptor; a family B GPCR. Biochemistry. 2008;47:8434–8444. https://doi.org/10.1021/bi8004126.
Katritch, V, Cherezov, V, Stevens, RC. Structure‐function of the G protein‐coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013;53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923.
Schiöth, HB, Fredriksson, R. The GRAFS classification system of G‐protein coupled receptors in comparative perspective. Gen Comp Endocrinol. 2005;142:94–101. https://doi.org/10.1016/j.ygcen.2004.12.018.
Latek, D, Modzelewska, A, Trzaskowski, B, Palczewski, K, Filipek, S. G protein‐coupled receptors — recent advances. Acta Biochim Pol. 2012;59:515–529.
Coddou, C, Stojilkovic, SS, Huidobro‐Toro, JP. Allosteric modulation of ATP‐gated P2X receptor channels. Rev Neurosci. 2011;22:335–354. https://doi.org/10.1515/RNS.2011.014.
Hausmann, R, Kless, A, Schmalzing, G. Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem. 2015;22:799–818.
Sievers, F, Higgins, DG. Clustal omega. Curr Protoc Bioinformatics. 2014;48:3.13.1–3.13.16. https://doi.org/10.1002/0471250953.bi0313s48.
Sievers, F, Higgins, DG. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol. 2014;1079:105–116. https://doi.org/10.1007/978-1-62703-646-7_6.
Sievers, F, Wilm, A, Dineen, D, et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. https://doi.org/10.1038/msb.2011.75.
Erb, L, Weisman, GA. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal. 2012;1:789–803. https://doi.org/10.1002/wmts.62.
von Kügelgen, I, Hoffmann, K. Pharmacology and structure of P2Y receptors. Neuropharmacology. 2016;104:50–61. https://doi.org/10.1016/j.neuropharm.2015.10.030.
Brunschweiger, A, Müller, CE. P2 receptors activated by uracil nucleotides—an update. Curr Med Chem. 2006;13:289–312.
Chambers, JK, Macdonald, LE, Sarau, HM, et al. A G protein‐coupled receptor for UDP‐glucose. J Biol Chem. 2000;275:10767–10771.
Xu, P, Feng, X, Luan, H, et al. Current knowledge on the nucleotide agonists for the P2Y2 receptor. Bioorg Med Chem. 2018;26:366–375. https://doi.org/10.1016/j.bmc.2017.11.043.
Rafehi, M, Müller, CE. Tools and drugs for uracil nucleotide‐activated P2Y receptors. Pharmacol Ther. 2018;190:24–80. https://doi.org/10.1016/j.pharmthera.2018.04.002.
Ciancetta, A, O`Connor, RD, Paoletta, S, Jacobson, KA. Demystifying P2Y1 receptor ligand recognition through docking and molecular dynamics analyses. J Chem Inf Model. 2017;57:3104–3123. https://doi.org/10.1021/acs.jcim.7b00528.
Ciancetta, A, Jacobson, KA. Breakthrough in GPCR crystallography and its impact on computer‐aided drug design. Methods Mol Biol. 2018;1705:45–72. https://doi.org/10.1007/978-1-4939-7465-8_3.
Jacobson, KA, Gao, Z‐G, Paoletta, S, et al. John Daly Lecture: structure‐guided drug design for adenosine and P2Y receptors. Comput Struct Biotechnol J. 2015;13:286–298. https://doi.org/10.1016/j.csbj.2014.10.004.
Jacobson, KA, Müller, CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016;104:31–49. https://doi.org/10.1016/j.neuropharm.2015.12.001.
Palczewski, K, Kumasaka, T, Hori, T, et al. Crystal structure of rhodopsin: a G protein‐coupled receptor. Science. 2000;289:739–745.
Rasmussen, SGF, Choi, H‐J, Rosenbaum, DM, et al. Crystal structure of the human beta2 adrenergic G‐protein‐coupled receptor. Nature. 2007;450:383–387. https://doi.org/10.1038/nature06325.
Jaakola, V‐P, Griffith, MT, Hanson, MA, et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science. 2008;322:1211–1217. https://doi.org/10.1126/science.1164772.
Zhang, J, Zhang, K, Gao, Z‐G, et al. Agonist‐bound structure of the human P2Y12 receptor. Nature. 2014;509:119–122. https://doi.org/10.1038/nature13288.
Zhang, D, Gao, Z‐G, Zhang, K, et al. Two disparate ligand‐binding sites in the human P2Y1 receptor. Nature. 2015;520:317–321. https://doi.org/10.1038/nature14287.
Zhang, K, Zhang, J, Gao, Z‐G, et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509:115–118. https://doi.org/10.1038/nature13083.
Jiang, Q, Guo, D, Lee, BX, et al. A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol Pharmacol. 1997;52:499–507.
Moro, S, Guo, D, Camaioni, E, Boyer, JL, Harden, TK, Jacobson, KA. Human P2Y1 receptor: molecular modeling and site‐directed mutagenesis as tools to identify agonist and antagonist recognition sites. J Med Chem. 1998;41:1456–1466. https://doi.org/10.1021/jm970684u.
Hoffmann, C, Moro, S, Nicholas, RA, Harden, TK, Jacobson, KA. The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J Biol Chem. 1999;274:14639–14647.
Costanzi, S, Mamedova, L, Gao, Z‐G, Jacobson, KA. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. J Med Chem. 2004;47:5393–5404. https://doi.org/10.1021/jm049914c.
Guo, D, von Kügelgen, I, Moro, S, Kim, Y‐C, Jacobson, KA. Evidence for the recognition of non‐nucleotide antagonists within the transmembrane domains of the human P2Y(1) receptor. Drug Dev Res. 2002;57:173–181. https://doi.org/10.1002/ddr.10145.
Ding, Z, Tuluc, F, Bandivadekar, KR, Zhang, L, Jin, J, Kunapuli, SP. Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq coupling. Am J Physiol Cell Physiol. 2005;288:C559–C567. https://doi.org/10.1152/ajpcell.00401.2004.
Lee, SY, Wolff, SC, Nicholas, RA, O`Grady, SM. P2Y receptors modulate ion channel function through interactions involving the C‐terminal domain. Mol Pharmacol. 2003;63:878–885.
Fam, SR, Gallagher, CJ, Kalia, LV, Salter, MW. Differential frequency dependence of P2Y1‐ and P2Y2‐ mediated Ca 2+ signaling in astrocytes. J Neurosci. 2003;23:4437–4444.
Qi, A‐D, Houston‐Cohen, D, Naruszewicz, I, Harden, TK, Nicholas, RA. Ser352 and Ser354 in the carboxyl terminus of the human P2Y(1) receptor are required for agonist‐promoted phosphorylation and internalization in MDCK cells. Br J Pharmacol. 2011;162:1304–1313. https://doi.org/10.1111/j.1476-5381.2010.01135.x.
Hoffmann, C, Soltysiak, K, West, PL, Jacobson, KA. Shift in purine/pyrimidine base recognition upon exchanging extracellular domains in P2Y 1/6 chimeric receptors. Biochem Pharmacol. 2004;68:2075–2086. https://doi.org/10.1016/j.bcp.2004.07.014.
Wildman, SS, Unwin, RJ, King, BF. Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br J Pharmacol. 2003;140:1177–1186. https://doi.org/10.1038/sj.bjp.0705544.
Erb, L, Garrad, R, Wang, Y, Quinn, T, Turner, JT, Weisman, GA. Site‐directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem. 1995;270:4185–4188.
Ibuka, S, Matsumoto, S, Fujii, S, Kikuchi, A. The P2Y2 receptor promotes Wnt3a‐ and EGF‐induced epithelial tubular formation by IEC6 cells by binding to integrins. J Cell Sci. 2015;128:2156–2168. https://doi.org/10.1242/jcs.169060.
Hillmann, P, Ko, G‐Y, Spinrath, A, et al. Key determinants of nucleotide‐activated G protein‐coupled P2Y(2) receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem. 2009;52:2762–2775. https://doi.org/10.1021/jm801442p.
Rafehi, M, Neumann, A, Baqi, Y, et al. Molecular recognition of agonists and antagonists by the nucleotide‐activated G protein‐coupled P2Y2 receptor. J Med Chem. 2017;60:8425–8440. https://doi.org/10.1021/acs.jmedchem.7b00854.
Kindon, N, Davis, A, Dougall, I, et al. From UTP to AR‐C118925, the discovery of a potent non nucleotide antagonist of the P2Y2 receptor. Bioorg Med Chem Lett. 2017;27:4849–4853. https://doi.org/10.1016/j.bmcl.2017.09.043.
Muoboghare, MO, Drummond, RM, Kennedy, C. Characterisation of P2Y2 receptors in human vascular endothelial cells using AR‐C118925XX, a competitive and selective P2Y2 antagonist. Br J Pharmacol. 2019;176:2894–2904. https://doi.org/10.1111/bph.14715.
Rafehi, M, Burbiel, JC, Attah, IY, Abdelrahman, A, Müller, CE. Synthesis, characterization, and in vitro evaluation of the selective P2Y2 receptor antagonist AR‐C118925. Purinergic Signal. 2017;13:89–103. https://doi.org/10.1007/s11302-016-9542-3.
Erb, L, Liu, J, Ockerhausen, J, et al. An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(o)‐mediated signal transduction. J Cell Biol. 2001;153:491–501.
Liao, Z, Seye, CI, Weisman, GA, Erb, L. The P2Y2 nucleotide receptor requires interaction with alpha v integrins to access and activate G12. J Cell Sci. 2007;120:1654–1662. https://doi.org/10.1242/jcs.03441.
Flores, RV, Hernández‐Pérez, MG, Aquino, E, Garrad, RC, Weisman, GA, Gonzalez, FA. Agonist‐induced phosphorylation and desensitization of the P2Y2 nucleotide receptor. Mol Cell Biochem. 2005;280:35–45. https://doi.org/10.1007/s11010-005-8050-5.
Herold, CL, Qi, A‐D, Harden, TK, Nicholas, RA. Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop. J Biol Chem. 2004;279:11456–11464. https://doi.org/10.1074/jbc.M301734200.
Brinson, AE, Harden, TK. Differential regulation of the uridine nucleotide‐activated P2Y4 and P2Y6 receptors. SER‐333 and SER‐334 in the carboxyl terminus are involved in agonist‐dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem. 2001;276:11939–11948. https://doi.org/10.1074/jbc.M009909200.
DuBose, DR, Wolff, SC, Qi, AD, Naruszewicz, I, Nicholas, RA. Apical targeting of the P2Y(4) receptor is directed by hydrophobic and basic residues in the cytoplasmic tail. Am J Physiol Cell Physiol. 2013;304(3):C228–C239. https://doi.org/10.1152/ajpcell.00251.2012.
Wolff, SC, Qi, A‐D, Harden, TK, Nicholas, RA. Charged residues in the C‐terminus of the P2Y1 receptor constitute a basolateral‐sorting signal. J Cell Sci. 2010;123:2512–2520. https://doi.org/10.1242/jcs.060723.
Brüser, A, Zimmermann, A, Crews, BC, et al. Prostaglandin E2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y6. Sci Rep. 2017;7:2380. https://doi.org/10.1038/s41598-017-02414-8.
Zylberg, J, Ecke, D, Fischer, B, Reiser, G. Structure and ligand‐binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis. Biochem J. 2007;405:277–286. https://doi.org/10.1042/BJ20061728.
Ecke, D, Fischer, B, Reiser, G. Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br J Pharmacol. 2008;155:1250–1255. https://doi.org/10.1038/bjp.2008.352.
Ecke, D, Hanck, T, Tulapurkar, ME, et al. Hetero‐oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J. 2008;409:107–116. https://doi.org/10.1042/BJ20070671.
Haas, M, Shaaban, A, Reiser, G. Alanine‐(87)‐threonine polymorphism impairs signaling and internalization of the human P2Y11 receptor, when co‐expressed with the P2Y1 receptor. J Neurochem. 2014;129:602–613. https://doi.org/10.1111/jnc.12666.
Amisten, S, Melander, O, Wihlborg, A‐K, Berglund, G, Erlinge, D. Increased risk of acute myocardial infarction and elevated levels of C‐reactive protein in carriers of the Thr‐87 variant of the ATP receptor P2Y11. Eur Heart J. 2007;28:13–18. https://doi.org/10.1093/eurheartj/ehl410.
Ballesteros, JA, Weinstein, H. Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains. Biophys J. 1992;62:107–109. https://doi.org/10.1016/S0006-3495(92)81794-0.
Dreisig, K, Kornum, BR. A critical look at the function of the P2Y11 receptor. Purinergic Signal. 2016;12:427–437. https://doi.org/10.1007/s11302-016-9514-7.
Chao, TH, Ember, JA, Wang, M, Bayon, Y, Hugli, TE, Ye, RD. Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. J Biol Chem. 1999;274:9721–9728.
Brunskole, I, Strasser, A, Seifert, R, Buschauer, A. Role of the second and third extracellular loops of the histamine H(4) receptor in receptor activation. Naunyn Schmiedebergs Arch Pharmacol. 2011;384:301–317. https://doi.org/10.1007/s00210-011-0673-3.
Wifling, D, Bernhardt, G, Dove, S, Buschauer, A. The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity. PLoS One. 2015;10:e0117185. https://doi.org/10.1371/journal.pone.0117185.
Zhao, MM, Hwa, J, Perez, DM. Identification of critical extracellular loop residues involved in alpha 1‐adrenergic receptor subtype‐selective antagonist binding. Mol Pharmacol. 1996;50:1118–1126.
Ott, TR, Troskie, BE, Roeske, RW, Illing, N, Flanagan, CA, Millar, RP. Two mutations in extracellular loop 2 of the human GnRH receptor convert an antagonist to an agonist. Mol Endocrinol. 2002;16:1079–1088. https://doi.org/10.1210/mend.16.5.0824.
Banères, J‐L, Mesnier, D, Martin, A, Joubert, L, Dumuis, A, Bockaert, J. Molecular characterization of a purified 5‐HT4 receptor: a structural basis for drug efficacy. J Biol Chem. 2005;280:20253–20260. https://doi.org/10.1074/jbc.M412009200.
Wheatley, M, Wootten, D, Conner, MT, et al. Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol. 2012;165:1688–1703. https://doi.org/10.1111/j.1476-5381.2011.01629.x.
Shiraki, K, Hirano, A, Kita, Y, Koyama, AH, Arakawa, T. Potential application of arginine in interaction analysis. Drug Discov Ther. 2010;4:326–333.
Kim, J, Jiang, Q, Glashofer, M, Yehle, S, Wess, J, Jacobson, KA. Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. Mol Pharmacol. 1996;49:683–691.
Bertalovitz, AC, Ahn, KH, Kendall, DA. Ligand binding sensitivity of the extracellular loop two of the cannabinoid receptor 1. Drug Dev Res. 2010;71:404–411. https://doi.org/10.1002/ddr.20388.
Scarselli, M, Li, B, Kim, S‐K, Wess, J. Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J Biol Chem. 2007;282:7385–7396. https://doi.org/10.1074/jbc.M610394200.
Kmiecik, S, Jamroz, M, Kolinski, M. Structure prediction of the second extracellular loop in G‐protein‐coupled receptors. Biophys J. 2014;106:2408–2416. https://doi.org/10.1016/j.bpj.2014.04.022.
Yuan, S, Chan, HCS, Vogel, H, Filipek, S, Stevens, RC, Palczewski, K. The molecular mechanism of P2Y1 receptor activation. Angew Chem Int Ed Engl. 2016;55:10331–10335. https://doi.org/10.1002/anie.201605147.
Chun, E, Thompson, AA, Liu, W, et al. Fusion partner toolchest for the stabilization and crystallization of G protein‐coupled receptors. Structure. 2012;20:967–976. https://doi.org/10.1016/j.str.2012.04.010.
Topiol, S. X‐ray structural information of GPCRs in drug design: what are the limitations and where do we go? Expert Opin Drug Discov. 2013;8:607–620. https://doi.org/10.1517/17460441.2013.783815.
Nogales, E, Scheres, SHW. Cryo‐EM: a unique tool for the visualization of macromolecular complexity. Mol Cell. 2015;58:677–689. https://doi.org/10.1016/j.molcel.2015.02.019.
García‐Nafría, J, Lee, Y, Bai, X, Carpenter, B, Tate, CG. Cryo‐EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. Elife. 2018;7. https://doi.org/10.7554/eLife.35946.
Zhang, Y, Sun, B, Feng, D, et al. Cryo‐EM structure of the activated GLP‐1 receptor in complex with a G protein. Nature. 2017;546:248–253. https://doi.org/10.1038/nature22394.
Chu, R, Takei, J, Knowlton, JR, et al. Redesign of a four‐helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X‐ray crystallography. J Mol Biol. 2002;323:253–262.
Kim, HS, Ohno, M, Xu, B, et al. 2‐Substitution of adenine nucleotide analogues containing a bicyclo3.1.0hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem. 2003;46:4974–4987. https://doi.org/10.1021/jm030127.
Hechler, B, Nonne, C, Roh, EJ, et al. MRS2500 2‐iodo‐N6‐methyl‐(N)‐methanocarba‐2′‐deoxyadenosine‐3′,5′‐bisphosphate, a potent, selective, and stable antagonist of the platelet P2Y1 receptor with strong antithrombotic activity in mice. J Pharmacol Exp Ther. 2006;316:556–563. https://doi.org/10.1124/jpet.105.094037.
Chao, H, Turdi, H, Herpin, TF, et al. Discovery of 2‐(phenoxypyridine)‐3‐phenylureas as small molecule P2Y1 antagonists. J Med Chem. 2013;56:1704–1714. https://doi.org/10.1021/jm301708u.
Qiao, JX, Wang, TC, Ruel, R, et al. Conformationally constrained ortho‐anilino diaryl ureas: discovery of 1‐(2‐[1′‐neopentylspiroindoline‐3,4′‐piperidine‐1‐yl]phenyl)‐3‐(4‐[trifluoromethoxy]phenyl)urea, a potent, selective, and bioavailable P2Y1 antagonist. J Med Chem. 2013;56:9275–9295. https://doi.org/10.1021/jm4013906.
Flock, T, Ravarani, CNJ, Sun, D, et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature. 2015;524:173–179. https://doi.org/10.1038/nature14663.
Trzaskowski, B, Latek, D, Yuan, S, Ghoshdastider, U, Debinski, A, Filipek, S. Action of molecular switches in GPCRs—theoretical and experimental studies. Curr Med Chem. 2012;19:1090–1109.
Rafehi, M, Malik, EM, Neumann, A, et al. Development of potent and selective antagonists for the UTP‐activated P2Y4 receptor. J Med Chem. 2017;60:3020–3038. https://doi.org/10.1021/acs.jmedchem.7b00030.
Jacobson, KA, Jayasekara, MPS, Costanzi, S. Molecular structure of P2Y receptors: mutagenesis, modeling, and chemical probes. Wiley Interdiscip Rev Membr Transp Signal. 2012;1:815–827. https://doi.org/10.1002/wmts.68.
Ivanov, AA, Ko, H, Cosyn, L, et al. Molecular modeling of the human P2Y2 receptor and design of a selective agonist, 2′‐amino‐2′‐deoxy‐2‐thiouridine 5′‐triphosphate. J Med Chem. 2007;50:1166–1176. https://doi.org/10.1021/jm060903o.
Costanzi, S, Tikhonova, IG, Ohno, M, et al. P2Y1 antagonists: combining receptor‐based modeling and QSAR for a quantitative prediction of the biological activity based on consensus scoring. J Med Chem. 2007;50:3229–3241. https://doi.org/10.1021/jm0700971.
Deflorian, F, Jacobson, KA. Comparison of three GPCR structural templates for modeling of the P2Y12 nucleotide receptor. J Comput Aided Mol Des. 2011;25:329–338. https://doi.org/10.1007/s10822-011-9423-3.
Costanzi, S, Joshi, BV, Maddileti, S, et al. Human P2Y(6) receptor: molecular modeling leads to the rational design of a novel agonist based on a unique conformational preference. J Med Chem. 2005;48:8108–8111. https://doi.org/10.1021/jm050911p.
Aitken, H, Poyser, NL, Hollingsworth, M. The effects of P2Y receptor agonists and adenosine on prostaglandin production by the guinea‐pig uterus. Br J Pharmacol. 2001;132:709–721. https://doi.org/10.1038/sj.bjp.0703848.
Través, PG, Pimentel‐Santillana, M, Carrasquero, LMG, et al. Selective impairment of P2Y signaling by prostaglandin E2 in macrophages: implications for Ca2+−dependent responses. J Immunol. 2013;190:4226–4235. https://doi.org/10.4049/jimmunol.1203029.
Ouzounoglou, E, Kalamatianos, D, Emmanouilidou, E, et al. In silico modeling of the effects of alpha‐synuclein oligomerization on dopaminergic neuronal homeostasis. BMC Syst Biol. 2014;8:54. https://doi.org/10.1186/1752-0509-8-54.
Kroeger, KM, Pfleger, KDG, Eidne, KA. G‐protein coupled receptor oligomerization in neuroendocrine pathways. Front Neuroendocrinol. 2003;24:254–278.
Gahbauer, S, Böckmann, RA. Membrane‐mediated oligomerization of G protein coupled receptors and its implications for GPCR function. Front Physiol. 2016;7:494. https://doi.org/10.3389/fphys.2016.00494.
Gabizon, R, Friedler, A. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front Chem. 2014;2:9. https://doi.org/10.3389/fchem.2014.00009.
Ferré, S, Casadó, V, Devi, LA, et al. G protein‐coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev. 2014;66:413–434. https://doi.org/10.1124/pr.113.008052.
Bastos‐Aristizabal, S, Kozlov, G, Gehring, K. Structural insight into the dimerization of human protein disulfide isomerase. Protein Sci. 2014;23:618–626. https://doi.org/10.1002/pro.2444.
Assimon, VA, Gillies, AT, Rauch, JN, Gestwicki, JE. Hsp70 protein complexes as drug targets. Curr Pharm Des. 2013;19:404–417. https://doi.org/10.2174/138161213804143699.
Goncearenco, A, Li, M, Simonetti, FL, Shoemaker, BA, Panchenko, AR. Exploring protein‐protein interactions as drug targets for anti‐cancer therapy with in silico workflows. Methods Mol Biol. 1647;2017:221–236. https://doi.org/10.1007/978-1-4939-7201-2_15.
Villoutreix, BO, Kuenemann, MA, Poyet, J‐L, et al. Drug‐like protein‐protein interaction modulators: challenges and opportunities for drug discovery and chemical biology. Mol Inform. 2014;33:414–437. https://doi.org/10.1002/minf.201400040.
Feng, Y, Wang, Q, Wang, T. Drug target protein‐protein interaction networks: a systematic perspective. Biomed Res Int. 2017;2017:1–13. https://doi.org/10.1155/2017/1289259.
Kaczor, AA, Rutkowska, E, Bartuzi, D, Targowska‐Duda, KM, Matosiuk, D, Selent, J. Computational methods for studying G protein‐coupled receptors (GPCRs). Methods Cell Biol. 2016;132:359–399. https://doi.org/10.1016/bs.mcb.2015.11.002.
Taddese, B, Simpson, LM, Wall, ID, et al. G‐protein‐coupled receptor dynamics: dimerization and activation models compared with experiment. Biochem Soc Trans. 2012;40:394–399. https://doi.org/10.1042/BST20110755.
Zhang, X, Lu, F, Chen, Y‐K, et al. Discovery of potential orthosteric and allosteric antagonists of P2Y1R from Chinese herbs by molecular simulation methods. Evid Based Complement Alternat Med. 2016;2016:1–12. https://doi.org/10.1155/2016/4320201.
Yi, F, Le Sun, XL‐J, Peng, Y, Liu, H‐B, He, C‐N, Xiao, P‐G. In silico approach for anti‐thrombosis drug discovery: P2Y1R structure‐based TCMs screening. Front Pharmacol. 2016;7:531. https://doi.org/10.3389/fphar.2016.00531.
Jacobson, KA. Structure‐based approaches to ligands for G‐protein‐coupled adenosine and P2Y receptors, from small molecules to nanoconjugates. J Med Chem. 2013;56:3749–3767. https://doi.org/10.1021/jm400422s.
Hiramoto, T, Nonaka, Y, Inoue, K, et al. Identification of endogenous surrogate ligands for human P2Y receptors through an in silico search. J Pharmacol Sci. 2004;95:81–93.
Subramaniam, S, Mehrotra, M, Gupta, D. Virtual high throughput screening (vHTS)—a perspective. Bioinformation. 2008;3:14–17.
Leelananda, SP, Lindert, S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694–2718. https://doi.org/10.3762/bjoc.12.267.
Srivastava, P, Tiwari, A. Critical role of computer simulations in drug discovery and development. Curr Top Med Chem. 2017;17:2422–2432. https://doi.org/10.2174/1568026617666170403113541.
Shrestha, SS, Parmar, M, Kennedy, C, Bushell, TJ. Two‐pore potassium ion channels are inhibited by both G(q/11)‐ and G(i)‐coupled P2Y receptors. Mol Cell Neurosci. 2010;43:363–369. https://doi.org/10.1016/j.mcn.2010.01.003.
Yoshioka, K, Saitoh, O, Nakata, H. Heteromeric association creates a P2Y‐like adenosine receptor. Proc Natl Acad Sci USA. 2001;98:7617–7622. https://doi.org/10.1073/pnas.121587098.
Yoshioka, K, Saitoh, O, Nakata, H. Agonist‐promoted heteromeric oligomerization between adenosine A(1) and P2Y(1) receptors in living cells. FEBS Lett. 2002;523:147–151.
Suzuki, T, Namba, K, Tsuga, H, Nakata, H. Regulation of pharmacology by hetero‐oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochem Biophys Res Commun. 2006;351:559–565. https://doi.org/10.1016/j.bbrc.2006.10.075.
D`Ambrosi, N, Iafrate, M, Saba, E, Rosa, P, Volonté, C. Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochim Biophys Acta. 2007;1768:1592–1599. https://doi.org/10.1016/j.bbamem.2007.03.020.