Bigman, LS, Levy, Y. Proteins: Molecules defined by their trade‐offs. Curr Opin Struct Biol. 2019;60:50–56. https://doi.org/10.1016/j.sbi.2019.11.005.
Ghadie, MA, Coulombe‐Huntington, J, Xia, Y. Interactome evolution: Insights from genome‐wide analyses of protein–protein interactions. Curr Opin Struct Biol. 2018;50:42–48. https://doi.org/10.1016/j.sbi.2017.10.012.
Kolodny, R, Pereyaslavets, L, Samson, AO, Levitt, M. On the universe of protein folds. Annu Rev Biophys. 2013;42:559–582. https://doi.org/10.1146/annurev-biophys-083012-130432.
Andreani, J, Guerois, R. Evolution of protein interactions: From interactomes to interfaces. Arch Biochem Biophys. 2014;554:65–75. https://doi.org/10.1016/j.abb.2014.05.010.
Starr, TN, Thornton, JW. Epistasis in protein evolution. Protein Sci. 2016;25(7):1204–1218. https://doi.org/10.1002/pro.2897.
Johansson, KE, Lindorff‐Larsen, K. Structural heterogeneity and dynamics in protein evolution and design. Curr Opin Struct Biol. 2018;48:157–163. https://doi.org/10.1016/j.sbi.2018.01.010.
Siddiq, MA, Hochberg, GK, Thornton, JW. Evolution of protein specificity: Insights from ancestral protein reconstruction. Curr Opin Struct Biol. 2017;47:113–122. https://doi.org/10.1016/j.sbi.2017.07.003.
Mukherjee, S, Zhang, Y. MM‐align: A quick algorithm for aligning multiple‐chain protein complex structures using iterative dynamic programming. Nucleic Acids Res. 2009;37(11):e83. https://doi.org/10.1093/nar/gkp318.
Gao, M, Skolnick, J. iAlign: A method for the structural comparison of protein–protein interfaces. Bioinformatics. 2010;26(18):2259–2265. https://doi.org/10.1093/bioinformatics/btq404.
Rodrigues, JP, Trellet, M, Schmitz, C, et al. Clustering biomolecular complexes by residue contacts similarity. Proteins. 2012;80(7):1810–1817. https://doi.org/10.1002/prot.24078.
Sippl, MJ, Wiederstein, M. Detection of spatial correlations in protein structures and molecular complexes. Structure. 2012;20(4):718–728. https://doi.org/10.1016/j.str.2012.01.024.
Dey, S, Ritchie, DW, Levy, ED. PDB‐wide identification of biological assemblies from conserved quaternary structure geometry. Nat Methods. 2018;15(1):67–72. https://doi.org/10.1038/nmeth.4510.
Ritchie, DW, Ghoorah, AW, Mavridis, L, Venkatraman, V. Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity. Bioinformatics. 2012;28(24):3274–3281. https://doi.org/10.1093/bioinformatics/bts618.
Madej, T, Lanczycki, CJ, Zhang, D, et al. MMDB and VAST+: Tracking structural similarities between macromolecular complexes. Nucleic Acids Res. 2014;42(Database issue):D297–D303. https://doi.org/10.1093/nar/gkt1208.
Miryala, SK, Anbarasu, A, Ramaiah, S. Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools. Gene. 2018;642:84–94. https://doi.org/10.1016/j.gene.2017.11.028.
Gromiha, MM, Yugandhar, K, Jemimah, S. Protein–protein interactions: Scoring schemes and binding affinity. Curr Opin Struct Biol. 2017;44:31–38. https://doi.org/10.1016/j.sbi.2016.10.016.
Barradas‐Bautista, D, Rosell, M, Pallara, C, Fernandez‐Recio, J. Structural prediction of protein–protein interactions by docking: Application to biomedical problems. Adv Protein Chem Struct Biol. 2018;110:203–249. https://doi.org/10.1016/bs.apcsb.2017.06.003.
Baspinar, A, Cukuroglu, E, Nussinov, R, Keskin, O, Gursoy, A. PRISM: A web server and repository for prediction of protein–protein interactions and modeling their 3D complexes. Nucleic Acids Res. 2014;42(Web Server issue):W285–W289. https://doi.org/10.1093/nar/gku397.
Lo, YS, Chen, YC, Yang, JM. 3D‐interologs: An evolution database of physical protein–protein interactions across multiple genomes. BMC Genomics. 2010;11(Suppl 3):S7. https://doi.org/10.1186/1471-2164-11-S3-S7.
Shoemaker, BA, Zhang, D, Tyagi, M, et al. IBIS (inferred biomolecular interaction server) reports, predicts and integrates multiple types of conserved interactions for proteins. Nucleic Acids Res. 2012;40(Database issue):D834–D840. https://doi.org/10.1093/nar/gkr997.
Dapkunas, J, Timinskas, A, Olechnovic, K, Margelevicius, M, Diciunas, R, Venclovas, C. The PPI3D web server for searching, analyzing and modeling protein–protein interactions in the context of 3D structures. Bioinformatics. 2017;33(6):935–937. https://doi.org/10.1093/bioinformatics/btw756.
Xu, Q, Dunbrack, RL. The protein common interface database (ProtCID)—A comprehensive database of interactions of homologous proteins in multiple crystal forms. Nucleic Acids Res. 2011;39(Database issue):D761–D770. https://doi.org/10.1093/nar/gkq1059.
Faure, G, Andreani, J, Guerois, R. InterEvol database: Exploring the structure and evolution of protein complex interfaces. Nucleic Acids Res. 2012;40(Database issue):D847–D856. https://doi.org/10.1093/nar/gkr845.
Teichmann, SA. The constraints protein–protein interactions place on sequence divergence. J Mol Biol. 2002;324(3):399–407. https://doi.org/10.1016/s0022-2836(02)01144-0.
Mintseris, J, Weng, Z. Structure, function, and evolution of transient and obligate protein–protein interactions. Proc Natl Acad Sci U S A. 2005;102(31):10930–10935. https://doi.org/10.1073/pnas.0502667102.
Kim, I, Lee, H, Han, SK, Kim, S. Linear motif‐mediated interactions have contributed to the evolution of modularity in complex protein interaction networks. PLoS Comput Biol. 2014;10(10):e1003881. https://doi.org/10.1371/journal.pcbi.1003881.
Kastritis, PL, Bonvin, AM. On the binding affinity of macromolecular interactions: Daring to ask why proteins interact. J R Soc Interface. 2013;10(79):20120835. https://doi.org/10.1098/rsif.2012.0835.
Chen, J, Sawyer, N, Regan, L. Protein–protein interactions: General trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci. 2013;22(4):510–515. https://doi.org/10.1002/pro.2230.
Levy, ED. A simple definition of structural regions in proteins and its use in analyzing interface evolution. J Mol Biol. 2010;403(4):660–670. https://doi.org/10.1016/j.jmb.2010.09.028.
Kastritis, PL, Rodrigues, JP, Folkers, GE, Boelens, R, Bonvin, AM. Proteins feel more than they see: Fine‐tuning of binding affinity by properties of the non‐interacting surface. J Mol Biol. 2014;426(14):2632–2652. https://doi.org/10.1016/j.jmb.2014.04.017.
Hochberg, GKA, Shepherd, DA, Marklund, EG, et al. Structural principles that enable oligomeric small heat‐shock protein paralogs to evolve distinct functions. Science. 2018;359(6378):930–935. https://doi.org/10.1126/science.aam7229.
Walker, DR, Bond, JP, Tarone, RE, et al. Evolutionary conservation and somatic mutation hotspot maps of p53: Correlation with p53 protein structural and functional features. Oncogene. 1999;18(1):211–218. https://doi.org/10.1038/sj.onc.1202298.
Sahni, N, Yi, S, Taipale, M, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 2015;161(3):647–660. https://doi.org/10.1016/j.cell.2015.04.013.
Fragoza, R, Das, J, Wierbowski, SD, et al. Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. Nat Commun. 2019;10(1):4141. https://doi.org/10.1038/s41467-019-11959-3.
Teppa, E, Zea, DJ, Marino‐Buslje, C. Protein–protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces. Protein Sci. 2017;26(12):2438–2444. https://doi.org/10.1002/pro.3318.
Andreani, J, Faure, G, Guerois, R. Versatility and invariance in the evolution of homologous heteromeric interfaces. PLoS Comput Biol. 2012;8(8):e1002677. https://doi.org/10.1371/journal.pcbi.1002677.
Gao, M, Skolnick, J. Structural space of protein–protein interfaces is degenerate, close to complete, and highly connected. Proc Natl Acad Sci U S A. 2010;107(52):22517–22522. https://doi.org/10.1073/pnas.1012820107.
Hashimoto, K, Panchenko, AR. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc Natl Acad Sci U S A. 2010;107(47):20352–20357. https://doi.org/10.1073/pnas.1012999107.
Plach, MG, Semmelmann, F, Busch, F, et al. Evolutionary diversification of protein–protein interactions by interface add‐ons. Proc Natl Acad Sci U S A. 2017;114(40):E8333–E8342. https://doi.org/10.1073/pnas.1707335114.
Yang, X, Coulombe‐Huntington, J, Kang, S, et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell. 2016;164(4):805–817. https://doi.org/10.1016/j.cell.2016.01.029.
Fowler, DM, Fields, S. Deep mutational scanning: A new style of protein science. Nat Methods. 2014;11(8):801–807. https://doi.org/10.1038/nmeth.3027.
McLaughlin, RN Jr, Poelwijk, FJ, Raman, A, Gosal, WS, Ranganathan, R. The spatial architecture of protein function and adaptation. Nature. 2012;491(7422):138–142. https://doi.org/10.1038/nature11500.
Raman, AS, White, KI, Ranganathan, R. Origins of allostery and evolvability in proteins: A case study. Cell. 2016;166(2):468–480. https://doi.org/10.1016/j.cell.2016.05.047.
Aakre, CD, Herrou, J, Phung, TN, Perchuk, BS, Crosson, S, Laub, MT. Evolving new protein–protein interaction specificity through promiscuous intermediates. Cell. 2015;163(3):594–606. https://doi.org/10.1016/j.cell.2015.09.055.
Podgornaia, AI, Laub, MT. Protein evolution. Pervasive degeneracy and epistasis in a protein–protein interface. Science. 2015;347(6222):673–677. https://doi.org/10.1126/science.1257360.
McClune, CJ, Alvarez‐Buylla, A, Voigt, CA, Laub, MT. Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space. Nature. 2019;574(7780):702–706. https://doi.org/10.1038/s41586-019-1639-8.
Marsh, JA, Teichmann, SA. Structure, dynamics, assembly, and evolution of protein complexes. Annu Rev Biochem. 2015;84:551–575. https://doi.org/10.1146/annurev-biochem-060614-034142.
Ahnert, SE, Marsh, JA, Hernández, H, Robinson, CV, Teichmann, SA. Principles of assembly reveal a periodic table of protein complexes. Science. 2015;350(6266):aaa2245. https://doi.org/10.1126/science.aaa2245.
Garcia‐Seisdedos, H, Empereur‐Mot, C, Elad, N, Levy, ED. Proteins evolve on the edge of supramolecular self‐assembly. Nature. 2017;548(7666):244–247. https://doi.org/10.1038/nature23320.
Duroc, Y, Kumar, R, Ranjha, L, et al. Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. Elife. 2017;6:e21900. https://doi.org/10.7554/eLife.21900.
Li, Y, Han, J, Zhang, Y, et al. Structural basis for activity regulation of MLL family methyltransferases. Nature. 2016;530(7591):447–452. https://doi.org/10.1038/nature16952.
Xue, H, Yao, T, Cao, M, et al. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature. 2019;573(7774):445–449. https://doi.org/10.1038/s41586-019-1528-1.
Mayrose, I, Graur, D, Ben‐Tal, N, Pupko, T. Comparison of site‐specific rate‐inference methods for protein sequences: Empirical Bayesian methods are superior. Mol Biol Evol. 2004;21(9):1781–1791. https://doi.org/10.1093/molbev/msh194.
Pupko, T, Bell, RE, Mayrose, I, Glaser, F, Ben‐Tal, N. Rate4Site: An algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics. 2002;18(Suppl 1):S71–S77. https://doi.org/10.1093/bioinformatics/18.suppl_1.s71.
Ashkenazy, H, Abadi, S, Martz, E, et al. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44(W1):W344–W350. https://doi.org/10.1093/nar/gkw408.
Porollo, A, Meller, J. Prediction‐based fingerprints of protein–protein interactions. Proteins. 2007;66(3):630–645. https://doi.org/10.1002/prot.21248.
Hou, QZ, De Geest, PFG, Vranken, WF, Heringa, J, Feenstra, KA. Seeing the trees through the forest: Sequence‐based homo‐ and heteromeric protein–protein interaction sites prediction using random forest. Bioinformatics. 2017;33(10):1479–1487. https://doi.org/10.1093/bioinformatics/btx005.
Li, MH, Lin, L, Wang, XL, Liu, T. Protein–protein interaction site prediction based on conditional random fields. Bioinformatics. 2007;23(5):597–604. https://doi.org/10.1093/bioinformatics/btl660.
Aumentado‐Armstrong, TT, Istrate, B, Murgita, RA. Algorithmic approaches to protein–protein interaction site prediction. Algorithms Mol Biol. 2015;10:7. https://doi.org/10.1186/s13015-015-0033-9.
Maheshwari, S, Brylinski, M. Predicting protein interface residues using easily accessible on‐line resources. Brief Bioinform. 2015;16(6):1025–1034. https://doi.org/10.1093/bib/bbv009.
Esmaielbeiki, R, Krawczyk, K, Knapp, B, Nebel, JC, Deane, CM. Progress and challenges in predicting protein interfaces. Brief Bioinform. 2016;17(1):117–131. https://doi.org/10.1093/bib/bbv027.
Savojardo, C, Fariselli, P, Martelli, PL, Casadio, R. ISPRED4: Interaction sites PREDiction in protein structures with a refining grammar model. Bioinformatics. 2017;33(11):1656–1663. https://doi.org/10.1093/bioinformatics/btx044.
Meyer, MJ, Beltran, JF, Liang, S, et al. Interactome INSIDER: A structural interactome browser for genomic studies. Nat Methods. 2018;15(2):107–114. https://doi.org/10.1038/nmeth.4540.
Pei, J, Grishin, NV. AL2CO: Calculation of positional conservation in a protein sequence alignment. Bioinformatics. 2001;17(8):700–712. https://doi.org/10.1093/bioinformatics/17.8.700.
Sanchez‐Garcia, R, Sorzano, COS, Carazo, JM, Segura, J. BIPSPI: A method for the prediction of partner‐specific protein–protein interfaces. Bioinformatics. 2019;35(3):470–477. https://doi.org/10.1093/bioinformatics/bty647.
Wang, X, Yu, B, Ma, A, Chen, C, Liu, B, Ma, Q. Protein–protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique. Bioinformatics. 2019;35(14):2395–2402. https://doi.org/10.1093/bioinformatics/bty995.
Northey, T, Barešic, A, Martin, ACR. IntPred: A structure‐based predictor of protein–protein interaction sites. Bioinformatics. 2017;34(2):223–229. https://doi.org/10.1093/bioinformatics/btx585.
Dequeker, C, Laine, E, Carbone, A. Decrypting protein surfaces by combining evolution, geometry, and molecular docking. Proteins. 2019;87(11):952–965. https://doi.org/10.1002/prot.25757.
Jones, DT, Buchan, DW, Cozzetto, D, Pontil, M. PSICOV: Precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics. 2012;28(2):184–190. https://doi.org/10.1093/bioinformatics/btr638.
Weigt, M, White, RA, Szurmant, H, Hoch, JA, Hwa, T. Identification of direct residue contacts in protein–protein interaction by message passing. Proc Natl Acad Sci U S A. 2009;106(1):67–72. https://doi.org/10.1073/pnas.0805923106.
Morcos, F, Pagnani, A, Lunt, B, et al. Direct‐coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A. 2011;108(49):E1293–E1301. https://doi.org/10.1073/pnas.1111471108.
Marks, DS, Colwell, LJ, Sheridan, R, et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One. 2011;6(12):e28766. https://doi.org/10.1371/journal.pone.0028766.
de Juan, D, Pazos, F, Valencia, A. Emerging methods in protein co‐evolution. Nat Rev Genet. 2013;14(4):249–261. https://doi.org/10.1038/nrg3414.
Cocco, S, Feinauer, C, Figliuzzi, M, Monasson, R, Weigt, M. Inverse statistical physics of protein sequences: A key issues review. Rep Prog Phys. 2018;81(3):032601. https://doi.org/10.1088/1361-6633/aa9965.
Socolich, M, Lockless, SW, Russ, WP, Lee, H, Gardner, KH, Ranganathan, R. Evolutionary information for specifying a protein fold. Nature. 2005;437(7058):512–518. https://doi.org/10.1038/nature03991.
Stein, RR, Marks, DS, Sander, C. Inferring pairwise interactions from biological data using maximum‐entropy probability models. PLoS Comput Biol. 2015;11(7):e1004182. https://doi.org/10.1371/journal.pcbi.1004182.
Simkovic, F, Ovchinnikov, S, Baker, D, Rigden, DJ. Applications of contact predictions to structural biology. IUCrJ. 2017;4(Pt 3):291–300. https://doi.org/10.1107/S2052252517005115.
Kryshtafovych, A, Schwede, T, Topf, M, Fidelis, K, Moult, J. Critical assessment of methods of protein structure prediction (CASP)‐round XIII. Proteins. 2019;87(12):1011–1020. https://doi.org/10.1002/prot.25823.
Janin, J, Henrick, K, Moult, J, et al. CAPRI: A critical assessment of PRedicted interactions. Proteins. 2003;52(1):2–9. https://doi.org/10.1002/prot.10381.
Lensink, MF, Mendez, R, Wodak, SJ. Docking and scoring protein complexes: CAPRI 3rd edition. Proteins. 2007;69(4):704–718. https://doi.org/10.1002/prot.21804.
Lensink, MF, Nadzirin, N, Velankar, S, Wodak, SJ. Modeling protein–protein, protein–peptide and protein–oligosaccharide complexes: CAPRI 7(th) edition. Proteins. 2020. https://doi.org/10.1002/prot.25870.
Hamer, R, Luo, Q, Armitage, JP, Reinert, G, Deane, CM. I‐patch: Interprotein contact prediction using local network information. Proteins. 2010;78(13):2781–2797. https://doi.org/10.1002/prot.22792.
Minhas, F, Geiss, BJ, Ben‐Hur, A. PAIRpred: Partner‐specific prediction of interacting residues from sequence and structure. Proteins. 2014;82(7):1142–1155. https://doi.org/10.1002/prot.24479.
Hwang, H, Petrey, D, Honig, B. A hybrid method for protein–protein interface prediction. Protein Sci. 2016;25(1):159–165. https://doi.org/10.1002/pro.2744.
Zhang, QC, Petrey, D, Norel, R, Honig, BH. Protein interface conservation across structure space. Proc Natl Acad Sci U S A. 2010;107(24):10896–10901. https://doi.org/10.1073/pnas.1005894107.
Xue, LC, Dobbs, D, Honavar, V. HomPPI: A class of sequence homology based protein–protein interface prediction methods. BMC Bioinformatics. 2011;12:244. https://doi.org/10.1186/1471-2105-12-244.
Xue, LC, Dobbs, D, Bonvin, AM, Honavar, V. Computational prediction of protein interfaces: A review of data driven methods. FEBS Lett. 2015;589(23):3516–3526. https://doi.org/10.1016/j.febslet.2015.10.003.
de Vries, SJ, Bonvin, AM. CPORT: A consensus interface predictor and its performance in prediction‐driven docking with HADDOCK. PLoS One. 2011;6(3):e17695. https://doi.org/10.1371/journal.pone.0017695.
Porter, KA, Desta, I, Kozakov, D, Vajda, S. What method to use for protein–protein docking? Curr Opin Struct Biol. 2019;55:1–7. https://doi.org/10.1016/j.sbi.2018.12.010.
Soni, N, Madhusudhan, MS. Computational modeling of protein assemblies. Curr Opin Struct Biol. 2017;44:179–189. https://doi.org/10.1016/j.sbi.2017.04.006.
Huang, SY. Search strategies and evaluation in protein–protein docking: Principles, advances and challenges. Drug Discov Today. 2014;19(8):1081–1096. https://doi.org/10.1016/j.drudis.2014.02.005.
Huang, SY. Exploring the potential of global protein–protein docking: An overview and critical assessment of current programs for automatic ab initio docking. Drug Discov Today. 2015;20(8):969–977. https://doi.org/10.1016/j.drudis.2015.03.007.
Koukos, PI, Bonvin, A. Integrative modelling of biomolecular complexes. J Mol Biol. 2019. https://doi.org/10.1016/j.jmb.2019.11.009.
Nadaradjane, AA, Quignot, C, Traore, S, Andreani, J, Guerois, R. Docking proteins and peptides under evolutionary constraints in CAPRI rounds 38–45. Proteins. 2020. https://doi.org/10.1002/prot.25857.
Dapkūnas, J, Kairys, V, Olechnovič, K, Venclovas, Č. Template‐based modeling of diverse protein interactions in CAPRI rounds 38–45. Proteins. 2020. https://doi.org/10.1002/prot.25845.
Waterhouse, A, Bertoni, M, Bienert, S, et al. SWISS‐MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. https://doi.org/10.1093/nar/gky427.
Mirabello, C, Wallner, B. InterPred: A pipeline to identify and model protein–protein interactions. Proteins. 2017;85(6):1159–1170. https://doi.org/10.1002/prot.25280.
Porter, KA, Padhorny, D, Desta, I, et al. Template‐based modeling by ClusPro in CASP13 and the potential for using co‐evolutionary information in docking. Proteins. 2019;87(12):1241–1248. https://doi.org/10.1002/prot.25808.
Yan, Y, Zhang, D, Zhou, P, Li, B, Huang, SY. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45(W1):W365–W373. https://doi.org/10.1093/nar/gkx407.
Mosca, R, Céol, A, Aloy, P. Interactome3D: Adding structural details to protein networks. Nat Methods. 2013;10(1):47–53. https://doi.org/10.1038/nmeth.2289.
Kozakov, D, Hall, DR, Xia, B, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12(2):255–278. https://doi.org/10.1038/nprot.2016.169.
Tovchigrechko, A, Vakser, IA. GRAMM‐X public web server for protein–protein docking. Nucleic Acids Res. 2006;34(Web Server issue):W310–W314. https://doi.org/10.1093/nar/gkl206.
Schneidman‐Duhovny, D, Inbar, Y, Nussinov, R, Wolfson, HJ. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(Web Server issue):W363–W367. https://doi.org/10.1093/nar/gki481.
Torchala, M, Moal, IH, Chaleil, RA, Fernandez‐Recio, J, Bates, PA. SwarmDock: A server for flexible protein–protein docking. Bioinformatics. 2013;29(6):807–809. https://doi.org/10.1093/bioinformatics/btt038.
Jimenez‐Garcia, B, Pons, C, Fernandez‐Recio, J. pyDockWEB: A web server for rigid‐body protein–protein docking using electrostatics and desolvation scoring. Bioinformatics. 2013;29(13):1698–1699. https://doi.org/10.1093/bioinformatics/btt262.
Park, T, Baek, M, Lee, H, Seok, C. GalaxyTongDock: Symmetric and asymmetric ab initio protein–protein docking web server with improved energy parameters. J Comput Chem. 2019;40(27):2413–2417. https://doi.org/10.1002/jcc.25874.
Quignot, C, Rey, J, Yu, J, Tufféry, P, Guerois, R, Andreani, J. InterEvDock2: An expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs. Nucleic Acids Res. 2018;46(W1):W408–W416. https://doi.org/10.1093/nar/gky377.
Xue, LC, Jordan, RA, El‐Manzalawy, Y, Dobbs, D, Honavar, V. DockRank: Ranking docked conformations using partner‐specific sequence homology‐based protein interface prediction. Proteins. 2014;82(2):250–267. https://doi.org/10.1002/prot.24370.
Vreven, T, Hwang, H, Weng, Z. Integrating atom‐based and residue‐based scoring functions for protein–protein docking. Protein Sci. 2011;20(9):1576–1586. https://doi.org/10.1002/pro.687.
Geng, C, Jung, Y, Renaud, N, Honavar, V, Bonvin, A, Xue, LC. iScore: A novel graph kernel‐based function for scoring protein–protein docking models. Bioinformatics. 2020;36(1):112–121. https://doi.org/10.1093/bioinformatics/btz496.
Dominguez, C, Boelens, R, Bonvin, AM. HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125(7):1731–1737. https://doi.org/10.1021/ja026939x.
van Zundert, GCP, Rodrigues, J, Trellet, M, et al. The HADDOCK2.2 web server: User‐friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016;428(4):720–725. https://doi.org/10.1016/j.jmb.2015.09.014.
Andreani, J, Faure, G, Guerois, R. InterEvScore: A novel coarse‐grained interface scoring function using a multi‐body statistical potential coupled to evolution. Bioinformatics. 2013;29(14):1742–1749. https://doi.org/10.1093/bioinformatics/btt260.
Ramirez‐Aportela, E, Lopez‐Blanco, JR, Chacon, P. FRODOCK 2.0: Fast protein–protein docking server. Bioinformatics. 2016;32(15):2386–2388. https://doi.org/10.1093/bioinformatics/btw141.
Dong, GQ, Fan, H, Schneidman‐Duhovny, D, Webb, B, Sali, A. Optimized atomic statistical potentials: Assessment of protein interfaces and loops. Bioinformatics. 2013;29(24):3158–3166. https://doi.org/10.1093/bioinformatics/btt560.
Yu, J, Guerois, R. PPI4DOCK: Large scale assessment of the use of homology models in free docking over more than 1000 realistic targets. Bioinformatics. 2016;32(24):3760–3767. https://doi.org/10.1093/bioinformatics/btw533.
Yu, J, Andreani, J, Ochsenbein, F, Guerois, R. Lessons from (co‐)evolution in the docking of proteins and peptides for CAPRI rounds 28‐35. Proteins. 2017;85(3):378–390. https://doi.org/10.1002/prot.25180.
Schug, A, Weigt, M, Onuchic, JN, Hwa, T, Szurmant, H. High‐resolution protein complexes from integrating genomic information with molecular simulation. Proc Natl Acad Sci U S A. 2009;106(52):22124–22129. https://doi.org/10.1073/pnas.0912100106.
Cheng, RR, Morcos, F, Levine, H, Onuchic, JN. Toward rationally redesigning bacterial two‐component signaling systems using coevolutionary information. Proc Natl Acad Sci U S A. 2014;111(5):E563–E571. https://doi.org/10.1073/pnas.1323734111.
Cheng, RR, Nordesjo, O, Hayes, RL, et al. Connecting the sequence‐space of bacterial Signaling proteins to phenotypes using Coevolutionary landscapes. Mol Biol Evol. 2016;33(12):3054–3064. https://doi.org/10.1093/molbev/msw188.
Ovchinnikov, S, Kamisetty, H, Baker, D. Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. Elife. 2014;3:e02030. https://doi.org/10.7554/eLife.02030.
Hopf, TA, Scharfe, CP, Rodrigues, JP, et al. Sequence co‐evolution gives 3D contacts and structures of protein complexes. Elife. 2014;3:e03430. https://doi.org/10.7554/eLife.03430.
Uguzzoni, G, John Lovis, S, Oteri, F, Schug, A, Szurmant, H, Weigt, M. Large‐scale identification of coevolution signals across homo‐oligomeric protein interfaces by direct coupling analysis. Proc Natl Acad Sci U S A. 2017;114(13):E2662–E2671. https://doi.org/10.1073/pnas.1615068114.
dos Santos, RN, Morcos, F, Jana, B, Andricopulo, AD, Onuchic, JN. Dimeric interactions and complex formation using direct coevolutionary couplings. Sci Rep. 2015;5:13652. https://doi.org/10.1038/srep13652.
Malinverni, D, Jost Lopez, A, De Los, RP, Hummer, G, Barducci, A. Modeling Hsp70/Hsp40 interaction by multi‐scale molecular simulations and coevolutionary sequence analysis. Elife. 2017;6:e23471. https://doi.org/10.7554/eLife.23471.
Bitbol, AF, Dwyer, RS, Colwell, LJ, Wingreen, NS. Inferring interaction partners from protein sequences. Proc Natl Acad Sci U S A. 2016;113(43):12180–12185. https://doi.org/10.1073/pnas.1606762113.
Gueudre, T, Baldassi, C, Zamparo, M, Weigt, M, Pagnani, A. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc Natl Acad Sci U S A. 2016;113(43):12186–12191. https://doi.org/10.1073/pnas.1607570113.
Marmier, G, Weigt, M, Bitbol, AF. Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Comput Biol. 2019;15(10):e1007179. https://doi.org/10.1371/journal.pcbi.1007179.
Rodriguez‐Rivas, J, Marsili, S, Juan, D, Valencia, A. Conservation of coevolving protein interfaces bridges prokaryote‐eukaryote homologies in the twilight zone. Proc Natl Acad Sci U S A. 2016;113(52):15018–15023. https://doi.org/10.1073/pnas.1611861114.
Zeng, H, Wang, S, Zhou, T, et al. ComplexContact: A web server for inter‐protein contact prediction using deep learning. Nucleic Acids Res. 2018;46(W1):W432–W437. https://doi.org/10.1093/nar/gky420.
Cong, Q, Anishchenko, I, Ovchinnikov, S, Baker, D. Protein interaction networks revealed by proteome coevolution. Science. 2019;365(6449):185–189. https://doi.org/10.1126/science.aaw6718.
Jones, DT, Kandathil, SM. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics. 2018;34(19):3308–3315. https://doi.org/10.1093/bioinformatics/bty341.
Van Roey, K, Uyar, B, Weatheritt, RJ, et al. Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev. 2014;114(13):6733–6778. https://doi.org/10.1021/cr400585q.
Uyar, B, Weatheritt, RJ, Dinkel, H, Davey, NE, Gibson, TJ. Proteome‐wide analysis of human disease mutations in short linear motifs: Neglected players in cancer? Mol Biosyst. 2014;10(10):2626–2642. https://doi.org/10.1039/c4mb00290c.
Via, A, Uyar, B, Brun, C, Zanzoni, A. How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci. 2015;40(1):36–48. https://doi.org/10.1016/j.tibs.2014.11.001.
Lee, H, Heo, L, Lee, MS, Seok, C. GalaxyPepDock: A protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. 2015;43(W1):W431–W435. https://doi.org/10.1093/nar/gkv495.
Johansson‐Akhe, I, Mirabello, C, Wallner, B. InterPep2: Global peptide–protein docking using interaction surface templates. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btaa005.
Kumar, M, Gouw, M, Michael, S, et al. ELM‐the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 2020;48(D1):D296‐D306. https://doi.org/10.1093/nar/gkz1030.
Meszaros, B, Erdos, G, Dosztanyi, Z. IUPred2A: Context‐dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018;46(W1):W329–W337. https://doi.org/10.1093/nar/gky384.
Meszaros, B, Simon, I, Dosztanyi, Z. Prediction of protein binding regions in disordered proteins. PLoS Comput Biol. 2009;5(5):e1000376. https://doi.org/10.1371/journal.pcbi.1000376.
Gibson, TJ, Dinkel, H, Van Roey, K, Diella, F. Experimental detection of short regulatory motifs in eukaryotic proteins: Tips for good practice as well as for bad. Cell Commun Signal. 2015;13:42. https://doi.org/10.1186/s12964-015-0121-y.
Waterhouse, AM, Procter, JB, Martin, DM, Clamp, M, Barton, GJ. Jalview version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033.
Jehl, P, Manguy, J, Shields, DC, Higgins, DG, Davey, NE. ProViz‐a web‐based visualization tool to investigate the functional and evolutionary features of protein sequences. Nucleic Acids Res. 2016;44(W1):W11–W15. https://doi.org/10.1093/nar/gkw265.
Krystkowiak, I, Manguy, J, Davey, NE. PSSMSearch: A server for modeling, visualization, proteome‐wide discovery and annotation of protein motif specificity determinants. Nucleic Acids Res. 2018;46(W1):W235–W241. https://doi.org/10.1093/nar/gky426.
Saladin, A, Rey, J, Thevenet, P, Zacharias, M, Moroy, G, Tuffery, P. PEP‐SiteFinder: A tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Res. 2014;42(Web Server issue):W221–W226. https://doi.org/10.1093/nar/gku404.
Johansson‐Akhe, I, Mirabello, C, Wallner, B. Predicting protein–peptide interaction sites using distant protein complexes as structural templates. Sci Rep. 2019;9(1):4267. https://doi.org/10.1038/s41598-019-38498-7.
Ciemny, M, Kurcinski, M, Kamel, K, et al. Protein–peptide docking: Opportunities and challenges. Drug Discov Today. 2018;23(8):1530–1537. https://doi.org/10.1016/j.drudis.2018.05.006.
Schueler‐Furman, O, London, N. Modeling peptide–protein interactions. Methods and protocols. In: Walker, J, editor, Series editor. Methods in Molecular Biology. New York, NY: Humana Press, 2017. https://doi.org/10.1007/978-1-4939-6798-8.
Alam, N, Goldstein, O, Xia, B, Porter, KA, Kozakov, D, Schueler‐Furman, O. High‐resolution global peptide‐protein docking using fragments‐based PIPER‐FlexPepDock. PLoS Comput Biol. 2017;13(12):e1005905. https://doi.org/10.1371/journal.pcbi.1005905.
Kozakov, D, Beglov, D, Bohnuud, T, et al. How good is automated protein docking? Proteins. 2013;81(12):2159–2166. https://doi.org/10.1002/prot.24403.
Raveh, B, London, N, Schueler‐Furman, O. Sub‐angstrom modeling of complexes between flexible peptides and globular proteins. Proteins. 2010;78(9):2029–2040. https://doi.org/10.1002/prot.22716.
Khramushin, A, Marcu, O, Alam, N, et al. Modeling beta‐sheet peptide‐protein interactions: Rosetta FlexPepDock in CAPRI rounds 38‐45. Proteins. 2020. https://doi.org/10.1002/prot.25871.
Kurcinski, M, Jamroz, M, Blaszczyk, M, Kolinski, A, Kmiecik, S. CABS‐dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015;43(W1):W419–W424. https://doi.org/10.1093/nar/gkv456.
Kurcinski, M, Badaczewska‐Dawid, A, Kolinski, M, Kolinski, A, Kmiecik, S. Flexible docking of peptides to proteins using CABS‐dock. Protein Sci. 2020;29(1):211–222. https://doi.org/10.1002/pro.3771.
Trellet, M, Melquiond, AS, Bonvin, AM. A unified conformational selection and induced fit approach to protein–peptide docking. PLoS One. 2013;8(3):e58769. https://doi.org/10.1371/journal.pone.0058769.
de Vries, SJ, Rey, J, Schindler, CEM, Zacharias, M, Tuffery, P. The pepATTRACT web server for blind, large‐scale peptide‐protein docking. Nucleic Acids Res. 2017;45(W1):W361–W364. https://doi.org/10.1093/nar/gkx335.
Schmiedel, JM, Lehner, B. Determining protein structures using deep mutagenesis. Nat Genet. 2019;51(7):1177–1186. https://doi.org/10.1038/s41588-019-0431-x.
Rollins, NJ, Brock, KP, Poelwijk, FJ, et al. Inferring protein 3D structure from deep mutation scans. Nat Genet. 2019;51(7):1170–1176. https://doi.org/10.1038/s41588-019-0432-9.
Morcos, F, Onuchic, JN. The role of coevolutionary signatures in protein interaction dynamics, complex inference, molecular recognition, and mutational landscapes. Curr Opin Struct Biol. 2019;56:179–186. https://doi.org/10.1016/j.sbi.2019.03.024.
Geng, C, Xue, LC, Roel‐Touris, J, Bonvin, AMJJ. Finding the ΔΔG spot: Are predictors of binding affinity changes upon mutations in protein–protein interactions ready for it? WIREs Computational Molecular Science. 2019;9(5):e1410. https://doi.org/10.1002/wcms.1410.
Cunningham, JM, Koytiger, G, Sorger, PK, AlQuraishi, M. Biophysical prediction of protein–peptide interactions and signaling networks using machine learning. Nat Methods. 2020;17:175–183. https://doi.org/10.1038/s41592-019-0687-1.