Latimer, WM, Rodebush, WH. Polarity and ionization from the standpoint of the Lewis theory of valence. J Am Chem Soc. 1920;42(7):1419–1433.
Jeffrey, GA. An introduction to hydrogen bonding. New York and Oxford: Oxford University Press, 1997.
Lewis, GN. Valence and the structure of atoms and molecules. New York, NY: Chemical Catalog Co., 1923 p. 109.
Watson, JD, Crick, FHC. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1953;171:737–738.
Pauling, L, Corey, RB, Branson, HR. The structure of proteins: Two hydrogen bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA. 1951;37(4):205–211.
Pauling, L, Corey, RB. The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci USA. 1951;37(5):251–256.
Huggins, ML. Hydrogen bridges in organic compounds. J Org Chem. 1936;1(5):407–456.
Weinhold, F, Landis, CR. Valency and bonding: A natural bond orbital donor–acceptor perspective. Cambridge, UK: Cambridge University Press, 2005.
Coulson, CA. The hydrogen bond–a review of the present position. Research. 1957;10:149–159.
Pimentel, GC. The bonding of trihalide and bifluoride ions by the molecular orbital method. J Chem Phys. 1951;19(4):446–448.
Rundle, RE. Coordination number and valence in modern structural chemistry. Rec Prog Chem. 1962;23(1962):195–221.
Coulson, CA. The nature of the bonding in xenon fluorides and related molecules. J Chem Soc. 1964;1442–1454.
Munzarová, ML, Hoffman, R. Electron‐rich three‐center bonding: Role of s, p interactions across the p‐block. J Am Chem Soc. 2002;124(17):4785–4795.
Nemes, CT, Laconsay, CJ, Galbraith, JM. Hydrogen bonding from a valence bond theory perspective: The role of covalency. Phys Chem Chem Phys. 2018;20(32):20963–20969.
Pauling, L. The nature of the chemical bond. 3rd ed. Ithaca, NY: Cornell University Press, 1960.
Donohue, J. The hydrogen bond in organic crystals. J Phys Chem A. 1952;56(4):502–510.
Etter, MC. A new role for the hydrogen‐bond acceptors in influencing packing patterns of carboxylic acids and amids. J Am Chem Soc. 1982;104(4):1095–1096.
Etter, MC. Encoding and decoding hydrogen‐bond patterns of organic compounds. Acc Chem Res. 1990;23(4):120–126.
Gerlt, JA, Gassman, PG. An explanation for rapid enzyme‐catalyzed proton abstraction from carbon acids: Importance of late transition states in concerted mechanisms. J Am Chem Soc. 1993;115(24):11552–11568.
Gerlt, JA, Gassman, PG. Understanding the rates of certain enzyme‐catalyzed reactions: Proton abstraction from carbon acids, acyl transfer reactions, and displacement reactions of phosphodiesters. Biochemistry. 1993;32(45):11934–11952.
Cleland, WW, Kreevoy, MM. Low‐barrier hydrogen bonds and enzyme catalysis. Science. 1994;264(5167):1887–1890.
Frey, PA, Witt, SA, Tobin, JB. A low‐barrier hydrogen bond in the catalytic triad of serine protease. Science. 1994;264(5167):1927–1930.
Graham, JD, Buytendyk, AM, Wang, D, Bowen, KH, Collins, KD. Strong, low‐barrier hydrogen bonds may be available to enzymes. Biochemistry. 2014;53(2):344–349.
Perrin, CL. Are short, low‐barrier hydrogen bonds unusually strong? Acc Chem Res. 2010;43(12):1550–1557.
Guthrie, JP. Short strong hydrogen bonds: Can they explain enzyme catalysis? Chem Biol. 1996;3(3):163–170.
Perrin, CL, Nielson, JB. Strong hydrogen bonds in chemistry and biology. Annu Rev Phys Chem. 1997;48:511–544.
Pimentel, GC, McClellan, AL. The hydrogen bond. Freeman, San Francisco and London: W. H, 1960.
Sutor, DJ. The C–H… O hydrogen bond in crystals. Nature. 1962;195:68–69.
Sutor, DJ. Evidence for the existence of C–H⋯O hydrogen bonds in crystals. J Chem Soc. 1963;0:1105–1110.
Structural, DJ. Chemistry and molecular biology. San Francisco, CA: A. Rich and N. Davidson, W. H. Freeman, 1968;p. 443–465.
Taylor, R, Kennard, O. Crystallographic evidence for the existence of C–H⋯O, C–H⋯N, and C–H⋯cl hydrogen bonds. J Am Chem Soc. 1982;104(19):5063–5070.
Gu, Y, Kar, T, Scheiner, S. Fundamental properties of the CH···O interaction: Is it a true hydrogen bond? J Am Chem Soc. 1999;121(40):9411–9422.
Scheiner, S. Weak H‐bonds. Comparisons of CH⋯O to NH⋯O in proteins and PH⋯N to direct P⋯N interactions. Phys Chem Chem Phys. 2011;13(31):13860–13872.
Desiraju, GR, Steiner, T. The weak hydrogen bond: In structural chemistry and biology. Oxford, UK: Oxford University Press, 1999.
Desiraju, GR. The C−H···O hydrogen bond: Structural implications and supramolecular design. Acc Chem Res. 1996;29(9):441–449.
Sessler, CD, Rahm, M, Becker, S, Goldberg, JM, Wang, F, Lippard, SJ. CF2H, a hydrogen bond donor. J Am Chem Soc. 2017;139(27):9325–9332.
Eytel, LM, Fargher, HA, Haley, MM, Johnson, DW. The road to aryl C–H…anion binding was paved with good intentions: Fundamental studies, host design, and historical perspectives in CH hydrogen bonding. Chem Commun. 2019;55(36):5159–5206.
Yoon, D‐W, Gross, DE, Lynch, VM, Sessler, JL, Hay, BP, Lee, C‐H. Phenyl‐, pyrrole‐, and furan‐containing diametrically strapped calix[4]pyrroles. An experimental and theoretical study of hydrogen bonding effects in chloride anion recognition. Angew Chem Int Ed. 2008;47(27):5038–5042.
Li, Y, Flood, AH. Strong, size‐selective, and electronically tunable C–H…halide binding with steric control over aggregation from synthetically modular, shape‐persistent [34]Trazolophanes. J Am Chem Soc. 2008;130(36):12111–12122.
Treseca, BW, Zakharov, LN, Carroll, CN, Johnson, DW, Haley, MM. Aryl C–H…cl− hydrogen bonding in a fluorescent anion sensor. Chem Commun. 2013;49(65):7240–7242.
Meyer, EA, Castellano, RK, Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed. 2003;42(11):1210–1250.
West, R. Hydrogen bonding of phenols to olefins. J Am Chem Soc. 1959;81(7):1614–1617.
Suziki, S, Green, PG, Bumgarner, RR, Dasgupta, S, Goddard, WA III, Blake, GA. Benzene forms hydrogen bonds with water. Science. 1992;257(5072):942–945.
Nishio, M. CH/π hydrogen bonds in crystals. CrstEngComm. 2004;6(27):130–158.
Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys. 2011;13(31):13873–13900.
Harigai, M, Kataoka, M, Imamoto, Y. A single CH/π weak hydrogen bond governs stability and the photocycle of the photoactive yellow protein. J Am Chem Soc. 2006;128(33):10646–10647.
Zhang, X, Dai, H, Yan, H, Zou, W, Cremer, D. B–H···π interaction: A new type of nonclassical hydrogen bonding. J Am Chem Soc. 2016;138(13):4334–4337.
Crabtree, RH. A new type of hydrogen bond. Science. 1998;282(5396):2000–2001.
Crabtree, RH, Siegbahn, PE, Eisenstein, O, Rheingold, AL, Koetzle, TF. A new intermolecular interaction: Unconventional hydrogen bonds with element−hydride bonds as proton acceptor. Acc Chem Res. 1996;29(7):348–354.
Custelcean, R, Jackson, JE. Dihydrogen bonding: Structures, energetics, and dynamics. Chem Rev. 2001;101(7):1963–1980.
Custelcean, R, Jackson, JE. Topochemical control of covalent bond formation by dihydrogen bonding. J Am Chem Soc. 1998;120(49):12935–12941.
Gatling, SC, Jackson, JE. Reactivity control via dihydrogen bonding: Diastereoselection in borohydride reductions of α‐hydroxyketones. J Am Chem Soc. 1999;121(37):8655–8656.
Yang, L, Hubbard, TA, Cockroft, SL. Can non‐polar hydrogen atoms accept hydrogen bonds? Chem Commun. 2014;50(40):5212–5214.
Echeverría, J, Aullón, G, Danovich, D, Shaik, S, Alvarez, S. Dihydrogen contacts in alkanes are subtle but not faint. Nat Chem. 2011;3(4):323–330.
Echeverría, J, Aullón, G, Alvarez, S. Dihydrogen intermolecular contacts in group 13 compounds: H…H or E…H (E = B, Al, Ga) interactions? Dalton Trans. 2017;46(9):2844–2854.
Alder, RW, Bowman, PS, Steele, WRS, Winterman, DR. The remarkable basicity of 1,8‐bis(dimethylamino)naphthalene. Chem Comm. 1968;13:723–724.
Staab, HA, Saupe, T. “Proton sponges” and the geometry of hydrogen bonds: Aromatic nitrogen bases with exceptional basicities. Angew Chem Int Ed. 1988;27(7):865–879.
Alder, RW. Strain effects on amine basicities. Chem Rev. 1989;89(5):1215–1223.
Raab, V, Kipke, J, Gschwind, RM, Sundermeyer, J. 1,8‐Bis(tetramethylguanidino)naphthalene (tmgn): A new, superbasic and kinetically active “proton sponge”. Chem A Eur J. 2002;8(7):1682–1693.
Raab, V, Gauchenova, E, Merkoulov, A, et al. 1,8‐Bis(hexamethyltriaminophosphazenyl)naphthalene, HMPN: A superbasic bisphosphazene “proton sponge”. J Am Chem Soc. 2005;127(45):15738–15743.
Kögel, JF, Oelkers, B, Kovačević, B, Sundermeyer, J. A new synthetic pathway to the second and third generation of superbasic bisphosphazene proton sponges: The run for the best chelating ligand for a proton. J Am Chem Soc. 2013;135(47):17768–17774.
Schwesinger, R, Schlemper, H, Hasenfratz, C, et al. Extremely strong, uncharged auxiliary bases; monomeric and polymer‐supported polyaminophosphazenes (P2–P5). Liebigs Ann. 1996;1996(7):1055–1081.
Schwesinger, R, Mibfeldt, DCM, Peter, K, Schnering, HGV. Novel, very strongly basic, pentacyclic “proton sponges“ with vinamidine structure. Angew Chem Int Ed. 1987;26(11):1165–1167.
Staab, HA, Saupe, T, Krieger, C. 4,5‐Bis(demethylamino)fluorene, a new “proton sponge”. Angew Chem Int Ed. 1983;22(9):731–732.
Jorgensen, WL, Pranata, J. Importance of secondary interactions in triply hydrogen bonded complexes: Guanine–cytosine vs. uracil‐2,6‐diaminopyridine. J Am Chem Soc. 1990;112(5):2008–2010.
Pranata, J, Wierschke, SG, Jorgensen, WL. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen‐bonded base pairs in chloroform. J Am Chem Soc. 1991;113(8):2810–2819.
Sijbesma, RP, Beijer, FH, Brunsveld, L, et al. Reversible polymers formed from self‐complementary monomers using quadruple hydrogen bonding. Science. 1997;278(5343):1601–1604.
Blight, BA, Hunter, CA, Leigh, DA, McNab, H, Thomson, PI. An AAAA–DDDD quadruple hydrogen‐bond array. Nat Chem. 2011;3(3):244–248.
Sartorius, J, Schneider, HJ. A general scheme based on empirical increments for the prediction of hydrogen‐bond associations of nucleobases and of synthetic host–guest complexes. Chem A Eur J. 1996;2(11):1446–1452.
Corbin, PS, Zimmerman, SC. Self‐association without regard to prototropy. A heterocycle that forms extremely stable quadruply hydrogen‐bonded dimers. J Am Chem Soc. 1998;120(37):9710–9711.
Tiwari, MK, Vanka, K. Exploiting directional long‐range secondary forces for regulating electrostatics‐dominated noncovalent interactions. Chem Sci. 2017;8(2):1378–1390.
Popelier, PLA, Joubert, L. The elusive atomic rationale for DNA base pair stability. J Am Chem Soc. 2002;124(29):8725–8729.
Lukin, O, Leszczynski, J. Rationalizing the strength of hydrogen‐bonded complexes. Ab initio HF and DFT studies. J Phys Chem A. 2002;106(29):6775–6782.
Fonseca Guerra, C, Bickelhaupt, FM, Snijders, JG, Baerends, EJ. The nature of the hydrogen bond in DNA base pairs: The role of charge transfer and resonance assistance. Chem A Eur J. 1999;5(12):3581–3594.
Guillaumes, L, Simon, S, Fonseca, GC. The role of aromaticity, hybridization, electrostatics, and covalency in resonance‐assisted hydrogen bonds of adenine–thymine (AT) base pairs and their mimics. ChemistryOpen. 2015;4(3):318–327.
van der Lubbe, SCC, Fonseca, GC. Hydrogen‐bond strength of CC and GG pairs determined by steric repulsion: Electrostatics and charge transfer overruled. Chem A Eur J. 2017;23(43):10249–10253.
Zarycz, M, Natalia, C, Fonseca, GC. NMR 1H‐shielding constants of hydrogen‐bond donor reflect manifestation of the Pauli principle. J Phys Chem Lett. 2018;9(13):3720–3724.
Wu, CH, Zhang, Y, van Rickley, K, Wu, JI. Aromaticity gain increases the inherent association strengths of multipoint hydrogen‐bonded arrays. Chem Comm. 2018;54(28):3512–3515.
Zhang, Y, Wu, CH, Wu, JI. Why do A·T and G·C self‐sort? Hückel aromaticity as a driving force for electronic complementarity in base pairing. Org Biomol Chem. 2019;17(7):1881–1885.
Paudel, H, Das, R, Wu, CH, Wu, JI. Self‐assembling quartets: How do π‐conjugation patterns affect resonance‐assisted hydrogen bonding? Org Biomol Chem. 2020;18(6):1078–1081.
Narváez, WEV, Jiménez, EI, Romero‐Montalvo, E, et al. Acidity and basicity interplay in amide and imide self‐association. Chem Sci. 2018;9(19):4402–4413.
Narváez, WEV, Jiménez, EI, Cantú‐Reyes, M, Yatsimirsky, AK, Hernández‐Rodríguez, M, Rocha‐Rinza, T. Stability of doubly and triply H‐bonded complexes governed by acidity–basicity relationships. Chem Comm. 2019;55(11):1556–1559.
van der Lubbe, SCC, Zaccaria, F, Sun, X, Fonseca, GC. Secondary electrostatic interaction model revised: Prediction comes mainly from measuring charge accumulation in hydrogen‐bonded monomers. J Am Chem Soc. 2019;141(12):4878–4885.
Gilli, G, Bullucci, F, Ferretti, V, Bertolasi, V. Evidence for resonance‐assisted hydrogen bonding from crystal‐structure correlations on the enol form of the β‐diketone fragment. J Am Chem Soc. 1989;111(3):1023–1028.
Gilli, P, Bertolasi, V, Ferretti, V, Gilli, G. Covalent nature of the strong homonuclear hydrogen‐bond‐study of the O‐H—O system by crystal‐structure correlation methods. J Am Chem Soc. 1994;116(3):909–915.
Bertolasi, V, Gilli, P, Ferretti, V, Gilli, G. Evidence for resonance‐assisted hydrogen bonding. 2. Intercorrelation between crystal structure and spectroscopic parameters in eight intramolecularly hydrogen bonded 1,3‐diaryl‐1,3‐propanedione enols. J Am Chem Soc. 1991;113(13):4917–4925.
Bertolasi, V, Gilli, P, Ferretti, V, Gilli, G. Resonance‐assisted O‐H…O hydrogen bonding: Its role in the crystalline self‐recognition of β‐diketone enols and its structural and IR characterization. Chem A Eur J. 1996;2(8):925–934.
Zhou, Y, Deng, G, Zheng, YZ, Xu, J, Ashraf, H, Yu, ZW. Evidences for cooperative resonance‐assisted hydrogen bonds in protein secondary structure analogs. Scient Rep 2016;6:36932(1–8).
Gora, RW, Maj, M, Grabowski, SJ. Resonance‐assisted hydrogen bonds revisited. Resonance stabilization vs. charge delocalization. Phys Chem Chem Phys. 2013;15(7):2514–2522.
Grosch, AA, van der Lubbe, SCC, Fonseca, GC. Nature of intramolecular resonance assisted hydrogen bonding in malonaldehyde and its saturated analogue. J Phys Chem A. 2018;122(6):1813–1820.
Alkorta, I, Elguero, J, Mo, O, Yanez, M, Bene, JED. Are resonance‐assisted hydrogen bonds ‘resonance assisted’? A theoretical NMR study. Chem Phys Lett. 2005;411(4–6):411–415.
Jiang, X, Zhang, H, Wu, W, Mo, Y. A critical check for the role of resonance in intramolecular hydrogen bonding. Chem A Eur J. 2017;23(66):16885–16891.
Sobczyk, L, Grabowski, SJ, Krygowski, TM. Interrelation between H‐bond and π‐electron delocalization. Chem Rev. 2005;105(10):3513–3560.
Mahmudov, KT, Pombeiro, AJL. Resonance‐assisted hydrogen bonding as a driving force in synthesis and a synthon in the design of materials. Chem A Eur J. 2016;22(46):16356–16398.
Dewar, MJS. Structure of stipitatic acid. Nature. 1945;155(3924):50–51.
Stasyuk, OA, Szatyłowicz, H, Krygowski, TM. Effect of H‐bonding and complexation with metal ions on the π‐electron structure of adenine tautomers. Org Biomol Chem. 2014;12(3):456–466.
Cyranśki, MK, Gilski, M, Jaskoĺski, M, Krygowski, TM. On the aromatic character of the heterocyclic bases of DNA and RNA. J Org Chem. 2003;68(22):8607–8613.
Maksić, ZB, Glasovac, Z, Despotović, I. Predicted high proton affinity of poly‐2, 5‐dihydropyrrolimines—The aromatic domino effect. J Phys Org Chem. 2002;15(8):499–508.
Maksić, ZB, Kovacěvić, B. Spatial and electronic structure of highly basic organic molecules: Cyclopropeneimines and some related systems. J Phys Chem A. 1999;103(33):6678–6684.
Krygowski, TM, Szatyłowicz, H, Zachara, JE. How H‐bonding modifies molecular structure and π‐electron delocalization in the ring of pyridine/pyridinium derivatives involved in H‐bond complexation. J Org Chem. 2005;70(22):8859–8865.
Szatyłowicz, H, Krygowski, TM, Zachara, JE. Long‐distance structural consequences of H‐bonding. How H‐bonding affects aromaticity of the ring in variously substituted aniline/anilinium/anilide complexes with bases and acids. J Chem Inf Model. 2007;47(3):875–886.
Quiñonero, D, Prohens, R, Garau, C, et al. A theoretical study of aromaticity in squaramide complexes with anions. Chem Phys Lett. 2002;351(1–2):115–120.
Quiñonero, D, Frontera, A, Ballester, P, Deyà, PM. A theoretical study of aromaticity in squaramide and oxocarbons. Tetrahedron Lett. 2000;41(12):2001–2005.
Wu, JI, Jackson, JE, Schleyer, PR. Reciprocal hydrogen bonding–aromaticity relationships. J Am Chem Soc. 2014;136(39):13526–13529.
Kakeshpour, T, Wu, JI, Jackson, JE. AMHB:(anti) aromaticity‐modulated hydrogen bonding. J Am Chem Soc. 2016;138(10):3427–3432.
Kakeshpour, T, Bailey, JP, Jenner, MR, et al. High‐field NMR spectroscopy reveals aromaticity‐modulated hydrogen bonding in heterocycles. Angew Chem Int Ed. 2017;56(33):9842–9846.
Talens, VS, Englebienne, P, Trinh, TT, Noteborn, WEM, Voets, IK, Kieltyka, RE. Aromatic gain in a supramolecular polymer. Angew Chem Int Ed. 2015;54(36):10502–10506.
Anand, M, Fernandez, I, Schaefer, HF, Wu, JI. Hydrogen bond–aromaticity cooperativity in self‐assembling 4‐pyridone chains. J Comput Chem. 2016;37(1):59–63.
Wen, Z, Wu, JI. Antiaromaticity gain increases the potential for n‐type charge transport in hydrogen‐bonded π‐conjugated cores. Chem Comm. 2020;56(13):2008–2011.
Wu, CH, Ito, K, Buytendyk, AM, Bowen, KH, Wu, JI. Enormous hydrogen bond strength enhancement through π‐conjugation gain: Implications for enzyme catalysis. Biochemistry. 2017;56(33):4318–4322.
Wu, CH, Karas, LJ, Ottosson, H, Wu, JI. Excited‐state proton transfer relieves antiaromaticity in molecules. Proc Natl Acad Sci USA. 2019;116(41):20303–20308.
Baird, NC. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J Am Chem Soc. 1972;94(14):4941–4948.
Rosenberg, M, Dahlstrand, C, Kilså, H, Ottosson, H. Excited state aromaticity and antiaromaticity: Opportunities for photophysical and photochemical rationalizations. Chem Rev. 2014;114(10):5379–5425.
Sobolewski, AL, Domcke, W. Intramolecular hydrogen bonding in the S1(ππ*) excited state of anthranilic acid and salicylic acid: TDDFT calculation of excited‐state geometries and infrared spectra. J Phys Chem A. 2004;108(49):10917–10922.
Zhao, GJ, Han, KL. Early time hydrogen‐bonding dynamics of photoexcited coumarin 102 in hydrogen‐donating solvents: Theoretical study. J Phys Chem A. 2007;111(13):2469–2474.
Zhao, GJ, Han, KL. Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching. J Phys Chem A. 2007;111(38):9218–9223.
Zhao, GJ, Han, KL. Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen‐bond strengthening and weakening. ChemPhysChem. 2008;9(13):1842–1846.
Zhao, GJ, Han, KL. Hydrogen bonding in the electronic excited state. Acc Chem Res. 2012;45(3):404–413.
Jencks, WP. Binding energy, specificity, and enzymic catalysis: The circe effect. Ad Enzymol. 1975;43:219–410.
Fierke, CA, Jencks, WP. Two functional domains of coenzyme a activate catalysis by coenzyme a transferase. Pantetheine and adenosine 3′‐phosphate 5′‐diphosphate. J Biol Chem. 1986;261(11):7603–7606.
Shan, SO, Loh, S, Herschlag, D. Energetic effects of multiple hydrogen bonds. Implications for enzyme catalysis. J Am Chem Soc. 1996;118(24):5515–5518.
Shokri, A, Schmidt, J, Wang, XB, Kass, SR. Hydrogen bonded arrays: The power of multiple hydrogen bonds. J Am Chem Soc. 2012;134(4):2094–2099.
Shokri, A, Wang, Y, O’Doherty, GA, Wang, XB, Kass, SR. Hydrogen‐bond networks: Strengths of different types of hydrogen bonds and an alternative to the low barrier hydrogen‐bond proposal. J Am Chem Soc. 2013;135(47):17919–17924.
Dominelli‐Whiteley, N, Brown, JJ, Muchowska, KB, et al. Short‐range cooperativity in hydrogen‐bond chains. Angew Chem Int Ed. 2017;56(26):7658–7662.
Kato, Y, Conn, MM, Rebek, J Jr. Hydrogen bonding in water using synthetic receptors. Proc Natl Acad Sci USA. 1995;92(4):1208–1212.
Jeong, KS, Rebek, J Jr. Molecular recognition: Hydrogen bonding and aromatic stacking converge to bind cytosine derivatives. J Am Chem Soc. 1988;110(10):3327–3328.
Huang, C‐Y, Cabell, LA, Anslyn, EV. Molecular recognition of cyclitols by neutral polyaza‐hydrogen‐bonding receptors: The strength and influence of intramolecular hydrogen bonds between vicinal alcohols. J Am Chem Soc. 1994;116(7):2778–2792.
Zimmerman, SC, VanZyl, CM, Hamilton, GS. Rigid molecular tweezers: Preorganized hosts for electron donor‐acceptor complexation in organic solvents. J Am Chem Soc. 1989;111(4):1373–1381.