Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Amsterdam, Netherlands: Elsevier Science, 2017.
Thompson, JM. Infrared Spectroscopy. Singapore: Jenny Stanford Publishing, 2018.
Smith, E, Dent, G. Modern Raman Spectroscopy: A Practical Approach. New York, NY: Wiley, 2019.
Wu, G. Vibrational Spectroscopy. Berlin, Germany: De Gruyter, 2019.
Coutaz, JL, Garet, F, Wallace, VP. Principles of Terahertz Time‐Domain Spectroscopy: An Introductory Textbook. Singapore: Jenny Stanford Publishing, 2018.
Parker, SF, Ramirez‐Cuesta, AJ, Daemen, L. Vibrational spectroscopy with neutrons: recent developments. Spectrochim Acta A. 2018;190:518–523.
Silva, C, Braz, A, Pimentel, MF. Vibrational spectroscopy and chemometrics in forensic chemistry: critical review, current trends and challenges. J Braz Chem Soc. 2019;30:2259–2290.
Laane, J. Frontiers and Advances in Molecular Spectroscopy. Amsterdam, Netherlands: Elsevier Science, 2017.
Beć, KB, Huck, CW. Breakthrough potential in near‐infrared spectroscopy: Spectra simulation. A review of recent developments. Front Chem. 2019;7:48–1–48–22.
Puzzarini, C, Bloino, J, Tasinato, N, Barone, V. Accuracy and interpretability: the devil and the holy grail. New routes across old boundaries in computational spectroscopy. Chem Rev. 2019;119(13):8131–8191.
You, S, Lü, JT, Guo, J, Jiang, Y. Recent advances in inelastic electron tunneling spectroscopy. Adv Phys. 2017;2(3):907–936.
Huang, Y, Chang, C, Yuan, J, Zhao, Z. High‐harmonic and terahertz spectroscopy (HATS): methods and applications. Appl Sci. 2019;9(5):853.
Quaresima, V, Ferrari, M. A mini‐review on functional near‐infrared spectroscopy (fNIRS): where do we stand, and where should we go? Photonics. 2019;6(3):87.
Nafie, LA. Recent advances in linear and nonlinear Raman spectroscopy. Part XIII. J Raman Spectrosc. 2019;50(12):1783–1806.
Silver, A, Kitadai, H, Liu, H, et al. Chemical and bio sensing using graphene‐enhanced Raman spectroscopy. Nanomaterials. 2019;9(4):516.
Downes, A. Wide area Raman spectroscopy. Appl Spectrosc Rev. 2019;54(5):445–456.
Shao, F, Zenobi, R. Tip‐enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Anal Bioanal Chem. 2019;411(1):37–61.
Yamada, Y, Suzuki, H, Yamashita, Y. Time‐domain near‐infrared spectroscopy and imaging: A review. Appl Sci. 2019;9(6):1127.
Rohringer, N. X‐ray Raman scattering: a building block for nonlinear spectroscopy. Philos Trans R Soc A. 2019;377(2145):20170471.
Hansen, AS, Vogt, E, Kjaergaard, HG. Gibbs energy of complex formation—combining infrared spectroscopy and vibrational theory. Int Rev Phys Chem. 2019;38(1):115–148.
Kiefer, LM, Kubarych, KJ. Two‐dimensional infrared spectroscopy of coordination complexes: from solvent dynamics to photocatalysis. Coord Chem Rev. 2018;372:153–178.
Teixeira, AM, Sousa, C. A review on the application of vibrational spectroscopy to the chemistry of nuts. Food Chem. 2019;277:713–724.
Alula, MT, Mengesha, ZT, Mwenesongole, E. Advances in surface‐enhanced Raman spectroscopy for analysis of pharmaceuticals: a review. Vib Spectrosc. 2018;98:50–63.
Pahlow, S, Weber, K, Popp, J, et al. Application of vibrational spectroscopy and imaging to point‐of‐care medicine: a review. Appl Spectrosc. 2018;72(S1):52–84.
Ewing, AV, Kazarian, SG. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations. Spectrochim Acta A. 2018;197:10–29.
O`Dea, D, Lyng, FM, Nicholson, S, O`Connell, F, Maguire, A, Malkin, A. Recent advances in the vibrational spectroscopic diagnosis of non‐small cell lung cancer. Vib Spectrosc. 2019;104:102946.
Jamieson, LE, Byrne, HJ. Vibrational spectroscopy as a tool for studying drug‐cell interaction: could high throughput vibrational spectroscopic screening improve drug development? Vib Spectrosc. 2017;91:16–30.
Perez‐Guaita, D, Kochan, K, Martin, M, et al. Multimodal vibrational imaging of cells. Vib Spectrosc. 2017;91:46–58.
Chen, C, Liu, W, Tian, S, Hong, T. Novel surface‐enhanced Raman spectroscopy techniques for DNA. Protein Drug Detection Sens. 2019;19(7):1712.
Christensen, D, Rüther, A, Kochan, K, Pérez‐Guaita, D, Wood, B. Whole‐organism analysis by vibrational spectroscopy. Annu Rev Anal Chem. 2019;12(1):89–108.
Shipp, DW, Sinjab, F, Notingher, I. Raman spectroscopy: techniques and applications in the life sciences. Adv Opt Photonics. 2017;9(2):315.
Kraka, E, Larsson, JA, Cremer, D. Generalization of the badger rule based on the use of adiabatic vibrational modes. In: Grunenberg, J, editor. Computational Spectroscopy. New York, NY: Wiley, 2010; p. 105–149.
Badger, RM. A relation between internuclear distances and bond force constants. J Chem Phys. 1934;2:128–131.
Wilson, EB, Decius, JC, Cross, PC. Molecular Vibrations. New York, NY: McGraw‐Hill, 1955.
Herzberg, G. Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules. New York, NY: Van Nostrand, 1945.
Konkoli, Z, Cremer, D. A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes. Int J Quant Chem. 1998;67:1–9.
Konkoli, Z, Larsson, JA, Cremer, D. A new way of analyzing vibrational spectra. II. Comparison of internal mode frequencies. Int J Quant Chem. 1998;67:11–27.
Konkoli, Z, Cremer, D. A new way of analyzing vibrational spectra. III. Characterization of normal vibrational modes in terms of internal vibrational modes. Int J Quant Chem. 1998;67:29–40.
Konkoli, Z, Larsson, JA, Cremer, D. A new way of analyzing vibrational spectra. IV. Application and testing of adiabatic modes within the concept of the characterization of normal modes. Int J Quant Chem. 1998;67:41–55.
Cremer, D, Larsson, JA, Kraka, E. New developments in the analysis of vibrational spectra on the use of adiabatic internal vibrational modes. In: Parkanyi, C, editor. Theoretical and Computational Chemistry. Amsterdam, Netherlands: Elsevier, 1998; p. 259–327.
Ellis, JW. Heats of linkage of C─H and N─H bonds from vibration spectra. Phys Rev. 1929;33:27–36.
Timm, B, Mecke, R. Quantitative absorptionsmessungen an den CH‐oberschwingungen einfacher kohlenwasserstoffe. Z Physik. 1935;98(5–6):363–381.
Gänswein, P, Mecke, R. Absorptionsuntersuchungen an Kohlenwasserstoffen im nahen Ultraroten. Z Physik. 1936;99(3–4):189–203.
Vierling, O, Mecke, R. Absorptionsuntersuchungen an Kohlenwasserstoffen im nahen ultraroten. Z Physik. 1936;99(3–4):204–216.
Lippert, E, Mecke, R. Spektroskopische Konstitutionsbestimmungen aus ultraroten Intensitätsmessungen an CH‐Schwingungsbanden. Z Elektrochem. 1951;55:366–374.
Lüttke, W, Nonnenmacher, GAA. Reinhard Mecke (1895–1969): scientific work and personality. J Mol Struct. 1995;347:1–18.
Darling, BT, Dennison, DM. The water vapor molecule. Phys Rev. 1940;57:128–139.
Henry, BR, Siebrand, W. Anharmonicity in polyatomic molecules. The CH‐stretching overtone spectrum of benzene. J Chem Phys. 1968;49:5369.
Hayward, RJ, Henry, BR. A general local‐mode theory for high energy polyatomic overtone spectra and application to dichloromethane. J Mol Spectrosc. 1975;57:221–235.
Henry, BR. The local mode model and overtone spectra: A probe of molecular structure and conformation. Acc Chem Res. 1987;20:429–435.
Rong, Z, Henry, BR, Robinson, TW, Kjaergaard, HG. Absolute intensities of CH stretching overtones in alkenes. J Phys Chem A. 2005;109:1033–1041.
Kjaergaard, HG, Yu, H, Schattka, BJ, Henry, BR, Tarr, AW. Intensities in local mode overtone spectra: propane. J Chem Phys. 1990;93:6239–6248.
Kjaergaard, HG, Turnbull, DM, Henry, BR. Intensities of CH‐ and CD‐stretching overtones in 1,3‐butadiene and 1,3‐butadiene‐d6. J Chem Phys. 1993;99:9438–9452.
Sibert, EL III. Modeling vibrational anharmonicity in infrared spectra of high frequency vibrations of polyatomic molecules. J Chem Phys. 2019;150(090901):1–16.
Lawton, RT, Child, MS. Excited stretching vibrations of water: The quantum mechanical picture. Mol Phys. 1980;40:773–792.
Lawton, RT, Child, MS. Local and normal stretching vibrational states of H2O. Classical and semiclassical considerations. Mol Phys. 1981;44:709–723.
Child, MS, Lawton, RT. Local and normal vibrational states: a harmonically coupled anharmonic‐oscillator model. Faraday Discuss Chem Soc. 1981;71:273–285.
Connor, JNL. The scientific life of mark sheard child. Mol Phys. 2006;104:3–9.
Lehmann, KK. On the relation of child and Lawton`s harmonically coupled anharmonic‐oscillator model and Darling–Dennison coupling. J Chem Phys. 1983;79:1098.
Lehmann, KK. On the relationship of normal modes to local modes in the vibrations of D6h symmetry molecules. J Chem Phys. 1986;84:6524–6525.
Mills, IM, Robiette, AG. On the relationship of normal modes to local modes in molecular vibrations. Mol Phys. 1985;56:743–765.
Baggott, JE. Normal modes and local modes in H2X: beyond the x, K relations. Mol Phys. 1988;65:739–749.
Law, MM, Duncan, JL. Anharmonic stretching vibrations expressed as local modes. Mol Phys. 1998;93:809–819.
Law, MM, Duncan, JL. Anharmonically‐coupled local mode to normal mode Hamiltonian transformations: Beyond the x, K‐relations. Mol Phys. 1998;93:821–830.
Matthews, DA, Vazquez, J, Stanton, JF. Calculated stretching overtone levels and Darling–Dennison resonances in water: A triumph of simple theoretical approaches. Mol Phys. 2007;105:2659–2666.
Quack, M. Spectra and dynamics of coupled vibrations in polyatomic molecules. Annu Rev Phys Chem. 1990;41:839–874.
Halonen, L. Local mode vibrations in polyatomic molecules. In: Prigogine, I, Rice, SA, editors. Advances in Chemical Physics. Volume 104. New York, NY: Wiley, 1998; p. 41–179.
Jensen, P. An introduction to the theory of local mode vibrations. Mol Phys. 2000;98:1253–1285.
Jensen, P. Local modes in vibration–rotation spectroscopy. WIREs Comput Mol Sci. 2012;2:494–512.
Albert, S, Albert, KK, Hollenstein, H, Tanner, CM, Quack, M. Fundamentals of rotation‐vibration spectra. In: Quack, M, Merkt, F, editors. Handbook of High‐resolution Spectroscopy. Volume 3. New York, NY: Wiley, 2011; p. 117–173.
Ozaki, Y, Huck, CW, Ishigaki, M, Ishikawa, D, Shinzawa, H. Near‐infrared spectroscopy in biological molecules and tissues. In: Roberts, G, Watts, A, editors. Encyclopedia of Biophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018; p. 1–19.
Gerber, RB, Chaban, GM, Brauer, B, Miller, Y. First principles calculations of anharmonic vibrational spectroscopy of large molecules. In: Dykstra, CE, Kim, KS, Fleming, G, Scuseria, GE, editors. Theory and Applications of Computational Chemistry: The First 40 Years. Amsterdam, Netherlands: Elsevier Publications, 2005; p. 165–193.
Bowman, JM, Carrington, T, Meyer, HD. Variational quantum approaches for computing vibrational energies of polyatomic molecules. Mol Phys. 2008;106:16–18.
Hansen, MB, Sparta, M, Seidler, P, Toffoli, D, Christiansen, O. New formulation and implementation of vibrational self‐consistent field theory. J Chem Theory Comput. 2010;6:235–248.
Piccardo, M, Bloino, J, Barone, V. Generalized vibrational perturbation theory for rotovibrational energies of linear, symmetric and asymmetric tops: theory, approximations, and automated approaches to deal with medium‐to‐large molecular systems. Int J Quant Chem. 2015;115:948–982.
Egidi, F, Williams‐Young, DB, Baiardi, A, et al. Effective inclusion of mechanical and electrical anharmonicity in excited electronic states: VPT2‐TDDFT route. J Chem Theory Comput. 2017;13:2789–2803.
Wang, S. Efficiently calculating anharmonic frequencies of molecular vibration by molecular dynamics trajectory analysis. ACS Omega. 2019;4:9271–9283.
Wu, J, Sousa, C, de Graaf, C. The role of vibrational anharmonicity in the computational study of thermal spin crossover. Magnetochemistry. 2019;5:49‐1–49‐14.
Latouche, C, Palazzetti, F, Skouteris, D, Barone, V. High‐accuracy vibrational computations for transition‐metal complexes including anharmonic corrections: ferrocene, ruthenocene, and osmocene as test cases. J Chem Theory Comput. 2014;10:4565–4573.
Yagi, K, Yamada, K, Kobayashi, C, Sugita, Y. Anharmonic vibrational analysis of biomolecules and solvated molecules using hybrid QM/MM computations. J Chem Theory Comput. 2019;15:1924–1938.
Roy, TK, Gerber, RB. Vibrational self‐consistent field calculations for spectroscopy of biological molecules: New algorithmic developments and applications. Phys Chem Chem Phys. 2013;15:9468–9492.
Wilson, EB Jr. A method of obtaining the expanded secular equation for the vibration frequencies of a molecule. J Chem Phys. 1939;7:1047–1052.
El`yashevich, M. ComptRend. Acad Sci URSS. 1940;28:605.
Andrews, DH. The relation between the Raman spectra and the structure of organic molecules. Phys Rev. 1930;36:544–554.
Dennison, DM. The infrared spectra of polyatomic molecules. Rev Mod Phys. 1931;3:280–345.
Dennison, DM. The infrared spectra of polyatomic molecules. Part II. Rev Mod Phys. 1940;12:175–214.
Linnett, JW, Thompson, H. Force constants and structure. Nature. 1937;139:509–510.
Linnett, JW. Force constants. Q Rev Chem Soc. 1947;1:73–90.
Urey, HC, Bradley, CA Jr. The vibrations of pentatonic tetrahedral molecules. Phys Rev. 1931;38:1969–1978.
Hill, TH. On steric effects. J Chem Phys. 1946;15:465–466.
Dostrovsky, I, Hughes, ED, Ingold, CK. Mechanism of substitution at a saturated carbon atom. Part XXXII. The role of steric hindrance. (section G) magnitude of steric effects, range of occurrence of steric and polar effects, and place of the Wagner rearrangement in nucleophilic substitution and elimination. J Chem Soc. 1946;173–194.
Gordy, W. A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms. J Chem Phys. 1946;14:305–320.
Westheimer, FH, Mayer, JE. The theory of the racemization of optically active derivatives of diphenyl. J Chem Phys. 1946;14:733–738.
Westheimer, FH. A calculation of the energy of activation for the racemization of 2,2′‐dibromo‐4,4′‐dicarboxydiphenyl. J Chem Phys. 1947;15:252–260.
Allinger, L. U B. ACS Monograph 177: Molecular Mechanics. Washington, DC: American Chemical Society, 1982.
Bowen, J, Allinger, N. Molecular mechanics: the art and science of parameterization. In: Lipkowitz, KB, editor. Reviews in Computational Chemistry. Volume 2. New York, NY: VCH Publishers, 1991; p. 81–95.
Machida, K. Principles of Molecular Mechanics. New York, NY: Wiley, 1999.
Decius, J. Classical limit of mean thermal vibration amplitudes. J Chem Phys. 1953;21:1121–1122.
Cyvin, SJ, Slater, NB. Unvariance of molecular inverse force constants. Nature. 1960;188:485.
Decius, J. Compliance matrix and molecular vibrations. J Chem Phys. 1963;38:241–248.
Jones, LH, Swanson, BI. Interpretation of potential constants: Application to study of bonding forces in metal cyanide complexes and metal carbonyls. Acc Chem Res. 1976;9:128–134.
Pople, JA, Krishnan, R, Schlegel, HB, Binkley, JS. Derivative studies in Hartree–Fock and Møller–Plesset theories. Int J Quan Chem. 1979;16(S13):225–241.
Gerratt, J, Mills, IM. Force constants and dipole‐moment derivatives of molecules from perturbed Hartree–Fock calculations. J Chem Phys. 1968;49:1719–1729.
Pulay, P. Second and third derivatives of variational energy expressions: application to multiconfigurational self‐consistent field wave functions. J Chem Phys. 1983;78:5043–5051.
Fogarasi, G, Pulay, P. AB initio vibrational force fields. Annu Rev Phys Chem. 1984;35:191–213.
Forgarasi, G, Pulay, P. Ab initio calculations of force fields and vibrational spectra. In: Durig, JR, editor. Vibrational Spectra and Structure. Volume 14. Amsterdam, Netherlands: Elsevier, 1985; p. 125–219.
Saxe, P, Yamaguchi, Y, Schaefer, HF. Analytic second derivatives in restricted Hartree–Fock theory. A method for high‐spin open‐shell molecular wave functions. J Chem Phys. 1982;77(11):5647–5654.
Fox, DJ, Osamura, Y, Hoffmann, MR, et al. Analytic energy second derivatives for general correlated wavefunctions, including a solution of the first‐order coupled‐perturbed configuration‐interaction equations. Chem Phys Lett. 1983;102(1):17–19.
Schaefer, HF, Yamaguchi, Y. A new dimension to quantum chemistry: theoretical methods for the analytic evaluation of first, second, and third derivatives of the molecular electronic energy with respect to nuclear coordinates. J Mol Struc THEOCHEM. 1986;135:369–390.
Koch, H, Jensen, HJA, Jørgensen, P, Helgaker, T, Scuseria, GE, Schaefer, HF. Coupled cluster energy derivatives. Analytic hessian for the closed‐shell coupled cluster singles and doubles wave function: theory and applications. J Chem Phys. 1990;92(8):4924–4940.
Hoffmann, MR, Fox, DJ, Gaw, JF, et al. Analytic energy second derivatives for general MCSCF wave functions. J Chem Phys. 1984;80(6):2660–2668.
Handy, NC, Schaefer, HF. On the evaluation of analytic energy derivatives for correlated wave functions. J Chem Phys. 1984;81(11):5031–5033.
Handy, NC, Amos, RD, Gaw, JF, Rice, JE, Simandiras, ED. The elimination of singularities in derivative calculations. Chem Phys Lett. 1985;120(2):151–158.
Harrison, RJ, Fitzgerald, GB, Laidig, WD, Barteltt, RJ. Analytic MBPT(2) second derivatives. Chem Phys Lett. 1986;124(3):291–294.
Salter, EA, Bartlett, RJ. Analytic energy derivatives in many‐body methods. II. Second derivatives. J Chem Phys. 1989;90(3):1767–1773.
Amos, R, Rice, J. Implementation of analytic derivative methods in quantum chemistry. Comput Phys Rep. 1989;10(4):147–187.
Helgacker, T, Jørgensen, P. Analytical calculation of geometrical derivatives in molecular electronic structure theory. Adv Quantum Chem. 1988;19:183–245.
Jørgensen, P, Simons, J. Ab initio analytical molecular gradients and hessians. J Chem Phys. 1983;79:1332.
Camp, RN, King, HF, McIver, JW, Mullally, D. Analytical force constants for MCSCF wave functions. J Chem Phys. 1983;79(2):1088–1089.
Takada, T, Dupuis, M, King, HF. Molecular symmetry. III. Second derivatives of electronic energy with respect to nuclear coordinates. J Chem Phys. 1981;75:1332.
Pulay, P. Analytical derivatives, forces, force constants, molecular geometries, and related response properties in electronic structure theory. WIREs Comput Mol Sci. 2013;4(3):169–181.
Pulay, P. Analytical Derivative Methods in Quantum Chemistry. New York, NY: John Wiley, 2007;p. 241–286.
Pulay, P. Analytical derivative techniques and the calculation of vibrational spectra. Modern Electronic Structure Theory. Singapore: World Scientific Publishing Company, 1995; p. 1191–1240.
Amos, RD. Molecular Property Derivatives. New York, NY: John Wiley, 2007;p. 99–153.
Yamaguchi, Y, Schaefer, HF III, Osamura, Y, Goddard, J. A New Dimension to Quantum Chemistry: Analytical Derivative Methods in Ab Initio Molecular Electronic Structure Theory. Oxford, England: Oxford University Press, 1994.
Stanton, JF, Gauss, J. Analytic second derivatives in high‐order many‐body perturbation and coupled‐cluster theories: computational considerations and applications. Int Rev Phys Chem. 2000;19(1):61–95.
Bast, R, UE, m, Gao, B, Helgaker, T, Ruud, K, Thorvaldsen, AJ. The ab initio calculation of molecular electric, magnetic and geometric properties. Phys Chem Chem Phys. 2011;13:2627–2651.
Helgaker, T, Coriani, S, Jørgensen, P, Kristensen, K, Olsen, J, Ruud, K. Recent advances in wave function‐based methods of molecular‐property calculations. Chem Rev. 2012;112:543–631.
Brandhorst, K, Grunenberg, J. How strong is it? The interpretation of force and compliance constants as bond strength descriptors. Chem Soc Rev. 2008;37(8):1558–1567.
Brandhorst, K, Grunenberg, J. Efficient computation of compliance matrices in redundant internal coordinates from Cartesian hessians for nonstationary points. J Chem Phys. 2010;132:184101.
Grunenberg, J. Ill‐defined concepts in chemistry: rigid force constants vs. compliance constants as bond strength descriptors for the triple bond in diboryne. Chem Sci. 2015;6(7):4086–4088.
Kreft, A, Lücht, A, Grunenberg, J, Jones, PG, Werz, DB. Kinetic studies of donor–acceptor cyclopropanes: the influence of structural and electronic properties on the reactivity. Angew Chem Int Ed. 2019;58(7):1955–1959.
Pandey, SK, Manogaran, D, Manogaran, S, Schaefer, HF. Quantification of hydrogen bond strength based on interaction coordinates: a new approach. J Phys Chem A. 2017;121(32):6090–6103.
Dash, J, Ray, S, Devi, N, Basutkar, N, Ambade, AV, Pesala, B. Fine‐tuning of terahertz resonances in hydrogen‐bonded organic molecular complexes. J Mol Struct. 2019;1184:495–502.
Madhav, MV, Manogaran, S. A relook at the compliance constants in redundant internal coordinates and some new insights. J Chem Phys. 2009;131:174112‐1–1174112‐6.
Vicharelli, PA, McDonald, FA. Generalized classical theory of intramolecular coordinate relaxation in polyatomic molecules. J Chem Phys. 1980;72(8):4627–4636.
Baker, J, Pulay, P. The interpretation of compliance constants and their suitability for characterizing hydrogen bonds and other weak interactions. J Am Chem Soc. 2006;128:11324–11325.
Baker, J. Compliance constants: Are they of any real use? WIREs Comput Mol Sci. 2014;4:111–115.
McKean, DC. Individual CH bond strengths in simple organic compounds: Effects of conformation and substitution. Chem Soc Rev. 1978;7:399.
Larsson, JA, Cremer, D. Theoretical verification and extension of the Mckean relationship between bond lengths and stretching frequencies. J Mol Struct. 1999;485–486:385–407.
Kittel, C. Introduction to Solid State Physics. New York, NY: Wiley, 2005.
Turrell, G. Infrared and Raman Spectra of Crystals. New York, NY: Academic Press, 1972.
Birman, JL. Theory of Crystal Space Groups and Lattice Dynamics: Infra‐Red and Raman Optical Processes of Insulating Crystals. Berlin Heidelberg: Springer, 2012.
Tuschel, D. Raman spectroscopy and polymorphism. Spectroscopy. 2019;34:10–21.
Sokolov, VI, Grudzev, NB, Farina, IA. Local vibrational mode in zinc telluride associated with a charged nickel impurity. Phys Solid State. 2003;45:1638–1643.
Sangster, MJL, Harding, JH. Calculation of local and gab mode frequencies from impurities in alkali halide crystals. J Phys C Solid State Phys. 1986;19:6153–6158.
Güngerich, M, Sander, T, Heiliger, C, Czerner, M, Klar, PJ. Local N environment in the dilute nitrides Ga(N,P), Ga(N,As), and Ga(N,Sb). Phys Status Solidi (b). 2013;250(4):755–759.
Sanson, A, Napolitani, E, Impellizzeri, G, et al. Investigation of germanium implanted with aluminum by multi‐laser micro‐Raman spectroscopy. Thin Solid Films. 2013;541(4):76–78.
Sanson, A, Giarola, M, Napolitani, E, et al. Study of carrier concentration profiles in Al‐implanted Ge by micro‐Raman spectroscopy under different excitation wavelengths. J Raman Spectrosc. 2013;44(5):665–669.
Markevich, VP, Peaker, AR, Hamilton, B, et al. The trivacancy and trivacancy‐oxygen family of defects in silicon. Solid State Phenom. 2014;205:181–190.
Parmar, N, Mccluskey, M, Lynn, K. Vibrational spectroscopy of Na─H complexes in ZnO. J Electron Mater. 2013;12(42):3426–3428.
Jacob, CR, Luber, S, Reiher, M. Understanding the signatures of secondary‐structure elements in proteins with Raman optical activity spectroscopy. Chem A Eur J. 2009;15(48):13491–13508.
Jacob, CR, Reiher, M. Localizing normal modes in large molecules. J Chem Phys. 2009;130:084106.
Liegeois, V, Jacob, CR, Champagne, B, Reiher, M. Analysis of vibrational Raman optical activity signatures of the (TG)N and (GG)N conformations of isotactic polypropylene chains in terms of localized modes. J Phys Chem A. 2010;114:7198–7212.
Cheng, X, Steele, RP. Efficient anharmonic vibrational spectroscopy for large molecules using local‐mode coordinates. J Chem Phys. 2014;141(10):104105.
Panek, PT, Hoeske, AA, Jacob, CR. On the choice of coordinates in anharmonic theoretical vibrational spectroscopy: harmonic vs. anharmonic coupling in vibrational configuration interaction. J Chem Phys. 2019;150:054107‐1–054107‐23.
Cline, D. Variational Principles in Classical Mechanics. Rochester, NY: University of Rochester River Campus Libraries, 2017.
Hsu, CP. The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res. 2009;42:509–518.
Wang, CI, Braza, MKE, Claudio, GC, Nellas, RB, Hsu, CP. Machine learning for predicting electron transfer coupling. J Phys Chem A. 2019;123:7792–7802.
Woodward, LA. Introduction to the Theory of Molecular Vibrations and Vibrational Spectroscopy. Oxford, England: Oxford University Press, 1972.
Califano, S. Vibrational States. New York, NY: Wiley, 1976.
Groner, P. Normal Coordinate Analysis. New York, NY: John Wiley, 2006.
Kelley, JD, Leventhal, JJ. Normal modes and coordinates. Problems in Classical and Quantum Mechanics. Berlin, Germany: Springer, 2017; p. 95–117.
Neto, N. Tensor formalism in anharmonic calculations. Chem Phys. 1984;91:89.
Stare, J. First‐principle calculation of reduced masses in vibrational analysis using generalized internal coordinates: some crucial aspects and examples. J Chem Inf Model. 2007;47(3):840–850.
Zou, W, Kalescky, R, Kraka, E, Cremer, D. Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme. J Chem Phys. 2012;137:084114.
Zou, W, Cremer, D. C2 in a box: determining its intrinsic bond strength for the X ground state. Chem A Eur J. 2016;22:4087–4097.
Cremer, D, Kraka, E. From molecular vibrations to bonding, chemical reactions, and reaction mechanism. Curr Org Chem. 2010;14:1524–1560.
Kalescky, R, Kraka, E, Cremer, D. Identification of the strongest bonds in chemistry. J Phys Chem A. 2013;117:8981–8995.
Mayer, I. Charge, bond order and valence in the ab initio theory. Chem Phys Lett. 1983;97:270–274.
Mayer, I. Bond orders and valences from ab initio wave functions. Int J Quantum Chem. 1986;29:477–483.
Mayer, I. Bond order and valence indices: a personal account. J Comput Chem. 2007;28(1):204–221.
Zou, W, Cremer, D. Properties of local vibrational modes: The infrared intensity. Theor Chem Acc. 2014;133:1451–1466.
Kalescky, R, Zou, W, Kraka, E, Cremer, D. Local vibrational modes of the water dimer—comparison of theory and experiment. Chem Phys Lett. 2012;554:243–247.
Kalescky, R, Kraka, E, Cremer, D. Local vibrational modes of the formic acid dimer ‐ the strength of the double H‐bond. Mol Phys. 2013;111:1497–1510.
Johnson, R. NIST Computational Chemistry Comparison and Benchmark Database—NIST Standard Reference Database Number 101. National Institute of Standards and Technology; 2019. http://cccbdb.nist.gov/
Bak, O, Borowski, P. Scaling procedures in vibrational spectroscopy. In: Koleźyński, A, Król, M, editors. Molecular Spectroscopy‐Experiment and Theory: From Molecules to Functional Materials. New York, NY: Springer, 2019; p. 49–95.
Kesharwani, MK, Brauer, B, MJM, L. Frequency and zero‐point vibrational energy scale factors for double‐hybrid density Functionals (and other selected methods): Can anharmonic force fields be avoided? J Chem Phys. 2015;119:1701–1714.
Witek, HA, Morokuma, K. Systematic study of vibrational frequencies calculated with the self‐consistent charge density functional tight‐binding method. Int J Quant Chem. 2004;25:1858–1864.
Mizugai, Y, Katayama, M. The 5th overtone of the C─H stretching vibrations and the bond lengths in some heterocyclic‐compounds. Chem Phys Lett. 1980;73:240–243.
Wong, JS, Moore, CB. Inequivalent C─H oscillators of gaseous alkanes and alkenes in laser photo‐acoustic overtone spectroscopy. J Chem Phys. 1982;77:603–615.
Sbrana, G, Muniz‐Miranda, M. High overtones of c‐h stretching vibrations in isoxazole, thiazole, and related methyl and dimethyl derivatives. J PhysChem A. 1998;102:7603–7608.
Hippler, M, Quack, M. Intramolecular energy transfer from isotope selective overtone spectroscopy by vibrationally assisted dissociation and photo‐fragment ionization. Ber Bunsen Phys Chem. 1997;101:356–362.
Hollensteun, H, Luckhaus, D, Quack, M. Dynamics of the CH chromophore in CHx3—a combined treatment for a set of isotopic‐species. J Mol Struct. 1993;294:65–70.
Chai, JD, Head‐Gordon, M. Long‐range corrected hybrid density functionals with damped atom‐atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620.
Dunning, TH. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90(2):1007–1023.
Kendall, RA, Dunning, TH, Harrison, RJ. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J Chem Phys. 1992;96(9):6796–6806.
Stark, J. Observation of the separation of spectral lines by an electric field. Nature. 1913;92:401–401.
Chattopadhyay, A, Boxer, SG. Vibrational stark effect spectroscopy. J Am Chem Soc. 1995;117:1449–1450.
Bublitz, GU, Boxer, SG. Stark spectroscopy: Applications in chemistry, biology, and materials science. Annu Rev Phys Chem. 1997;48:213–242.
Boxer, SG. Stark realities. J Phys Chem B. 2009;113(10):2972–2983.
Fried, SD, Boxer, SG. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc Chem Res. 2015;48:998–1006.
Ma, J, Pazos, IM, Zhang, W, Culik, RM, Gai, F. Site‐specific infrared probes of proteins. Annu Rev Phys Chem. 2015;66(1):357–377.
Fried, SD, Boxer, SG. Electric fields and enzyme catalysis. Annu Rev Biochem. 2017;86:387–415.
Adhikary, R, Zimmermann, J, Romesberg, FE. Transparent window vibrational probes for the characterization of proteins with high structural and temporal resolution. Chem Rev. 2017;117(3):1927–1969.
Błasiak, B, Londergan, CH, Webb, LJ, Cho, M. Vibrational probes: From small molecule solvatochromism theory and experiments to applications in complex systems. Acc Chem Res. 2017;50(4):968–976.
Slocum, JD, Webb, LJ. Measuring electric fields in biological matter using the vibrational stark effect of nitrile probes. Annu Rev Phys Chem. 2018;69:253–271.
Welborn, VV, Head‐Gordon, T. Computational design of synthetic enzymes. Chem Rev. 2018;119(11):6613–6630.
Thiel, W, Hummer, G. Methods for computational chemistry. Nature. 2013;504(7478):96–97.
Barnes, L, Schindler, B, Compagnon, I, Allouche, AR. Fast and accurate hybrid QM/MM approach for computing anharmonic corrections to vibrational frequencies. J Mol Model. 2016;22(11):285‐1–285‐13.
Senn, HM, Thiel, W. QM/MM methods for biomolecular systems. Angew Chem Int Ed. 2009;48(7):1198–1229.
Vreven, T, Morokuma, K. Hybrid methods: ONIOM(QM:MM) and QM/MM. Annual Reports in Computational Chemistry. Amsterdam, Netherlands: Elsevier, 2006; p. 35–51.
Gao, J. Hybrid quantum and molecular mechanical simulations:? An alternative avenue to solvent effects in organic chemistry. Acc Chem Res. 1996;29:298–305.
Head, JD. Computation of vibrational frequencies for adsorbates on surfaces. Int J Quantum Chem. 1997;65(5):827–838.
Li, H, Jensen, JH. Partial hessian vibrational analysis: The localization of the molecular vibrational energy and entropy. Theor Chem Acc. 2002;107(4):211–219.
Ghysels, A, Van Neck, D, Van Speybroeck, V, Verstraelen, T, Waroquier, M. Vibrational modes in partially optimized molecular systems. J Chem Phys. 2007;126(22):224102.
Ghysels, A, Van Neck, D, Waroquier, M. Cartesian formulation of the mobile block Hessian approach to vibrational analysis in partially optimized systems. J Chem Phys. 2007;127(16):164108.
Ghysels, A, Van Neck, D, Brooks, BR, Van Speybroeck, V, Waroquier, M. Normal modes for large molecules with arbitrary link constraints in the Mobile block Hessian approach. J Chem Phys. 2009;130(8):084107.
Ghysels, A, Van Speybroeck, V, Pauwels, E, Van Neck, D, Brooks, BR, Waroquier, M. Mobile block Hessian approach with adjoined blocks: An efficient approach for the calculation of frequencies in macromolecules. J Chem Theory Comput. 2009;5(5):1203–1215.
Woodcock, HL, Zheng, W, Ghysels, A, Shao, Y, Kong, J, Brooks, BR. Vibrational subsystem analysis: A method for probing free energies and correlations in the harmonic limit. J Chem Phys. 2008;129(21):214109‐1–214109‐19.
Ghysels, A, Van Speybroeck, V, Pauwels, E, et al. Comparative study of various normal mode analysis techniques based on partial hessians. J Comput Chem. 2010;31(5):994–1007.
Huix‐Rotllant, M, Ferré, N. An effective procedure for analyzing molecular vibrations in terms of local fragment modes. J Chem Theory Comput. 2016;12(10):4768–4777.
Tao, Y, Tian, C, Verma, N, et al. Recovering intrinsic fragmental vibrations using the generalized subsystem vibrational analysis. J Chem Theory Comput. 2018;14:2558–2569.
Campbell, SL, Meyer, CD. Generalized Inverses of Linear Transformations. London, England: Society for Industrial and Applied Mathematics, 2008.
Penrose, R. Generalized inverse for matrices. Proc Cambridge Phil Soc. 1955;51:406–413.
Becke, AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993 apr;98(7):5648–5652.
Lee, C, Yang, W, Parr, RG. Development of the Colle–Salvetti correlation‐energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789.
Vosko, SH, Wilk, L, Nusair, M. Accurate spin‐dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys. 1980 aug;58(8):1200–1211.
Stephens, PJ, Devlin, FJ, Chabalowski, CF, Frisch, MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994 nov;98(45):11623–11627.
Grimme, S, Antony, J, Ehrlich, S, Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. J Chem Phys. 2010;132(15):154104.
Grimme, S, Ehrlich, S, Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456–1465.
Krishnan, R, Binkley, JS, Seeger, R, Pople, JA. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980;72:650–654.
Tao, Y, Zou, W, Sethio, D, et al. In situ measure of intrinsic bond strength in crystalline structures: Local vibrational mode theory for periodic systems. J Chem Theory Comput. 2019;15:1761–1776.
Born, M, Huang, K. Dynamical Theory of Crystal Lattices. Oxford, England: Clarendon Press, 1954.
Dovesi, R, Erba, A, Orlando, R, et al. Quantum‐mechanical condensed matter simulations with CRYSTAL. WIREs Comput Mol Sci. 2018;8(4):e1360.
Pascale, F, Zicovich‐Wilson, CM, Gejo, FL, Civalleri, B, Orlando, R, Dovesi, R. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem. 2004 mar;25(6):888–897.
Civalleri, B, Pascale, F, Noel, Y. Vibrational frequencies calculation. CRYSTAL. 2017;2017.
Gamboa, A, Vignoles, GL, Leyssale, JM. On the prediction of graphene`s elastic properties with reactive empirical bond order potentials. Carbon. 2015;89:176–187.
Allen, MJ, Tung, VC, Kaner, RB. Honeycomb carbon: A review of graphene. Chem Rev. 2010;110:132–145.
Ghuge, AD, Shirode, AR, Kadam, VJ. Graphene: A comprehensive review. Curr Drug Targets. 2017 mar;18(6):724–733.
Choi, W, Lahiri, I, Seelaboyina, R, Kang, YS. Synthesis of graphene and its applications: A review. Crit Rev Solid State. 2010 feb;35(1):52–71.
Neto, AHC, Guinea, F, Peres, NMR, Novoselov, KS, Geim, AK. The electronic properties of graphene. Rev Mod Phys. 2009 jan;81(1):109–162.
Pierson, HO. Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (Materials Science and Process Technology). Park Ridge, NJ: Noyes Publications, 2012.
Hom, T, Kiszenik, W, Post, B. Accurate lattice constants from multiple reflection measurements. II. Lattice constants of germanium silicon, and diamond. J Appl Cryst. 1975;8:457–458.
Luo, YR. Comprehensive Handbook of Chemical Bond Energies. Boca Raton, FL: CRC Press, 2007.
Earl, JC. Carbon–carbon bond energies. Tetrahedron. 1960;9:65–66.
Popov, IV, Görne, AL, Tchougreeff, AL, Dronskowski, R. Relative stability of diamond and graphite as seen through bonds and hybridizations. PhysChemChemPhys. 2019;21:10961–10969.
Hu, M, He, J, Zhao, Z, et al. Compressed glassy carbon: an ultrastrong and elastic interpenetrating graphene network. Sci Adv. 2017;3:e1603213‐1–e1603213‐7.
Yuan, Q, Lin, CT, Chee, KWA. All‐carbon devices based on sp2‐on‐sp3 configuration. APL Mater. 2019;7:030901‐1–030901‐7.
Tasis, D, Tagmatarchis, N, Bianco, A, Prato, M. Chemistry of carbon nanotubes. Chem Rev. 2006 mar;106(3):1105–1136.
Setiawan, D, Sethio, D, Cremer, D, Kraka, E. From strong to weak NF bonds: on the design of a new class of fluorinating agents. Phys Chem Chem Phys. 2018;20:23913–23927.
Humason, A, Zou, W, Cremer, D. 11,11‐Dimethyl‐1,6‐methano[10]annulene‐an annulene with an ultralong CC bond or a fluxional molecule? J Phys Chem A. 2014;119:1666–1682.
Kalescky, R, Kraka, E, Cremer, D. Are carbon‐halogen double and triple bonds possible? Int J Quant Chem. 2014;114:1060–1072.
Kalescky, R, Zou, W, Kraka, E, Cremer, D. Quantitative assessment of the multiplicity of carbon‐halogen bonds: carbenium and halonium ions with F, Cl, Br, and I. J Phys Chem A. 2014;118:1948–1963.
Cremer, D, Wu, A, Larsson, JA, Kraka, E. Some thoughts about bond energies, bond lengths, and force constants. J Mol Model. 2000;6:396–412.
Kraka, E, Cremer, D. Weaker bonds with shorter bond lengths. Rev Proc Quim. 2012;6(11):31–34.
Setiawan, D, Kraka, E, Cremer, D. Hidden bond anomalies: The peculiar case of the fluorinated amine chalcogenides. J Phys Chem A. 2015;119:9541–9556.
Kraka, E, Setiawan, D, Cremer, D. Re‐evaluation of the bond length‐bond strength rule: the stronger bond is not always the shorter bond. J Comput Chem. 2015;37:130–142.
Freindorf, M, Kraka, E, Cremer, D. A comprehensive analysis of hydrogen bond interactions based on local vibrational modes. Int J Quant Chem. 2012;112:3174–3187.
Kalescky, R, Zou, W, Kraka, E, Cremer, D. Vibrational properties of the isotopomers of the water dimer derived from experiment and computations. Aust J Chem. 2014;67:426.
Tao, Y, Zou, W, Jia, J, Li, W, Cremer, D. Different ways of hydrogen bonding in water—why does warm water freeze faster than cold water? J Chem Theory Comput. 2017;13:55–76.
Tao, Y, Zou, W, Kraka, E. Strengthening of hydrogen bonding with the push‐pull effect. Chem Phys Lett. 2017;685:251–258.
Freindorf, M, Tao, Y, Sethio, D, Cremer, D, Kraka, E. New mechanistic insights into the Claisen rearrangement of chorismate—a unified reaction valley approach study. Mol Phys. 2018;117:1172–1192.
Makoś, MZ, Freindorf, M, Sethio, D, Kraka, E. New insights into Fe−H2 and Fe−H− bonding of a [NiFe] hydrogenase mimic—a local vibrational mode study. Theor Chem Acc. 2019;138:76–1–76–18.
Lyu, S, Beiranvand, N, Freindorf, M, Kraka, E. Interplay of ring puckering and hydrogen bonding in deoxyribonucleosides. J Phys Chem A. 2019;123:7087–7103.
Oliveira, V, Kraka, E, Cremer, D. The intrinsic strength of the halogen bond: electrostatic and covalent contributions described by coupled cluster theory. Phys Chem Chem Phys. 2016;18:33031–33046.
Oliveira, V, Kraka, E, Cremer, D. Quantitative assessment of halogen bonding utilizing vibrational spectroscopy. Inorg Chem. 2016;56:488–502.
Oliveira, V, Cremer, D. Transition from metal‐ligand bonding to halogen bonding involving a metal as halogen acceptor: a study of Cu, Ag, Au, Pt, and Hg complexes. Chem Phys Lett. 2017;681:56–63.
Yannacone, S, Oliveira, V, Verma, N, Kraka, E. A continuum from halogen bonds to covalent bonds: Where do λ3 Iodanes fit? Inorganics. 2019;7(47):1–23.
Oliveira, VP, Kraka, E, Machado, FBC. Pushing 3c‐4e bonds to the limit: A coupled cluster study of stepwise fluorination of first‐row atoms. Inorg Chem. 2019;58:14777–14789.
Oliveira, VP, Marcial, BL, Machado, FBC, Kraka, E. Metal‐halogen bonding seen through the eyes of vibrational spectroscopy. Materials. 2020;13:55–1–55–23.
Setiawan, D, Kraka, E, Cremer, D. Description of Pnicogen bonding with the help of vibrational spectroscopy‐the missing link between theory and experiment. Chem Phys Lett. 2014;614:136–142.
Setiawan, D, Kraka, E, Cremer, D. Strength of the Pnicogen bond in complexes involving group VA elements N, P, and As. J Phys Chem A. 2014;119:1642–1656.
Setiawan, D, Cremer, D. Super‐Pnicogen bonding in the radical anion of the fluorophosphine dimer. Chem Phys Lett. 2016;662:182–187.
Oliveira, V, Cremer, D, Kraka, E. The many facets of chalcogen bonding: described by vibrational spectroscopy. J Phys Chem A. 2017;121:6845–6862.
Oliveira, V, Kraka, E. Systematic coupled cluster study of noncovalent interactions involving halogens, chalcogens, and pnicogens. J Phys Chem A. 2017;121:9544–9556.
Sethio, D, Oliveira, V, Kraka, E. Quantitative assessment of tetrel bonding utilizing vibrational spectroscopy. Molecules. 2018;23:2763.
Zhang, X, Dai, H, Yan, H, Zou, W, Cremer, D. B─H π interaction: a new type of nonclassical hydrogen bonding. J Am Chem Soc. 2016;138:4334–4337.
Zou, W, Zhang, X, Dai, H, Yan, H, Cremer, D, Kraka, E. Description of an unusual hydrogen bond between carborane and a phenyl group. J Org Chem. 2018;856:114–127.
Setiawan, D, Kraka, E, Cremer, D. Quantitative assessment of aromaticity and antiaromaticity utilizing vibrational spectroscopy. J Org Chem. 2016;81:9669–9686.
Li, Y, Oliveira, V, Tang, C, Cremer, D, Liu, CG, Ma, J. The peculiar role of the Au3 unit in Aum clusters: σ‐aromaticity of the Au5Zn+ ion. Inorg Chem. 2017;56:5793–5803.
Kalescky, R, Kraka, E, Cremer, D. Description of aromaticity with the help of vibrational spectroscopy: Anthracene and phenanthrene. J Phys Chem A. 2013;118:223–237.
Kalescky, R, Kraka, E, Cremer, D. New approach to Tolman`s electronic parameter based on local vibrational modes. Inorg Chem. 2013;53:478–495.
Setiawan, D, Kalescky, R, Kraka, E, Cremer, D. Direct measure of metal‐ligand bonding replacing the Tolman electronic parameter. Inorg Chem. 2016;55:2332–2344.
Cremer, D, Kraka, E. Generalization of the Tolman electronic parameter: the metal–ligand electronic parameter and the intrinsic strength of the metal‐ligand bond. Dalton Trans. 2017;46:8323–8338.
Li, Y, Liu, C, Oliveira, V, Cremer, D, Chen, Z, Ma, J. Odd‐even effect of the number of free valence electrons on the electronic structure properties of gold‐thiolate clusters. Mol Phys. 2018;117:1442–1450.
Tao, Y, Zou, W, Cremer, D, Kraka, E. Characterizing chemical similarity with vibrational spectroscopy: New insights into the substituent effects in Monosubstituted benzenes. J Phys Chem A. 2017;121:8086–8096.
Tao, Y, Zou, W, Cremer, D, Kraka, E. Correlating the vibrational spectra of structurally related molecules: a spectroscopic measure of similarity. J Comput Chem. 2017;39:293–306.
Verma, N, Tao, Y, Marcial, BL, Kraka, E. Correlation between molecular acidity (pka) and vibrational spectroscopy. J Mol Model. 2019;25:48.
Kraka, E, Freindorf, M, Cremer, D. Chiral discrimination by vibrational spectroscopy utilizing local modes. Chirality. 2013;25:185–196.
Kraka, E. Reaction path Hamiltonian and the unified reaction valley approach. WIREs Comput Mol Sci. 2011;1:531–556.
Kraka, E, Zou, W, Freindorf, M, Cremer, D. Energetics and mechanism of the hydrogenation of XHn for group IV to group VII elements X. J Chem Theory Comput. 2012;8:4931–4943.
Kraka, E, Cremer, D. Dieter Cremer`s contribution to the field of theoretical chemistry. Int J Quantum Chem. 2019;119:e25849.
Konkoli, Z, Kraka, E, Cremer, D. Unified Reaction Valley approach mechanism of the reaction CH3 + H2 → CH4 + H. J Phys Chem A. 1997;101:1742–1757.
Cremer, D, Wu, A, Kraka, E. The mechanism of the reaction FH + H2C = CH2 → H2C─CFH3. Investigation of hidden intermediates with the unified reaction valley approach. Phys Chem Chem Phys. 2001;3:674–687.
Freindorf, M, Sexton, T, Kraka, E, Cremer, D. The mechanism of the cycloaddition reaction of 1,3‐dipole molecules with acetylene ‐ an investigation with the unified reaction valley approach. Theor Chem Acc. 2013;133:1423–1441.
Zou, W, Sexton, T, Kraka, E, Freindorf, M, Cremer, D. A new method for describing the mechanism of a chemical reaction based on the unified reaction valley approach. J Chem Theory Comput. 2016;12:650–663.
Zou, W, Tao, Y, Freindorf, M, Cremer, D, Kraka, E. Local vibrational force constants ‐ from the assessment of empirical force constants to the description of bonding in large systems. Chem Phys Lett. 2020;748:137337.
Tao, Y, Qiu, Y, Zou, W, Nanayakkara, S, Yannacone, S, Kraka, E. In situ assessment of intrinsic strength of X─I⋯OA type halogen bonds in molecular crystals with periodic local vibrational mode theory. Molecules. 2020;25:1589.
Shaik, S, Rzepa, HS, Hoffmann, R. One molecule, two atoms, three views, four bonds? Angew Chem Int Ed Engl. 2013;52:3020–3033.
Xu, LT, Dunning, TH. Insights into the perplexing nature of the bonding in C2 from generalized valence bond calculations. J Chem Theory Comput. 2014;10:195–201.
Cooper, DL, Penotti, FE, Ponecc, R. Why is the bond multiplicity in C2 so illusive? Comp Theor Chem. 2015;1053:189–194.
Hermann, M, Frenking, G. The chemical bond in C2. Chem A Eur J. 2016;22:44100–44108.
Kraka, E, Cremer, D. Chemical implication of local features of the electron density distribution. In: Maksic, ZB, editor. Theoretical Models of Chemical Bonding. The Concept of the Chemical Bond. Volume 2. Verlag, Heidelberg: Springer, 1990; p. 453.
Kraka, E, Cremer, D. Description of chemical reactions in terms of the properties of the electron density. J Mol Struct (THEOCHEM). 1992;255:189–206.
Clar, E. The Aromatic Sextet. New York, NY: John Wiley %26 Sons, 1972.
Mpemba, EB, Osborne, DG. Cool? Phys Education. 1969;4:172–175.
Kemsley, J. Why warm water freezes faster than cold water. Chem Eng News. 2017;95:8.
Tolman, CA. Phosphorus ligand exchange equilibriums on zerovalent nickel. Dominant role for steric effects. J Am Chem Soc. 1970;92(10):2953–2956.
Tolman, CA. The 16 and 18 electron rule in organometallic chemistry and homogeneous catalysis. Chem Soc Rev. 1972;1(3):337.
Tolman, CA. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev. 1977;77:313–348.
Perrin, L, Clot, E, Eisenstein, O, Loch, J, Crabtree, RH. Computed ligand electronic parameters from quantum chemistry and their relation to Tolman parameters, lever parameters, and Hammett constants. Inorg Chem. 2001;40:5806–5811.
Gusev, DG. Donor properties of a series of two‐electron ligands. Organometallics. 2009;28(3):763–770.
Zobi, F. Ligand electronic parameters as a measure of the polarization of the C═O bond in [M(CO)xLy]n complexes and of the relative stabilization of [M(CO)xLy]n/n+1 species. Inorg Chem. 2010;49(22):10370–10377.
Durand, DJ, Fey, N. Computational ligand descriptors for catalyst design. Chem Rev. 2019;119(11):6561–6594.
Fey, N, Orpen, AG, Harvey, JN. Building ligand knowledge bases for organometallic chemistry computational description of phosphorus(III)‐donor ligands and the metal–phosphorus bond. Coord Chem Rev. 2009;253(5–6):704–722.
Fey, N. The contribution of computational studies to organometallic catalysis descriptors, mechanisms and models. Dalton Trans. 2010;39:296–310.
Kühl, O. Predicting the net donating ability of phosphines—do we need sophisticated theoretical methods? Coord Chem Rev. 2005;249:693–704.
McIntosh, AI, Yang, B, Goldup, SM, Watkinson, M, Donnan, RS. Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chem Soc Rev. 2012;41:2072–2082.
Mantsch, HH, Naumann, D. Terahertz spectroscopy: The renaissance of far infrared spectroscopy. J Mol Struct. 2010;964:1–4.
Parrott, EPJ, Sun, Y, Pickwell‐MacPherson, E. Terahertz spectroscopy: Its future role in medical diagnoses. J Mol Struct. 2011;1006:66–76.
Körsgen, H, Urban, W, Brown, JM. The infrared spectrum of FeH2, studied in the gas phase by laser magnetic resonance. J Chem Phys. 1999;110(8):3861–3869.
Carroll, PK, McCormack, P. The spectrum of FeH: laboratory and solar identification. Astrophys J. 1972;177:L33.
DeYonker, NJ, Allen, WD. Taming the low‐lying electronic states of FeH. J Chem Phys. 2012;137(23):234303.
Li, HW, Zhu, M, Buckley, C, Jensen, T. Functional materials based on metal hydrides. Inorganic. 2018;6(3):91.
Nakazawa, H, Itazaki, M. Fe −H complexes in catalysis. In: Plietker, B, editor. Iron Catalysis: Fundamentals and Applications. Berlin, Heidelberg: Springer, Berlin Heidelberg, 2011; p. 27–81.
Glendening, ED, Landis, CR, Weinhold, F. NBO 6.0: Natural bond orbital analysis program. J Comput Chem. 2013;34(16):1429–1437.
Reed, AE, Weinstock, RB, Weinhold, F. Natural population analysis. J Chem Phys. 1985;83(2):735–746.
Zou, W, Izotov, D, Cremer, D. New way of describing static and dynamic deformations of the Jahn–Teller type in ring molecules. J Phys Chem A. 2011;115:8731–8742.
Zou, W, Filatov, M, Cremer, D. Bond pseudorotation, Jahn–Teller, and Pseudo–Jahn–Teller effects in the cyclopentadienyl cation and its pentahalogeno derivatives. Int J Quant Chem. 2012;112:3277–3288.
Zou, W, Cremer, D. Description of bond pseudorotation, bond pseudolibration, and ring pseudoinversion processes caused by the Pseudo–Jahn–Teller effect: Fluoro derivatives of the cyclopropane radical cation. Aust J Chem. 2014;67:435.
Jahn, MK, Dewald, DA, López, MV, et al. Pseudorotational landscape of seven‐membered rings: the most stable chair and twist‐boat conformers of ɛ‐caprolactone. Chem A Eur J. 2014;20:14084–14089.
Cremer, D, Pople, JA. General definition of ring puckering coordinates. J Am Chem Soc. 1975;97:1354–1358.