Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133–A1138.

Levy, M, Yang, W, Parr, RG. A new functional with homogeneous coordinate scaling in density functional theory: F [ ρ,λ]. J Chem Phys. 1985;83(5):2334–2336.

Becke, AD. Density‐functional exchange‐energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38(6):3098–3100.

Becke, AD. A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys. 1993;98(2):1372–1377.

Becke, AD. Density‐functional thermochemistry 3: The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652.

Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.

Perdew, JP, Emzerhof, M, Burke, K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys. 1996;105(22):9982–9985.

Seidl, A, Görling, A, Vogl, P, Majewski, JA, Levy, M. Generalized Kohn‐Sham schemes and the band‐gap problem. Phys Rev B. 1996;53(7):3764–3774.

Becke, AD. Density‐functional thermochemistry. V. Systematic optimization of exchange‐correlation functionals. J Chem Phys. 1997;107(20):8554–8560.

Ernzerhof, M, Scuseria, GE. Assessment of the Perdew–Burke–Ernzerhof exchange‐correlation functional. J Chem Phys. 1999;110(11):5029–5036.

Carlo, A, Vincenzo, B. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys. 1999;110(13):6158–6170.

Tao, JM, Perdew, JP, Staroverov, VN, Scuseria, GE. Climbing the density functional ladder: Nonempirical meta‐generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91(14):146401–146404.

Heyd, J, Scuseria, G, Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2003;118(18):8207–8215.

Xu, X, Goddard, WA III. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci USA. 2004;101(9):2673–2677.

Xu, X, Goddard, WA III. The extended Perdew‐Burke‐Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J Chem Phys. 2004;121(9):4068–4082.

Zhao, Y, Truhlar, DG. A new local density functional for main‐group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys. 2006;125(19):194101–194118.

Chai, J‐D, Head‐Gordon, M. Long‐range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10(44):6615–6620.

Zhao, Y, Truhlar, DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06‐class functionals and 12 other functionals. Theor Chem Acc. 2008;120(1–3):215–241.

Sun, J, Ruzsinszky, A, Perdew, JP. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett. 2015;115(3):036402.

Mardirossian, N, Head‐Gordon, M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol Phys. 2017;115(19):2315–2372.

Goerigk, L, Mehta, N. A trip to the density functional theory zoo: Warnings and recommendations for the user. Aust J Chem. 2019;72(8):563–573.

Curtiss, LA, Raghavachari, K, Redfern, PC, Pople, JA. Assessment of Gaussian‐3 and density functional theories for a larger experimental test set. J Chem Phys. 2000;112(17):7374–7383.

Wodrich, MD, Corminboeuf, C, Schleyer, PV. Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Org Lett. 2006;8(17):3631–3634.

Zhang, IY, Wu, JM, Xu, X. Extending the reliability and applicability of B3LYP. Chem Commun. 2010;46(18):3057–3070.

Zhao, Y, Truhlar, DG. Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theory Comput. 2005;1(3):415–432.

Langreth, DC, Perdew, JP. Exchange‐correlation energy of a metallic surface: Wave‐vector analysis. Phys Rev B. 1977;15(6):2884–2901.

Furche, F. Molecular tests of the random phase approximation to the exchange‐correlation energy functional. Phys Rev B. 2001;64(19):195120–195128.

Furche, F, van Voorhis, T. Fluctuation‐dissipation theorem density‐functional theory. J Chem Phys. 2005;122(16):164106–164110.

Harl, J, Kresse, G. Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation‐dissipation theory. Phys Rev B. 2008;77(4):045136.

Fuchs, M, Gonze, X. Accurate density functionals: Approaches using the adiabatic‐connection fluctuation‐dissipation theorem. Phys Rev B. 2002;65(23):235109.

Grimme, S. Semiempirical hybrid density functional with perturbative second‐order correlation. J Chem Phys. 2006;124(3):034108.

Tarnopolsky, A, Karton, A, Sertchook, R, Vuzman, D, Martin, JML. Double‐hybrid functionals for thermochemical kinetics. Chem A Eur J. 2008;112(1):3–8.

Karton, A, Tarnopolsky, A, Lamère, J‐F, Schatz, GC, Martin, JML. Highly accurate first‐principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double‐hybrid functional for thermochemistry and thermochemical kinetics. Chem A Eur J. 2008;112(50):12868–12886.

Chai, JD, Head‐Gordon, M. Long‐range corrected double‐hybrid density functionals. J Chem Phys. 2009;131(17):174105–174113.

Zhang, Y, Xu, X, Goddard, WA III. Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc Natl Acad Sci USA. 2009;106(13):4963–4968.

Kozuch, S, Gruzman, D, Martin, JML. DSD‐BLYP: A general purpose double hybrid density functional including spin component scaling and dispersion correction. J Phys Chem C. 2010;114(48):20801–20808.

Goerigk, L, Grimme, S. Efficient and accurate double‐hybrid‐meta‐GGA density functionals—Evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput. 2011;7(2):291–309.

Kozuch, S, Martin, JML. DSD‐PBEP86: In search of the best double‐hybrid DFT with spin‐component scaled MP2 and dispersion corrections. Phys Chem Chem Phys. 2011;13(45):20104–20107.

Sharkas, K, Toulouse, J, Savin, A. Double‐hybrid density‐functional theory made rigorous. J Chem Phys. 2011;134(6):064113.

Zhang, IY, Xu, X, Jung, Y, Goddard, WA III. A fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin ansatz. Proc Natl Acad Sci USA. 2011;108(50):19896–19900.

Zhang, IY, Su, NQ, Brémond, ÉAG, Adamo, C, Xu, X. Doubly hybrid density functional xDH‐PBE0 from a parameter‐free global hybrid model PBE0. J Chem Phys. 2012;136(17):174103–174108.

Zhang, IY, Xu, X. Reaching a uniform accuracy for complex molecular systems: Long‐range‐corrected XYG3 doubly hybrid density functional. J Phys Chem Lett. 2013;4(10):1669–1675.

Brémond, E, Adamo, C. Seeking for parameter‐free double‐hybrid functionals: The PBE0‐DH model. J Chem Phys. 2011;135(2):024106.

Brémond, É, Sancho‐García, JC, Pérez‐Jiménez, ÁJ, Adamo, C. Double‐hybrid functionals from adiabatic‐connection: The QIDH model. J Chem Phys. 2014;141(3):031101.

Su, NQ, Xu, X. Construction of a parameter‐free doubly hybrid density functional from adiabatic connection. J Chem Phys. 2014;140(18):18A512–18A515.

Brémond, É, Savarese, M, Pérez‐Jiménez, ÁJ, Sancho‐García, JC, Adamo, C. Range‐separated double‐hybrid functional from nonempirical constraints. J Chem Theory Comput. 2018;14(8):4052–4062.

Mardirossian, N, Head‐Gordon, M. Survival of the most transferable at the top of Jacob`s ladder: Defining and testing the omega B97M(2) double hybrid density functional. J Chem Phys. 2018;148(24):241736.

Ren, X, Rinke, P, Joas, C, Scheffler, M. Random‐phase approximation and its applications in computational chemistry and materials science. J Mater Sci. 2012;47(21):7447–7471.

Eshuis, H, Bates, J, Furche, F. Electron correlation methods based on the random phase approximation. Theor Chem Acc. 2012;131(1):1084.

Chen, GP, Voora, VK, Agee, MM, Balasubramani, SG, Furche, F. Random‐phase approximation methods. Annu Rev Phys Chem. 2017;68(1):421–445.

Zhang, IY, Xu, X. Doubly hybrid density functional for accurate description of thermochemistry, thermochemical kinetics and nonbonded interactions. Int Rev Phys Chem. 2011;30(1):115–160.

Sancho‐García, JC, Adamo, C. Double‐hybrid density functionals: Merging wavefunction and density approaches to get the best of both worlds. Phys Chem Chem Phys. 2013;15(35):14581–14594.

Goerigk, L, Grimme, S. Double‐hybrid density functionals. WIREs Comput Mol Sci. 2014;4(6):576–600.

Zhang, IY, Xu, X. A new generation of doubly hybrid density functionals (DHDFs). A new‐generation density functional. Berlin/Heidelberg: Springer, 2014; p. 25–45.

Su, NQ, Xu, X. The XYG3 type of doubly hybrid density functionals. WIREs Comput Mol Sci. 2016;6(6):721–747.

Martin, JML, Santra, G. Empirical double‐hybrid density functional theory: A ‘third way’ in between WFT and DFT. Israel J Chem. 2020;60:1–19.

Whitten, JL. Coulombic potential energy integrals and approximations. J Chem Phys. 1973;58(10):4496–4501.

Weigend, F, Häser, M, Patzelt, H, Ahlrichs, R. RI‐MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett. 1998;294(1):143–152.

Dunlap, BI. Robust variational fitting: Gáspár`s variational exchange can accurately be treated analytically. J Mol Struct (THEOCHEM). 2000;501–502:221–228.

Jung, Y, Sodt, A, Gill, PMW, Head‐Gordon, M. Auxiliary basis expansions for large‐scale electronic structure calculations. Proc Natl Acad Sci USA. 2005;102(19):6692–6697.

Dunlap, BI, Rösch, N, Trickey, SB. Variational fitting methods for electronic structure calculations. Mol Phys. 2010;108(21–23):3167–3180.

Ren, X, Rinke, P, Blum, V, et al. Resolution‐of‐identity approach to Hartree‐Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom‐centered orbital basis functions. New J Phys. 2012;14:053020‐60.

Head‐Gordon, M. An efficient implementation of the pair atomic resolution of the identity approximation for exact exchange for hybrid and range‐separated density functionals. J Chem Theory Comput. 2014;11(2):518–524.

Ihrig, AC, Wieferink, J, Zhang, IY, et al. Accurate localized resolution of identity approach for linear‐scaling hybrid density functionals and for many‐body perturbation theory. New J Phys. 2015;17(9):093020.

Häser, M, Almlöf, J. Laplace transform techniques in Møller–Plesset perturbation theory. J Chem Phys. 1992;96(1):489–494.

Ayala, PY, Scuseria, GE. Linear scaling second‐order Møller–Plesset theory in the atomic orbital basis for large molecular systems. J Chem Phys. 1999;110(8):3660–3671.

Schütz, M, Hetzer, G, Werner, H‐J. Low‐order scaling local electron correlation methods. I. Linear scaling local MP2. J Chem Phys. 1999;111(13):5691–5705.

Jung, Y, Shao, Y, Head‐Gordon, M. Fast evaluation of scaled opposite spin second‐order Møller–Plesset correlation energies using auxiliary basis expansions and exploiting sparsity. J Comput Chem. 2007;28(12):1953–1964.

Yang, J, Kurashige, Y, Manby, FR, Chan, GKL. Tensor factorizations of local second‐order Møller–Plesset theory. J Chem Phys. 2011;134(4):044123.

Schmitz, G, Helmich, B, Hättig, C. A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of OSVs. Mol Phys. 2013;111(16–17):2463–2476.

Pinski, P, Riplinger, C, Valeev, EF, Neese, F. Sparse maps—A systematic infrastructure for reduced‐scaling electronic structure methods. I. an efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J Chem Phys. 2015;143(3):034108.

Kjærgaard, T. The Laplace transformed divide‐expand‐consolidate resolution of the identity second‐order Møller‐Plesset perturbation (DEC‐LT‐RIMP2) theory method. J Chem Phys. 2017;146(4):044103.

Kaltak, M, Klimeš, J, Kresse, G. Cubic scaling algorithm for the random phase approximation: Self‐interstitials and vacancies in Si. Phys Rev B. 2014;90(5):054115.

Kállay, M. Linear‐scaling implementation of the direct random‐phase approximation. J Chem Phys. 2015;142(20):204105.

Maurer, SA, Clin, L, Ochsenfeld, C. Cholesky‐decomposed density MP2 with density fitting: Accurate MP2 and double‐hybrid DFT energies for large systems. J Chem Phys. 2014;140(22):224112.

Perdew,, J. P.; Schmidt,, K. (2000). Jacob`s ladder of density functional approximations for the exchange‐correlation energy. In V. van Doren, (Ed.), Density functional theory and its application to materials, Vol. 577. College Park, MD: American Institute of Physics.

Perdew, JP. Climbing the ladder of density functional approximations. MRS Bull. 2013;38(09):743–750.

Paier, J. Hybrid density functionals applied to complex solid catalysts: Successes, limitations, and prospects. Catal Lett. 2016;146(5):861–885.

Maurer, RJ, Freysoldt, C, Reilly, AM, et al. Advances in density‐functional calculations for materials modeling. Annu Rev Mat Res. 2019;49(1):1–30.

Mori‐Sánchez, P, Cohen, AJ, Yang, W. Failure of the random‐phase‐approximation correlation energy. Phys Rev A. 2012;85(4):042507.

Grüneis, A, Marsman, M, Harl, J, Schimka, L, Kresse, G. Making the random phase approximation to electronic correlation accurate. J Chem Phys. 2009;131(15):154115–154115.

Ren, X, Tkatchenko, A, Rinke, P, Scheffler, M. Beyond the random‐phase approximation for the electron correlation energy: The importance of single excitations. Phys Rev Lett. 2011;106(15):153003–153004.

Ren, X, Rinke, P, Scuseria, GE, Scheffler, M. Renormalized second‐order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks. Phys Rev B. 2013;88(3):035120.

Scuseria, GE, Henderson, TM, Bulik, IW. Particle‐particle and quasiparticle random phase approximations: Connections to coupled cluster theory. J Chem Phys. 2013;139(10):104113.

Aggelen,, H. V., Yang,, Y., Yang,, W.. Exchange‐correlation energy from pairing matrix fluctuation and the particle‐particle random phase approximation. J Chem Phys. 2014, 140(18): 18A511.

Bates, JE, Furche, F. Random phase approximation renormalized many‐body perturbation theory. J Chem Phys. 2013;139(17):171103.

Heßelmann, A, Görling, A. Random phase approximation correlation energies with exact Kohn–Sham exchange. Mol Phys. 2010;108(3–4):359–372.

Görling, A. Hierarchies of methods towards the exact Kohn‐Sham correlation energy based on the adiabatic‐connection fluctuation‐dissipation theorem. Phys Rev B. 2019;99(23):235120.

Bates, JE, Laricchia, S, Ruzsinszky, A. Nonlocal energy‐optimized kernel: Recovering second‐order exchange in the homogeneous electron gas. Phys Rev B. 2016;93(4):045119.

Mezei, PD, Csonka, GI, Ruzsinszky, A, Kállay, M. Construction and application of a new dual‐hybrid random phase approximation. J Chem Theory Comput. 2015;11(10):4615–4626.

Grimme, S, Steinmetz, M. A computationally efficient double hybrid density functional based on the random phase approximation. Phys Chem Chem Phys. 2016;18(31):20926–20937.

Mezei, PD, Csonka, GI, Ruzsinszky, A, Kállay, M. Construction of a spin‐component scaled dual‐hybrid random phase approximation. J Chem Theory Comput. 2017;13(2):796–803.

Chan, B, Goerigk, L, Radom, L. On the inclusion of post‐MP2 contributions to double‐hybrid density functionals. J Comput Chem. 2016;37(2):183–193.

Tran, F, Stelzl, J, Blaha, P. Rungs 1 to 4 of DFT Jacob`s ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J Chem Phys. 2016;144(20):204120.

Perdew, JP, Parr, RG, Levy, M, Balduz, JL. Density‐functional theory for fractional particle number: Derivative discontinuities of the energy. Phys Rev Lett. 1982;49(23):1691–1694.

Görling, A, Levy, M. Correlation‐energy functional and its high‐density limit obtained from a coupling‐constant perturbation expansion. Phys Rev B. 1993;47(20):13105–13113.

Levy, M, Perdew, JP. Hellmann–Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys Rev A. 1985;32(4):2010–2021.

Su, NQ, Xu, X. Development of new density functional approximations. Annu Rev Phys Chem. 2017;68(1):155–182.

Becke, AD. Perspective: Fifty years of density‐functional theory in chemical physics. J Chem Phys. 2014;140(18):18A301.

Zhang, IY, Rinke, P, Perdew, JP, Scheffler, M. Towards efficient orbital‐dependent density functionals for weak and strong correlation. Phys Rev Lett. 2016;117(13):133002.

Zhang, IY, Rinke, P, Scheffler, M. Wave‐function inspired density functional applied to the H_{2}/H_{2}^{+} challenge. New J Phys. 2016;18(7):073026.

Zhang, IY, Xu, X. Simultaneous attenuation of both self‐interaction error and nondynamic correlation error in density functional theory: A spin‐pair distinctive adiabatic‐connection approximation. J Phys Chem Lett. 2019;10:2617–2623.

Perdew, JP, Zunger, A. Self‐interaction correction to density‐functional approximations for many‐electron systems. Phys Rev B. 1981;23(10):5048–5079.

Cohen, AJ, Mori‐Sánchez, P, Yang, W. Challenges for density functional theory. Chem Rev. 2011;112(1):289–320.

Zhang, Y, Yang, W. A challenge for density functionals: Self‐interaction error increases for systems with a noninteger number of electrons. J Chem Phys. 1998;109(7):2604–2608.

Perdew, JP, Wang, Y. Accurate and simple analytic representation of the electron‐gas correlation energy. Phys Rev B. 1992;45(23):13244–13249.

Ruzsinszky, A, Zhang, IY, Scheffler, M. Insight into organic reactions from the direct random phase approximation and its corrections. J Chem Phys. 2015;143(14):144115.

Zhang, IY, Ren, X, Rinke, P, Blum, V, Scheffler, M. Numeric atom‐centered‐orbital basis sets with valence‐correlation consistency from H to Ar. New J Phys. 2013;15(12):123033.

Shen, T, Zhu, Z, Zhang, IY, Scheffler, M. Massive‐parallel implementation of the resolution‐of‐identity coupled‐cluster approaches in the numeric atom‐centered orbital framework for molecular systems. J Chem Theory Comput. 2019;15(9):4721–4734.

Blum, V, Gehrke, R, Hanke, F, et al. Ab initio molecular simulations with numeric atom‐centered orbitals. Comput Phys Commun. 2009;180(11):2175–2196.

Mori‐Sánchez, P, Cohen, AJ, Yang, WT. Many‐electron self‐interaction error in approximate density functionals. J Chem Phys. 2006;125(20):201102.

Ruzsinszky, A, Perdew, JP, Csonka, GI, Vydrov, OA, Scuseria, GE. Density functionals that are one‐ and two‐ are not always many‐electron self‐interaction‐free, as shown for H_{2}^{+}, He_{2}^{+}, LiH^{+}, and Ne_{2}^{+}. J Chem Phys. 2007;126(10):104102.

Ruzsinszky, A, Perdew, JP, Csonka, GI, Vydrov, OA, Scuseria, GE. Spurious fractional charge on dissociated atoms: Pervasive and resilient self‐interaction error of common density functionals. J Chem Phys. 2006;125(19):194112.

Vydrov, OA, Scuseria, GE, Perdew, JP, Ruzsinszky, A, Csonka, GI. Scaling down the Perdew‐Zunger self‐interaction correction in many‐electron regions. J Chem Phys. 2006;124(9):094108.

Cohen, AJ, Mori‐Sanchez, P, Yang, WT. Insights into current limitations of density functional theory. Science. 2008;321(5890):792–794.

Li, C, Yang, W. On the piecewise convex or concave nature of ground state energy as a function of fractional number of electrons for approximate density functionals. J Chem Phys. 2017;146(7):074107.

Mori‐Sánchez, P, Cohen, AJ, Yang, W. Localization and delocalization errors in density functional theory and implications for band‐gap prediction. Phys Rev Lett. 2008;100(14):146401.

Booth, GH, Thom, AJW, Alavi, A. Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in slater determinant space. J Chem Phys. 2009;131(5):054106.

Ruzsinszky, A, Perdew, JP. Twelve outstanding problems in ground‐state density functional theory: A bouquet of puzzles. Comput Theor Chem. 2011;963(1):2–6.

Sharkas, K, Savin, A, Jensen, HJA, Toulouse, J. A multiconfigurational hybrid density‐functional theory. J Chem Phys. 2012;137(4):044104.

Li Manni, G, Carlson, RK, Luo, S, et al. Multi‐configuration pair‐density functional theory. J Chem Theory Comput. 2014;10:3669–3680.

Chen, Z, Zhang, D, Jin, Y, Yang, Y, Su, NQ, Yang, W. Multireference density functional theory with generalized auxiliary systems for ground and excited states. J Phys Chem Lett. 2017;8(18):4479–4485.

Mori‐Sánchez, P, Cohen, AJ, Yang, W. Discontinuous nature of the exchange‐correlation functional in strongly correlated systems. Phys Rev Lett. 2009;102(6):066403.

Su, NQ, Li, C, Yang, W. Describing strong correlation with fractional‐spin correction in density functional theory. Proc Natl Acad Sci USA. 2018;115(39):9678–9683.

Li, C, Zheng, X, Su, NQ, Yang, W. Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations. Natl Sci Rev. 2018;5(2):203–215.

Su, NQ, Yang, W, Mori‐Sánchez, P, Xu, X. Fractional charge behavior and band gap predictions with the xyg3 type of doubly hybrid density functionals. Chem A Eur J. 2014;118(39):9201–9211.

Szabo, A, Ostlund, NS. Modern quantum chemistry. New York, NY: McGraw‐Hill, 1996.

Tkatchenko, A, Scheffler, M. Accurate molecular van der Waals interactions from ground‐state electron density and free‐atom reference data. Phys Rev Lett. 2009;102(7):073005.

Pritchard, BP, Altarawy, D, Didier, B, Gibson, TD, Windus, TL. New basis set exchange: An open, up‐to‐date resource for the molecular sciences community. J Chem Inf Model. 2019;59(11):4814–4820.

HeatonBurgess, T, Bulat, FA, Yang, W. Optimized effective potentials in finite basis sets. Phys Rev Lett. 2007;98(25):256401.

Smiga, S, Franck, O, Mussard, B, et al. Self‐consistent double‐hybrid density‐functional theory using the optimized‐effective‐potential method. J Chem Phys. 2016;145(14):144102.

Neese, F, Schwabe, T, Kossmann, S, Schirmer, B, Grimme, S. Assessment of orbital‐optimized, spin‐component scaled second‐order many‐body perturbation theory for thermochemistry and kinetics. J Chem Theory Comput. 2009;5(11):3060–3073.

Stueck, D, Head‐Gordon, M. Regularized orbital‐optimized second‐order perturbation theory. J Chem Phys. 2013;139(24):244109.

Atalla, V, Zhang, IY, Hofmann, OT, Ren, X, Rinke, P, Scheffler, M. Enforcing the linear behavior of the total energy with hybrid functionals: Implications for charge transfer, interaction energies, and the random‐phase approximation. Phys Rev B. 2016;94(3):035104.

Yang, W, Mori‐Sanchez, P, Cohen, AJ. Extension of many‐body theory and approximate density functionals to fractional charges and fractional spins. J Chem Phys. 2013;139(10):104114.

Cheng, L, Gauss, J, Ruscic, B, Armentrout, PB, Stanton, JF. Bond dissociation energies for diatomic molecules containing 3d transition metals: Benchmark scalar‐relativistic coupled‐cluster calculations for 20 molecules. J Chem Theory Comput. 2017;13(3):1044–1056.

Aoto, YA, de Lima Batista, AP, Koehn, A, de Oliveira‐Filho, AGS. How to arrive at accurate benchmark values for transition metal compounds: Computation or experiment? J Chem Theory Comput. 2017;13(11):5291–5316.

Peverati, R, Truhlar, DG. Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc Lond A Math Phys Eng Sci. 2014;372(2011):20120476.

Zhao, Y, Tishchenko, O, Gour, JR, et al. Thermochemical kinetics for multireference systems: Addition reactions of ozone. Chem A Eur J. 2009;113(19):5786–5799.

Yu, HS, He, X, Li, SL, Truhlar, DG. MN15: A Kohn–Sham global‐hybrid exchange–correlation density functional with broad accuracy for multi‐reference and single‐reference systems and noncovalent interactions. Chem Sci. 2016;7(8):5032–5051.

Dohm, S, Hansen, A, Steinmetz, M, Grimme, S, Checinski, MP. Comprehensive thermochemical benchmark set of realistic closed‐shell metal organic reactions. J Chem Theory Comput. 2018;14(5):2596–2608.

Barden, CJ, Rienstra‐Kiracofe, JC, Schaefer, HF. Homonuclear 3D transition‐metal diatomics: A systematic density functional theory study. J Chem Phys. 2000;113(2):690–700.

Schultz, NE, Zhao, Y, Truhlar, DG. Databases for transition element bonding: Metal−metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. Chem A Eur J. 2005;109(19):4388–4403.

Furche, F, Perdew, JP. The performance of semilocal and hybrid density functionals in 3D transition‐metal chemistry. J Chem Phys. 2006;124(4):044103.

Lombardi, JR, Davis, B. Periodic properties of force constants of small transition‐metal and lanthanide clusters. Chem Rev. 2002;102(6):2431–2460.