Ravetz, BD, Pun, AB, Churchill, EM, Congreve, DN, Rovis, T, Campos, LM. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature. 2019;565:343–346.

Zhang, M, de Respinis, M, Frei, H. Time‐resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem. 2014;6:362–367.

Wang, Q, Hisatomi, T, Jia, Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar‐to‐hydrogen energy conversion efficiency exceeding 1. Nat Mater. 2016;15:611–615.

Ferrari, AC. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57.

Schaller, RD, Pietryga, JM, Goupalov, SV, Petruska, MA, Ivanov, SA, Klimov, VI. Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. Phys Rev Lett. 2005;95:196401.

Mehlhorn, M, Gawronski, H, Morgenstern, K. Diffusion and dimer formation of CO molecules induced by femtosecond laser pulses. Phys Rev Lett. 2010;104:076101.

Dawlaty, JM, Shivaraman, S, Chandrashekhar, M, Rana, F, Spencer, MG. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl Phys Lett. 2008;92:042116.

Nicholson, CW, Lücke, A, Schmidt, WG, et al. Beyond the molecular movie: Dynamics of bands and bonds during a photoinduced phase transition. Science. 2018;362:821–825.

Rohwer, T, Hellmann, S, Wiesenmayer, M, et al. Collapse of long‐range charge order tracked by time‐resolved photoemission at high momenta. Nature. 2011;471:490–493.

Rohde, G, Stange, A, Muller, A, et al. Ultrafast formation of a Fermi‐Dirac distributed electron gas. Phys Rev Lett. 2018;121:256401.

Beck, MH, Jäckle, A, Worth, GA, Meyer, HD. The multiconfiguration time‐dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys Rep. 2000;324:1–105.

Meyer, H‐D, Worth, GA. Quantum molecular dynamics: Propagating wavepackets and density operators using the multiconfiguration time‐dependent Hartree method. Theoret Chem Accounts. 2003;109:251–267.

Richings, GW, Polyak, I, Spinlove, KE, Worth, GA, Burghardt, I, Lasorne, B. Quantum dynamics simulations using Gaussian wavepackets: The vMCG method. Int Rev Phys Chem. 2015;34:269–308.

Curchod, BFE, Martinez, TJ. Ab initio nonadiabatic quantum molecular dynamics. Chem Rev. 2018;118:3305–3336.

Mac Kernan, D, Ciccotti, G, Kapral, R. Trotter‐based simulation of quantum‐classical dynamics. J Phys Chem B. 2008;112:424–432.

Kelly, A, Markland, TE. Efficient and accurate surface hopping for long time nonadiabatic quantum dynamics. J Chem Phys. 2013;139:014104.

Curchod, BF, Tavernelli, I, Rothlisberger, U. Trajectory‐based solution of the nonadiabatic quantum dynamics equations: An on‐the‐fly approach for molecular dynamics simulations. Phys Chem Chem Phys. 2011;13:3231–3236.

Agostini, F, Min, SK, Abedi, A, Gross, EK. Quantum‐classical nonadiabatic dynamics: Coupled‐ vs independent‐trajectory methods. J Chem Theory Comput. 2016;12:2127–2143.

Tully, JC, Preston, RK. Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2. J Chem Phys. 1971;55:562–572.

Craig, CF, Duncan, WR, Prezhdo, OV. Trajectory surface hopping in the time‐dependent Kohn–Sham approach for electron‐nuclear dynamics. Phys Rev Lett. 2005;95:163001.

Tully, JC. Mixed quantum–classical dynamics. Faraday Discuss. 1998;110:407–419.

Meng, S, Kaxiras, E. Real‐time, local basis‐set implementation of time‐dependent density functional theory for excited state dynamics simulations. J Chem Phys. 2008;129:054110.

Bircher, MP, Liberatore, E, Browning, NJ, et al. Nonadiabatic effects in electronic and nuclear dynamics. Struct Dyn. 2017;4:061510.

Meyera, HD, Miller, WH. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J Chem Phys. 1979;70:3214–3223.

Noda, M, Sato, SA, Hirokawa, Y, et al. SALMON: Scalable ab‐initio light‐matter simulator for optics and nanoscience. Comput Phys Commun. 2019;235:356–365.

K. Dewhurst,, S. Sharma,, L. Nordström,, et al., ELK FP‐LAPW code, version 3.3.17 (2016). http://elk.sourceforge.net

Andrade, X, Alberdi‐Rodriguez, J, Strubbe, DA, et al. Time‐dependent density‐functional theory in massively parallel computer architectures: The OCTOPUS project. J Phys Condens Matter. 2012;24:233202.

Ojanpera, A, Havu, V, Lehtovaara, L, Puska, M. Nonadiabatic Ehrenfest molecular dynamics within the projector augmented‐wave method. J Chem Phys. 2012;136:144103.

Mortensen, JJ, Hansen, LB, Jacobsen, KW. Real‐space grid implementation of the projector augmented wave method. Phys Rev B. 2005;71:035109.

Dohn, AO, Jonsson, EO, Levi, G, et al. Grid‐based projector augmented wave (GPAW) implementation of quantum mechanics/molecular mechanics (QM/MM) electrostatic embedding and application to a solvated diplatinum complex. J Chem Theory Comput. 2017;13:6010–6022.

Marini, A, Hogan, C, Grüning, M, Varsano, D. yambo: An ab initio tool for excited state calculations. Comput Phys Commun. 2009;180:1392–1403.

Valiev, M, Bylaska, EJ, Govind, N, et al. NWChem: A comprehensive and scalable open‐source solution for large scale molecular simulations. Comput Phys Commun. 2010;181:1477–1489.

Lian, C, Guan, M, Hu, S, Zhang, J, Meng, S. Photoexcitation in solids: First‐principles quantum simulations by real‐time TDDFT. Adv Theory Simul. 2018;1:1800055.

Craig, IR, Manolopoulos, DE. Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics. J Chem Phys. 2004;121:3368–3373.

Markland, TE, Manolopoulos, DE. An efficient ring polymer contraction scheme for imaginary time path integral simulations. J Chem Phys. 2008;129:024105.

You, P, Xu, J, Lian, C, et al. Quantum dynamics simulations: Combining path integral nuclear dynamics and real‐time TDDFT. Electron Struct. 2019;1:044005.

Guan, M‐X, Lian, C, Hu, S‐Q, et al. Cooperative evolution of intraband and interband excitations for high‐harmonic generation in strained MoS_{2}. Phys Rev B. 2019;99:184306.

Zhang, J, Lian, C, Guan, M, et al. Photoexcitation induced quantum dynamics of charge density wave and emergence of a collective mode in 1T‐TaS2. Nano Lett. 2019;19:6027–6034.

Lian, C, Zhang, SJ, Hu, SQ, Guan, MX, Meng, S. Ultrafast charge ordering by self‐amplified exciton‐phonon dynamics in TiSe2. Nat commun. 2020;11:43.

Yan, L, Xu, J, Wang, F, Meng, S. Plasmon‐induced ultrafast hydrogen production in liquid water. J Phys Chem Lett. 2018;9:63–69.

Abedi, A, Maitra, NT, Gross, EK. Exact factorization of the time‐dependent electron‐nuclear wave function. Phys Rev Lett. 2010;105:123002.

Agostini, F, Gross, EKU, Curchod, BFE. Electron‐nuclear entanglement in the time‐dependent molecular wavefunction. Comput Theoret Chem. 2019;1151:99–106.

Runge, E, Gross, EKU. Density‐functional theory for time‐dependent systems. Phys Rev Lett. 1984;52:997–1000.

Botti, S, Schindlmayr, A, Sole, RD, Reining, L. Time‐dependent density‐functional theory for extended systems. Rep Prog Phys. 2007;70:357–407.

Sharma, S, Dewhurst, JK, Sanna, A, Gross, EKU. Bootstrap approximation for the exchange‐correlation kernel of time‐dependent density‐functional theory. Phys Rev Lett. 2011;107:186401.

Bertsch, GF, Iwata, JI, Rubio, A, Yabana, K. Real‐space, real‐time method for the dielectric function. Phys Rev B. 2000;62:7998–8002.

Yabana, K, Nakatsukasa, T, Iwata, JI, Bertsch, GF. Real‐time, real‐space implementation of the linear response time‐dependent density‐functional theory. Phys Status Solidi (b). 2006;243:1121–1138.

Castro, A, Marques, MA, Rubio, A. Propagators for the time‐dependent Kohn–Sham equations. J Chem Phys. 2004;121:3425–3433.

Andrade, X, Castro, A, Zueco, D, et al. Modified Ehrenfest formalism for efficient large‐scale ab initio molecular dynamics. J Chem Theory Comput. 2009;5:728–742.

Fiedler, SL, Eloranta, J. Nonadiabatic dynamics by mean‐field and surface‐hopping approaches: Energy conservation considerations. Mol Phys. 2010;108:1471–1479.

Lan Zhenggang, JS. Approximate theoretical methods for nonadiabatic dynamics of polyatomic molecules. Prog Chem. 2012;24:1105–1119.

Parandekar, PV, Tully, JC. Mixed quantum‐classical equilibrium. J Chem Phys. 2005;122:094102.

Hack, MD, Wensmann, AM, Truhlar, DG, Ben‐Nun, M, Martı́nez, TJ. Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. J Chem Phys. 2001;115:1172–1186.

Subotnik, JE, Jain, A, Landry, B, Petit, A, Ouyang, W, Bellonzi, N. Understanding the surface hopping view of electronic transitions and decoherence. Annu Rev Phys Chem. 2016;67:387–417.

Dhara, AK, Ghosh, SK. Density‐functional theory for time‐dependent systems. Phys Rev A Gen Phys. 1987;35:442–444.

Giannozzi, P, Baroni, S, Bonini, N, et al. QUANTUM ESPRESSO: A modular and open‐source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502.

Wang, Z, Li, SS, Wang, LW. Efficient real‐time time‐dependent density functional theory method and its application to a collision of an ion with a 2D material. Phys Rev Lett. 2015;114:063004.

Ren, J, Vukmirović, N, Wang, L‐W. Nonadiabatic molecular dynamics simulation for carrier transport in a pentathiophene butyric acid monolayer. Phys Rev B. 2013;87:205117.

Parrinello, M, Rahman, A. Study of an F center in molten KCl. J Chem Phys. 1984;80:860–867.

Craig, IR, Manolopoulos, DE. A refined ring polymer molecular dynamics theory of chemical reaction rates. J Chem Phys. 2005;123:34102.

Miller, TF, Manolopoulos, DE. Quantum diffusion in liquid water from ring polymer molecular dynamics. J Chem Phys. 2005;123:154504.

Ceriotti, M, More, J, Manolopoulos, DE. ‐PI: A Python interface for ab initio path integral molecular dynamics simulations. Comput Phys Commun. 2014;185:1019–1026.

Kapil, V, Rossi, M, Marsalek, O, et al. ‐PI 2.0: A universal force engine for advanced molecular simulations. Comput Phys Commun. 2019;236:214–223.

Paul, PM, Toma, ES, Breger, P, et al. Observation of a train of attosecond pulses from high harmonic generation. Science. 2001;292:1689–1692.

Uiberacker, M, Uphues, T, Schultze, M, et al. Attosecond real‐time observation of electron tunnelling in atoms. Nature. 2007;446:627–632.

Cocker, TL, Peller, D, Yu, P, Repp, J, Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature. 2016;539:263–267.

Vampa, G, McDonald, CR, Orlando, G, Klug, DD, Corkum, PB, Brabec, T. Theoretical analysis of high‐harmonic generation in solids. Phys Rev Lett. 2014;113:073901.

Golde, D, Meier, T, Koch, SW. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter‐ and intraband excitations. Phys Rev B. 2008;77:075330.

Tancogne‐Dejean, N, Mucke, OD, Kartner, FX, Rubio, A. Impact of the electronic band structure in high‐harmonic generation spectra of solids. Phys Rev Lett. 2017;118:087403.

Perfetti, L, Loukakos, PA, Lisowski, M, et al. Time evolution of the electronic structure of 1T‐TaS2 through the insulator‐metal transition. Phys Rev Lett. 2006;97:067402.

Eichberger, M, Schafer, H, Krumova, M, et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature. 2010;468:799–802.

Hellmann, S, Rohwer, T, Kallane, M, et al. Time‐domain classification of charge‐density‐wave insulators. Nat Commun. 2012;3:1069.

Petersen, JC, Kaiser, S, Dean, N, et al. Clocking the melting transition of charge and lattice order in 1T‐TaS2 with ultrafast extreme‐ultraviolet angle‐resolved photoemission spectroscopy. Phys Rev Lett. 2011;107:177402.

Mohr‐Vorobeva, E, Johnson, SL, Beaud, P, et al. Nonthermal melting of a charge density wave in TiSe_{2}. Phys Rev Lett. 2011;107:036403.

Porer, M, Leierseder, U, Menard, JM, et al. Non‐thermal separation of electronic and structural orders in a persisting charge density wave. Nat Mater. 2014;13:857–861.

Zou, X, Zhang, Y. Noble metal‐free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44:5148–5180.

Kudo, A, Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38:253–278.

Maeda, K, Domen, K. New non‐oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C. 2007;111:7851–7861.

Fujishima, A, Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38.

Guo, Q, Zhou, C, Ma, Z, Yang, X. Fundamentals of TiO_{2} photocatalysis: Concepts, mechanisms, and challenges. Adv Mater. 2019;31.

Wang, X, Maeda, K, Thomas, A, et al. A metal‐free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2009;8:76–80.

Linic, S, Christopher, P, Ingram, DB. Plasmonic‐metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. 2011;10:911–921.

Kibria, MG, Chowdhury, FA, Zhao, S, et al. Visible light‐driven efficient overall water splitting using p‐type metal‐nitride nanowire arrays. Nat Commun. 2015;6:6797.

Liu, Z, Hou, W, Pavaskar, P, Aykol, M, Cronin, SB. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011;11:1111–1116.

Zheng, J, Zhang, C, Dickson, RM. Highly fluorescent, water‐soluble, size‐tunable gold quantum dots. Phys Rev Lett. 2004;93:077402.

Yan, L, Wang, F, Meng, S. Quantum mode selectivity of plasmon‐induced water splitting on gold nanoparticles. ACS Nano. 2016;10:5452–5458.

Kang, JH, Kim, DS, Park, QH. Local capacitor model for plasmonic electric field enhancement. Phys Rev Lett. 2009;102:093906.

Yan, L, Meng, S. Atomistic insights into plasmon induced water splitting. Sci China Phys Mech Astron. 2017;60:027032.

Rini, M, Magnes, B‐Z, Pines, E, Nibbering, ETJ. Real‐time observation of bimodal proton transfer in acid–base pairs in water. Science. 2003;301:349–352.

Dai, L, Xue, Y, Qu, L, Choi, HJ, Baek, JB. Metal‐free catalysts for oxygen reduction reaction. Chem Rev. 2015;115:4823–4892.

Liu, J, Liu, Y, Liu, N, et al. Metal‐free efficient photocatalyst for stable visible water splitting via a two‐electron pathway. Science. 2015;347:970–974.

Jiao, Y, Zheng, Y, Chen, P, Jaroniec, M, Qiao, SZ. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO_{2} reduction to hydrocarbon/alcohol. J Am Chem Soc. 2017;139:18093–18100.

Liu, G, Niu, P, Sun, C, et al. Unique electronic structure induced high Photoreactivity of sulfur‐doped graphitic C3N4. J Am Chem Soc. 2010;132:11642–11648.

Zhang, J, Sun, J, Maeda, K, et al. Sulfur‐mediated synthesis of carbon nitride: Band‐gap engineering and improved functions for photocatalysis. Energ Environ Sci. 2011;4:675–678.

Ma, H, Feng, J, Jin, F, Wei, M, Liu, C, Ma, Y. Where do photogenerated holes at the g‐C3N4/water interface go for water splitting: H_{2}O or OH(−)? Nanoscale. 2018;10:15624–15631.

Ren, J, Kaxiras, E, Meng, S. Optical properties of clusters and molecules from real‐time time‐dependent density functional theory using a self‐consistent field. Mol Phys. 2010;108:1829–1844.

Chen, JL, Hu, WP. Theoretical prediction on the thermal stability of cyclic ozone and strong oxygen tunneling. J Am Chem Soc. 2011;133:16045–16053.

Butscher, S, Milde, F, Hirtschulz, M, Malić, E, Knorr, A. Hot electron relaxation and phonon dynamics in graphene. Appl Phys Lett. 2007;91:203103.

Lui, CH, Mak, KF, Shan, J, Heinz, TF. Ultrafast photoluminescence from graphene. Phys Rev Lett. 2010;105:127404.

Johannsen, JC, Ulstrup, S, Cilento, F, et al. Direct view of hot carrier dynamics in graphene. Phys Rev Lett. 2013;111:027403.

Stange, A, Sohrt, C, Yang, LX, et al. Hot electron cooling in graphite: Supercollision versus hot phonon decay. Phys Rev B. 2015;92:184303.