Levine, B, Martinez, TJ. Hijacking the playstation2 for computational chemistry. Abs Papers ACS. 2003;226:U426.
NVIDIA Corporation. CUDA C Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (accessed August 24, 2018).
Ufimtsev, IS, Martínez, TJ. Graphical processing units for quantum chemistry. Comput Sci Eng. 2008;10:26–34.
Ufimtsev, IS, Martínez, TJ. Quantum chemistry on graphical processing units. 1. Strategies for two‐electron integral evaluation. J Chem Theory Comput. 2008;4:222–231.
Ufimtsev, IS, Martinez, TJ. Quantum chemistry on graphical processing units. 2. Direct self‐consistent‐field implementation. J Chem Theory Comput. 2009;5:1004–1015.
Ufimtsev, IS, Martinez, TJ. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput. 2009;5:2619–2628.
Luehr, N, Ufimtsev, IS, Martínez, TJ. Dynamic precision for electron repulsion integral evaluation on graphical processing units (GPUs). J Chem Theory Comput. 2011;7:949–954.
Stone, JE, Hardy, DJ, Ufimtsev, IS, Schulten, K. GPU‐accelerated molecular modeling coming of age. J Mol Graph Model. 2010;29:116–125.
Salomon‐Ferrer, R, Case, DA, Walker, RC. An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013;3:198–210.
Zheng, M, Li, X, Guo, L. Algorithms of GPU‐enabled reactive force field (ReaxFF) molecular dynamics. J Mol Graph Model. 2013;41:1–11.
Kutzner, C, Páll, S, Fechner, M, Esztermann, A, de Groot, BL, Grubmüller, H. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. J Comput Chem. 2015;36:1990–2008.
Evan, JA, Charles, LB. Efficient implementation of constant pH molecular dynamics on modern graphics processors. J Comput Chem. 2016;37:2171–2180.
Almlof, J, Faegri, K, Korsell, K. Principles of a direct SCF approach to LCAO‐MO ab‐initio calculations. J Comput Chem. 1982;3:385–399.
Tomov, S, Dongarra, J, Baboulin, M. Towards dense linear algebra for hybrid GPU accelerated manycore systems. Parallel Comput. 2010;36:232–240.
Titov, AV, Ufimtsev, IS, Luehr, N, Martinez, TJ. Generating efficient quantum chemistry codes for novel architectures. J Chem Theory Comput. 2013;9:213–221.
Isborn, CM, Luehr, N, Ufimtsev, IS, Martínez, TJ. Excited‐state electronic structure with configuration interaction singles and Tamm–Dancoff time‐dependent density functional theory on graphical processing units. J Chem Theory Comput. 2011;7:1814–1823.
Foresman, JB, Head‐Gordon, M, Pople, JA, Firisch, MJ. Toward a systematic molecular orbital theory for excited states. J Phys Chem. 1992;96:135–149.
Casida, ME. Time‐dependent density functional response theory for molecules. In: Chong, DP, editor. Recent advances in density functional methods. Singapore: World Scientific, 1995; p. 155–192.
Hohenstein, EG, Luehr, N, Ufimtsev, IS, Martínez, TJ. An atomic orbital‐based formulation of the complete active space self‐consistent field method on graphical processing units. J Chem Phys. 2015;142:224103.
Hohenstein, EG, Bouduban, MEF, Song, C, Luehr, N, Ufimtsev, IS, Martínez, TJ. Analytic first derivatives of floating occupation molecular orbital‐complete active space configuration interaction on graphical processing units. J Chem Phys. 2015;143:014111.
Hohenstein, EG. Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals. J Chem Phys. 2016;145:174110.
Hohenstein, EG. Mechanism for the enhanced excited‐state Lewis acidity of methyl viologen. J Am Chem Soc. 2016;138:1868–1876.
Fales, BS, Levine, BG. Nanoscale multireference quantum chemistry: Full configuration interaction on graphical processing units. J Chem Theory Comput. 2015;11:4708–4716.
Snyder, JW, Hohenstein, EG, Luehr, N, Martínez, TJ. An atomic orbital‐based formulation of analytical gradients and nonadiabatic coupling vector elements for the state‐averaged complete active space self‐consistent field method on graphical processing units. J Chem Phys. 2015;143:154107.
Snyder, JW, Curchod, BFE, Martínez, TJ. GPU‐accelerated state‐averaged complete active space self‐consistent field interfaced with ab initio multiple spawning unravels the photodynamics of provitamin D3. J Phys Chem Lett. 2016;7:2444–2449.
Snyder, JW, Fales, BS, Hohenstein, EG, Levine, BG, Martínez, TJ. A direct‐compatible formulation of the coupled perturbed complete active space self‐consistent field equations on graphical processing units. J Chem Phys. 2017;146:174113.
Hohenstein, EG, Parrish, RM, Martínez, TJ. Tensor hypercontraction density fitting. I. Quartic scaling second‐ and third‐order Møller‐Plesset perturbation theory. J Chem Phys. 2012;137:044103.
Parrish, RM, Hohenstein, EG, Martínez, TJ, Sherrill, CD. Tensor hypercontraction. II. Least‐squares renormalization. J Chem Phys. 2012;137:224106.
Hohenstein, EG, Parrish, RM, Sherrill, CD, Martínez, TJ. Communication: Tensor hypercontraction. III. Least‐squares tensor hypercontraction for the determination of correlated wavefunctions. J Chem Phys. 2012;137:221101.
Kokkila Schumacher, SIL, Hohenstein, EG, Parrish, RM, Wang, L‐P, Martínez, TJ. Tensor hypercontraction second‐order Møller–Plesset perturbation theory: Grid optimization and reaction energies. J Chem Theory Comput. 2015;11:3042–3052.
Song, C, Martínez, TJ. Analytical gradients for tensor hyper‐contracted MP2 and SOS‐MP2 on graphical processing units. J Chem Phys. 2017;147:161723.
Song, C, Martínez, TJ. Atomic orbital‐based SOS‐MP2 with tensor hypercontraction. I. GPU‐based tensor construction and exploiting sparsity. J Chem Phys. 2016;144:174111.
Song, C, Martínez, TJ. Atomic orbital‐based SOS‐MP2 with tensor hypercontraction. II. Local tensor hypercontraction. J. Chem. Phys. 2017;146:034104.
Hohenstein, EG, Kokkila, SIL, Parrish, RM, Martínez, TJ. Quartic scaling second‐order approximate coupled cluster singles and doubles via tensor hypercontraction: THC‐CC2. J Chem Phys. 2013;138:124111.
Hohenstein, EG, Kokkila, SIL, Parrish, RM, Martínez, TJ. Tensor hypercontraction equation‐of‐motion second‐order approximate coupled cluster: Electronic excitation energies in O(N4) time. J Phys Chem B. 2013;117:12972–12978.
Song, C, Martínez, TJ. Reduced scaling CASPT2 using supporting subspaces and tensor hyper‐contraction. J Chem Phys. 2018;149:044108.
Liu, F, Luehr, N, Kulik, HJ, Martínez, TJ. Quantum chemistry for solvated molecules on graphical processing units using polarizable continuum models. J Chem Theory Comput. 2015;11:3131–3144.
Seritan, S, Thompson, K, Martínez, TJ. TeraChem cloud: A high‐performance computing service for scalable distributed GPU‐accelerated electronic structure calculations. J Chem Inf Model. 2020;60:2126–2137.
Song, C, Wang, LP, Sachse, T, Preiß, J, Presselt, M, Martínez, TJ. Efficient implementation of effective core potential integrals and gradients on graphical processing units. J Chem Phys. 2015;143:014114.
Song, C, Wang, L‐P, Martínez, TJ. Automated code engine for graphical processing units: Application to the effective Core potential integrals and gradients. J Chem Theory Comput. 2016;12:92–106.
Almlof, J, Faegri, K, Korsell, K. Principles for a direct SCF approach to LCAO‐MO ab‐initio calculations. J Comput Chem. 1982;3:385–399.
Anisimov, VI, Zaanen, J, Andersen, OK. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B. 1991;44:943–954.
Cococcioni, M, de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B. 2005;71:035105.
Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem. 2006;27:1787–1799.
Grimme, S, Antony, J, Ehrlich, S, Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. J Chem Phys. 2010;132:154104.
Grimme, S, Ehrlich, S, Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32:1456–1465.
Kruse, H, Grimme, S. A geometrical correction for the inter‐ and intra‐molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems. J Chem Phys. 2012;136:154101.
Adamson, RD, Dombroski, JP, Gill, PMW. Chemistry without Coulomb tails. Chem Phys Lett. 1996;254:329–336.
Nolen, JA Jr, Schiffer, JP. Coulomb energies. Annu Rev Nucl Sci. 1969;19:471–526.
Elstner, M, Porezag, D, Jungnickel, G, et al. Self‐consistent‐charge density‐functional tight‐binding method for simulations of complex materials properties. Phys Rev B. 1998;58:7260–7268.
Porezag, D, Frauenheim, T, Kohler, T, Seifert, G, Kaschner, R. Construction of tight‐binding‐like potentials on the basis of density‐functional theory: Application to carbon. Phys Rev B. 1995;51:12947–12957.
Seifert, G, Porezag, D, Frauenheim, T. Calculations of molecules, clusters, and solids with a simplified LCAO‐DFT‐LDA scheme. Int J Quantum Chem. 1996;58:185–192.
Gaus, M, Goez, A, Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J Chem Theory Comput. 2013;9:338–354.
Gaus, M, Lu, X, Elstner, M, Cui, Q. Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications. J Chem Theory Comput. 2014;10:1518–1537.
Kubillus, M, Kubař, T, Gaus, M, Řezáč, J, Elstner, M. Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems. J Chem Theory Comput. 2015;11:332–342.
Lu, X, Gaus, M, Elstner, M, Cui, Q. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J Phys Chem B. 2015;119:1062–1082.
Aradi, B, Hourahine, B, Frauenheim, T. DFTB+, a sparse matrix‐based implementation of the DFTB method. J Phys Chem A. 2007;111:5678–5684.
Grimme, S, Bannwarth, C, Shushkov, P. A robust and accurate tight‐binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd‐block elements (Z = 1–86). J Chem Theory Comput. 2017;13:1989–2009.
Bannwarth, C, Ehlert, S, Grimme, S. GFN2‐xTB – An accurate and broadly parametrized self‐consistent tight‐binding quantum chemical method with multipole electrostatics and density‐dependent dispersion contributions. J Chem Theory Comput. 2019;15:1652–1671.
Bannwarth, C, Martínez, TJ. Novel method combinations enabled by interfacing a semiempirical integral library to a modular ab initio electronic structure framework. 2020 (in preparation).
Van Lenthe, JH, Zwaans, R, Van Dam, HJJ, Guest, MF. Starting SCF calculations by superposition of atomic densities. J Comput Chem. 2006;27:926–932.
Langlois, J‐M, Yamasaki, T, Muller, RP, Goddard, WA. Rule‐based trial wave functions for generalized valence bond theory. J Phys Chem. 1994;98:13498–13505.
Pulay, P. Improved SCF convergence acceleration. J Comput Chem. 1982;3:556–560.
Hu, X, Yang, W. Accelerating self‐consistent field convergence with the augmented Roothaan–Hall energy function. J Chem Phys. 2010;132:054109.
Saunders, VR, Hillier, IH. A “level‐shifting” method for converging closed shell Hartree–Fock wave functions. Int J Quantum Chem. 1973;7:699–705.
Cancès, E, Le Bris, C. On the convergence of SCF algorithms for the Hartree–Fock equations. ESAIM Math Model Numer. 2000;34:749–774.
Rabuck, AD, Scuseria, GE. Improving self‐consistent field convergence by varying occupation numbers. J Chem Phys. 1998;110:695.
Niklasson, AMN, Tymczak, CJ, Challacombe, M. Trace resetting density matrix purification in O(N) self‐consistent‐field theory. J Chem Phys. 2003;118:8611–8620.
Fonseca Guerra, C, Handgraaf, J‐W, Jan Baerends, E, Matthias Bickelhaupt, F. Voronoi deformation density (VDD) charges: Assessment of the Mulliken methods for charge analysis. J Comput Chem. 2004;25: 189–210.
Glendening, ED, Badenhoop, JK, Reed, AE, et al. NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison; 2013.
Grimme, S. A simplified Tamm–Dancoff density functional approach for the electronic excitation spectra of very large molecules. J Chem Phys. 2013;138:244104.
Bannwarth, C, Grimme, S. A simplified time‐dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. Comput Theort Chem. 2014;1040‐1041:45–53.
de Wergifosse, M, Bannwarth, C, Ehlert, S, Grimme, S. grimme‐lab/stda: stda program for computing excited states and response functions via simplified TD‐DFT methods (sTDA, sTD‐DFT, SF‐sTD‐DFT). https://github.com/grimme-lab/stda (accessed December 24, 2019).
Krylov, AI. Size‐consistent wave functions for bond‐breaking: The equation‐of‐motion spin‐flip model. Chem Phys Lett. 2001;338:375–384.
Krylov, AI. Spin‐flip configuration interaction: An electronic structure model that is both variational and size‐consistent. Chem Phys Lett. 2001;350:522–530.
Shao, Y, Head‐Gordon, M, Krylov, AI. The spin‐flip approach within time‐dependent density functional theory: Theory and applications to diradicals. J Chem Phys. 2003;118:4907–4818.
Sears, JS, Sherrill, CD, Krylov, AI. A spin‐complete version of the spin‐flip approach to bond breaking: What is the impact of obtaining spin eigenfunctions? J Chem Phys. 2003;118:9084–9094.
Yang, Y, Van Aggelen, H, Yang, W. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle–particle random phase approximation. J Chem Phys. 2013;139:224105.
Van Aggelen, H, Yang, Y, Yang, W. Exchange‐correlation energy from pairing matrix fluctuation and the particle‐particle random‐phase approximation. Phys Rev A. 2013;88:030501(R).
Peng, D, Van Aggelen, H, Yang, Y, Yang, W. Linear‐response time‐dependent density‐functional theory with pairing fields. J Chem Phys. 2014;140:18A522.
Bannwarth, C, Yu, JK, Hohenstein, EG, Martínez, TJ. Hole–hole Tamm–Dancoff‐approximated density functional theory: A highly efficient electronic structure method incorporating dynamic and static correlation. ChemRxiv. 2020;chemrxiv.11828256.v2: 1–35.
Yu, JK, Bannwarth, C, Hohenstein, EG, Martínez, TJ. Ab initio multiple spawning dynamics with the hole–hole Tamm–Dancoff approximation. 2020 (in preparation).
Vahtras, O, Almlof, J, Feyereisen, M. Integral approximations for LCAO‐SCF calculations. Chem Phys Lett. 1993;213:514–518.
Feyereisen, M, Fitzgerald, G, Komornicki, A. Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett. 1993;208:359–363.
Polly, R, Werner, H‐J, Manby, FR, Knowles, PJ. Fast Hartree–Fock theory using local density‐fitting approximations. Mol Phys. 2004;102:2311–2321.
Jung, Y, Lochan, RC, Dutoi, AD, Head‐Gordon, M. Scaled opposite‐spin second order Møller–Plesset correlation energy: An economical electronic structure method. J Chem Phys. 2004;121:9793–9802.
Fales, B. Scott, Curtis, Ethan R., Johnson, K. Grace, Lahana, Dean, Seritan, Stefan, Wang, Yuanheng, Weir, Hayley, Martínez, Todd J., Hohenstein, Edward G.. Performance of Coupled‐Cluster Singles and Doubles on Modern Stream Processing Architectures. Journal of Chemical Theory and Computation. 2020;http://dx.doi.org/10.1021/acs.jctc.0c00336.
Fales, BS, Shu, Y, Levine, BG, Hohenstein, EG. Complete active space configuration interaction from state‐averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors. J Chem Phys. 2017;147:094104.
Snyder, JW, Parrish, RM, Martínez, TJ. α‐CASSCF: An efficient, empirical correction for SA‐CASSCF To closely approximate MS‐CASPT2 potential energy surfaces. J Phys Chem Lett. 2017;8:2432–2437.
Fales, BS, Seritan, S, Settje, NF, Levine, BG, Koch, H, Martínez, TJ. Large scale electron correlation calculations: Rank‐reduced full configuration interaction. J Chem Theory Comput. 2018;14:4139–4150.
Peng, W‐T, Fales, BS, Levine, BG. Simulating electron dynamics of complex molecules with time‐dependent complete active space configuration interaction. J Chem Theory Comput. 2018;14:4129–4138.
Fales, BS, Martínez, TJ. Efficient treatment of large active spaces through multi‐GPU parallel implementation of direct configuration interaction. J Chem Theory Comput. 2020;16:1586–1596.
Fales, BS, Parrish, RM, Martínez, TJ. Single and mixed precision direct configuration interaction. 2020 (in preparation).
Fales, BS, Martínez, TJ. Fast transformations between configuration state function and slater determinant bases for configuration interaction. J Chem Phys. 2020;152:164111.
White, S. Density matrix formulation for quantum renormalization groups. Phys Rev Lett. 1992;69:2863–2866.
Keller, S, Dolfi, M, Troyer, M, Reiher, M. An efficient matrix product operator representation of the quantum chemical Hamiltonian. J Chem Phys. 2015;143:244118.
Pijeau, S, Hohenstein, EG. Improved complete active space configuration interaction energies with a simple correction from density functional theory. J Chem Theory Comput. 2017;13:1130–1146.
Filatov, M, Liu, F, Martínez, TJ. Analytical derivatives of the individual state energies in ensemble density functional theory method. I. General formalism. J Chem Phys. 2017;147:034113.
Liu, F, Filatov, M, Martínez, TJ. Analytical derivatives of the individual state energies in ensemble density functional theory method: II. Implementation on graphical processing units (GPUs). ChemRxiv. 2019; chemrxiv.7985657.v1.1–59.
Filatov, M, Liu, F, Kim, KS, Martínez, TJ. Self‐consistent implementation of ensemble density functional theory method for multiple strongly correlated electron pairs. J Chem Phys. 2016;145:244104.
Tomasi, J, Mennucci, B, Cammi, R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999–3093.
Lange, AW, Herbert, JM. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach. J Chem Phys. 2010;133:244111.
Liu, F, Sanchez, DM, Kulik, HJ, Martínez, TJ. Exploiting graphical processing units to enable quantum chemistry calculation of large solvated molecules with conductor‐like polarizable continuum models. Int J Quantum Chem. 2019;119:e25760.
Lamoureux, G, Harder, E, Vorobyov, IV, Roux, B, MacKerell, AD. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem Phys Lett. 2006;418:245–249.
Jorgensen, WL, Chandrasekhar, J, Madura, JD, Impey, RW, Klein, ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
Götz, AW, Clark, MA, Walker, RC. An extensible interface for QM/MM molecular dynamics simulations with AMBER. J Comput Chem. 2014;35:95–108.
Eastman, P, Swails, J, Chodera, JD, et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol. 2017;13:e1005659.
Sisto, A, Glowacki, DR, Martinez, TJ. Ab initio nonadiabatic dynamics of multichromophore complexes: A scalable graphical‐processing‐unit‐accelerated exciton framework. Acc Chem Res. 2014;47:2857–2866.
Sisto, A, Stross, C, Van Der Kamp, MW, et al. Atomistic non‐adiabatic dynamics of the LH2 complex with a GPU‐accelerated: Ab initio exciton model. Phys Chem Chem Phys. 2017;19:14924–14936.
Li, X, Parrish, RM, Liu, F, Schumacher, SILK, Martínez, TJ. An ab initio exciton model including charge‐transfer excited states. J Chem Theory Comput. 2017;13:3493–3504.
Goumans, TPM, Catlow, CRA, Brown, WA, Kästner, J, Sherwood, P. An embedded cluster study of the formation of water on interstellar dust grains. Phys Chem Chem Phys. 2009;11:5431–5436.
Kästner, J, Carr, JM, Keal, TW, Thiel, W, Wander, A, Sherwood, P. DL‐FIND: An open‐source geometry optimizer for atomistic simulations. J Phys Chem A. 2009;113:11856–11865.
Wang, L‐P, Song, C. Geometry optimization made simple with translation and rotation coordinates. J Chem Phys. 2016;144:214108.
Henkelman, G, Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys. 2000;113:9978–9985.
Henkelman, G, Uberuaga, BP, Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–9904.
Weinan, E, Ren, W, Vanden‐Eijnden, E. String method for the study of rare events. Phys Rev B. 2002;66:523011–523014.
Sheppard, D, Terrell, R, Henkelman, G. Optimization methods for finding minimum energy paths. J Chem Phys. 2008;128:134106.
Bussi, G, Donadio, D, Parrinello, M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101.
Martyna, GJ, Klein, ML, Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J Chem Phys. 1992;97:2635–2643.
Bussi, G, Parrinello, M. Accurate sampling using Langevin dynamics. Phys Rev E. 2007;75:056707.
Niklasson, AMN, Tymczak, CJ, Challacombe, M. Time‐reversible Born–Oppenheimer molecular dynamics. Phys Rev Lett. 2006;97:123001.
Niklasson, AMN, Steneteg, P, Odell, A, et al. Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation. J Chem Phys. 2009;130:214109.
Luehr, N, Markland, TE, Martinez, TJ. Multiple time step integrators in ab initio molecular dynamics. J Chem Phys. 2014;140:084116.
Tribello, GA, Bonomi, M, Branduardi, D, Camilloni, C, Bussi, G. PLUMED 2: New feathers for an old bird. Comput Phys Commun. 2014;185:604–613.
Glowacki, DR, Paci, E, Shalashilin, DV. Boxed molecular dynamics: A simple and general technique for accelerating rare event kinetics and mapping free energy in large molecular systems. J Phys Chem B. 2009;113:16603–16611.
Hirai, H. Practical hyperdynamics method for systems with large changes in potential energy. J Chem Phys. 2014;141:234109.
Ong, MT, Leiding, J, Tao, H, Virshup, AM, Martínez, TJ. First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J Am Chem Soc. 2009;131:6377–6379.
Luehr, N, Jin, AGB, Martínez, TJ. Ab initio interactive molecular dynamics on graphical processing units (GPUs). J Chem Theory Comput. 2015;11:4536–4544.
Wang, LP, Titov, A, McGibbon, R, Liu, F, Pande, VS, Martínez, TJ. Discovering chemistry with an ab initio nanoreactor. Nat Chem. 2014;6:1044–1048.
Santamaria, R, Adamowicz, L, Rosas‐Acevedo, H. Microscopic pressure‐cooker model for studying molecules in confinement. Mol Phys. 2015;113:671–682.
Wang, LP, McGibbon, RT, Pande, VS, Martinez, TJ. Automated discovery and refinement of reactive molecular dynamics pathways. J Chem Theory Comput. 2016;12:638–649.
Valleau, S, Martínez, TJ. Reaction dynamics of cyanohydrins with hydrosulfide in water. J Phys Chem A. 2019;123:7210–7217.
Meisner, J, Zhu, X, Martínez, TJ. Computational discovery of the origins of life. ACS Cent Sci. 2019;5:1493–1495.
Das, T, Ghule, S, Vanka, K. Insights into the origin of life: Did it begin from HCN and H2O? ACS Cent Sci. 2019;5:1532–1540.
Ufimtsev, IS, Luehr, N, Martinez, TJ. Charge transfer and polarization in solvated proteins from Ab initio molecular dynamics. J Phys Chem Lett. 2011;2:1789–1793.
Kulik, HJ, Luehr, N, Ufimtsev, IS, Martinez, TJ. Ab initio quantum chemistry for protein structures. J Phys Chem B. 2012;116:12501–12509.
Zheng, M, Reimers, JR, Waller, MP, Afonine, PV. Q|R: Quantum‐based refinement. Acta Crystallogr D. 2017;73:45–52.
Xu, Y, Waller, MP, Zheng, M, Afonine, PV, Reimers, JR, Moriarty, NW. Solving the scalability issue in quantum‐based refinement: Q|R#1. Acta Crystallogr D. 2017;73:1020–1028.
Ehrlich, S, Göller, AH, Grimme, S. Towards full quantum‐mechanics‐based protein–ligand binding affinities. ChemPhysChem. 2017;18:898–905.
Liang, R, Liu, F, Martínez, TJ. Nonadiabatic photodynamics of retinal protonated Schiff base in Channelrhodopsin 2. J Phys Chem Lett. 2019;10:2862–2868.
Yu, JK, Liang, R, Liu, F, Martínez, TJ. First‐principles characterization of the elusive| fluorescent state and the structural evolution of retinal protonated Schiff base in bacteriorhodopsin. J Am Chem Soc. 2019;141:18193–18203.
Curchod, BFE, Martínez, TJ. Ab initio nonadiabatic quantum molecular dynamics. Chem Rev. 2018;118:3305–3336.
Curchod, BFE, Sisto, A, Martínez, TJ. Ab initio multiple spawning photochemical dynamics of DMABN using GPUs. J Phys Chem A. 2017;121:265–276.
Hollas, D, Šištík, L, Hohenstein, EG, Martínez, TJ, Slavíček, P. Nonadiabatic ab initio molecular dynamics with the floating occupation molecular orbital‐complete active space configuration interaction method. J Chem Theory Comput. 2018;14:339–350.
Wolf, TJA, Sanchez, DM, Yang, J, et al. The photochemical ring‐opening of 1,3‐cyclohexadiene imaged by ultrafast electron diffraction. Nat Chem. 2019;11:504–509.
Wilkin, KJ, Parrish, RM, Yang, J, et al. Diffractive imaging of dissociation and ground‐state dynamics in a complex molecule. Phys Rev A. 2019;100:023402.
Weir, H, Williams, M, Parrish, RM., Hohenstein, EG., Martínez, TJ. Nonadia batic Dynamics of Photoexcited cis‐Stilbene Using Ab Initio Multiple Spawning. The Journal of Physical Chemistry B. 2020;http://dx.doi.org/10.1021/acs.jpcb.0c03344.
Asadchev, A, Allada, V, Felder, J, Bode, BM, Gordon, MS, Windus, TL. Uncontracted Rys quadrature implementation of up to G functions on graphical processing units. J Chem Theory Comput. 2010;6:696–704.
Kussmann, J, Ochsenfeld, C. Hybrid CPU/GPU integral engine for strong‐scaling ab initio methods. J Chem Theory Comput. 2017;13:3153–3159.