Whittingham, MS. Electrical energy storage and intercalation chemistry. Science. 1976;192(4244):1126–1127.
Mizushima, K, Jones, PC, Wiseman, PJ, Goodenough, JB. LixCoO2 (0%3Cx%3C−1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15(6):783–789.
Moshtev, R, Johnson, B. State of the art of commercial Li ion batteries. J Power Sources. 2000;91(2):86–91.
Goodenough, JB, Kim, Y. Challenges for rechargeable batteries. J Power Sources. 2011;196(16):6688–6694.
Cho, J, Jeong, S, Kim, Y. Commercial and research battery technologies for electrical energy storage applications. Prog Energy Combust Sci. 2015;48:84–101.
Weber, AZ, Mench, MM, Meyers, JP, Ross, PN, Gostick, JT, Liu, Q. Redox flow batteries: a review. J Appl Electrochem. 2011;41(10):1137–1164.
Noack, J, Roznyatovskaya, N, Herr, T, Fischer, P. The chemistry of redox‐flow batteries. Angew Chem Int Ed. 2015;54(34):9776–9809.
Skyllas‐Kazacos, M, Rychcik, M, Robins, RG, Fane, AG, Green, MA. New all‐vanadium redox flow cell. J Electrochem Soc. 1986;133(5):1057.
Poizot, P, Dolhem, F, Gaubicher, J. Progress in all‐organic rechargeable batteries using cationic and anionic configurations: toward low‐cost and greener storage solutions? Curr Opin Electrochem. 2018;9:70–80.
Gracia, R, Mecerreyes, D. Polymers with redox properties: materials for batteries, biosensors and more. Polym Chem. 2013;4(7):2206–2214.
Novák, P, Müller, K, Santhanam, KSV, Haas, O. Electrochemically active polymers for rechargeable batteries. Chem Rev. 1997;97(1):207–282.
Muench, S, Wild, A, Friebe, C, Häupler, B, Janoschka, T, Schubert, US. Polymer‐based organic batteries. Chem Rev. 2016;116(16):9438–9484.
Nyholm, L, Nyström, G, Mihranyan, A, Strømme, M. Toward flexible polymer and paper‐based energy storage devices. Adv Mater. 2011;23(33):3751–3769.
Schon, TB, McAllister, BT, Li, P‐F, Seferos, DS. The rise of organic electrode materials for energy storage. Chem Soc Rev. 2016;45(22):6345–6404.
Lu, Y, Zhang, Q, Li, L, Niu, Z, Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal‐ion batteries. Chem. 2018;4(12):2786–2813.
Liang, Y, Tao, Z, Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater. 2012;2(7):742–769.
Soloveichik, GL. Flow batteries: current status and trends. Chem Rev. 2015;115(20):11533–11558.
Leung, P, Shah, AA, Sanz, L, et al. Recent developments in organic redox flow batteries: a critical review. J Power Sources. 2017;360:243–283.
Wei, X, Pan, W, Duan, W, et al. Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett. 2017;2(9):2187–2204.
Ding, Y, Zhang, C, Zhang, L, Zhou, Y, Yu, G. Molecular engineering of organic electroactive materials for redox flow batteries. Chem Soc Rev. 2018;47(1):69–103.
Wedege, K, Dražević, E, Konya, D, Bentien, A. Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility. Sci Rep. 2016;6(1):1–13.
Marenich, AV, Ho, JL, Coote, MJ, Cramer, CG, Truhlar, D. Computational electrochemistry: prediction of liquid‐phase reduction potentials. Phys Chem Chem Phys. 2014;16(29):15068–15106.
Konezny, SJ, Doherty, MD, Luca, OR, Crabtree, RH, Soloveichik, GL, Batista, VS. Reduction of systematic uncertainty in DFT redox potentials of transition‐metal complexes. J Phys Chem C. 2012;116(10):6349–6356.
Ho, J. Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials? Phys Chem Chem Phys. 2014;17(4):2859–2868.
Tomasi, J, Persico, M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev. 1994;94(7):2027–2094.
Cramer, CJ, Truhlar, DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev. 1999;99(8):2161–2200.
Miertuš, S, Scrocco, E, Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys. 1981;55(1):117–129.
Barone, V, Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A. 1998;102(11):1995–2001.
Cossi, M, Rega, N, Scalmani, G, Barone, V. Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. J Comput Chem. 2003;24(6):669–681.
Klamt, A, Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans. 1993;2(5):799–805.
Marenich, AV, Cramer, CJ, Truhlar, DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378–6396.
Ho, J, Klamt, A, Coote, ML. Comment on the correct use of continuum solvent models. J Phys Chem A. 2010;114(51):13442–13444.
Hammerich, O, Speiser, B. Organic electrochemistry, Fifth edition revised and expanded. Boca Raton, FL: CRC Press, Taylor %26 Francis Group, 2016;p. 1712.
Quan, M, Sanchez, D, Wasylkiw, MF, Smith, DK. Voltammetry of Quinones in Unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of Quinones. J Am Chem Soc. 2007;129(42):12847–12856.
Johnsson Wass, JRT, Ahlberg, E, Panas, I, Schiffrin, DJ. Quantum chemical modeling of the reduction of quinones. J Phys Chem A. 2006;110(5):2005–2020.
Huynh, MT, Anson, CW, Cavell, AC, Stahl, SS, Hammes‐Schiffer, S. Quinone 1 e– And 2e−/2H+ reduction potentials: identification and analysis of deviations from systematic scaling relationships. J Am Chem Soc. 2016;138(49):15903–15910.
Namazian, M, Coote, ML. Accurate calculation of absolute one‐electron redox potentials of some para‐quinone derivatives in acetonitrile. J Phys Chem A. 2007;111(30):7227–7232.
Calbo, J, Viruela, R, Ortí, E, Aragó, J. Relationship between electron affinity and half‐wave reduction potential: a theoretical study on cyclic electron‐acceptor compounds. ChemPhysChem. 2016;17(23):3881–3890.
Isegawa, M, Neese, F, Pantazis, DA. Ionization energies and aqueous redox potentials of organic molecules: comparison of DFT, correlated ab initio theory and pair natural orbital approaches. J Chem Theory Comput. 2016;12(5):2272–2284.
Andreussi, O, Fisicaro, G. Continuum embeddings in condensed‐matter simulations. Int J Quantum Chem. 2019;119(1):e25725.
Kim, H, Goodson, T, Zimmerman, PM. Achieving accurate reduction potential predictions for anthraquinones in water and aprotic solvents: effects of inter‐ and intramolecular H‐bonding and ion pairing. J Phys Chem C. 2016;120(39):22235–22247.
Pliego, JR, Riveros, JM. The cluster−continuum model for the calculation of the solvation free energy of ionic species. J Phys Chem A. 2001;105(30):7241–7247.
Thapa, B, Schlegel, HB. Density functional theory calculation of pKa`s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J Phys Chem A. 2016;120(28):5726–5735.
Guo, C, Wang, W, Feng, W, Li, P. Insights into the one‐electron reduction behavior of tetrachloro‐o‐benzoquinone: a DFT and molecular dynamics study. RSC Adv. 2017;7(21):12775–12782.
Pliego, JR, Riveros, JM. Hybrid discrete‐continuum solvation methods. WIREs Comput Mol Sci. 2020;10(2):e1440.
Wang, L‐P, Van Voorhis, T. A polarizable QM/MM explicit solvent model for computational electrochemistry in water. J Chem Theory Comput. 2012;8(2):610–617.
Vaissier, V, Van Voorhis, T. Adiabatic approximation in explicit solvent models of RedOx chemistry. J Chem Theory Comput. 2016;12(10):5111–5116.
Sterling, CM, Bjornsson, R. Multistep explicit solvation protocol for calculation of redox potentials. J Chem Theory Comput. 2019;15(1):52–67.
Basdogan, Y, Groenenboom, MC, Henderson, E, De, S, Rempe, SB, Keith, JA. Machine learning‐guided approach for studying solvation environments. J Chem Theory Comput. 2020;16(1):633–642.
Domingo, LR, Ríos‐Gutiérrez, M, Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules. 2016;21(6):748.
Kwabi, DG, Ji, Y, Aziz, MJ. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem Rev. 2020. https://doi.org/10.1021/acs.chemrev.9b00599.
Gerhardt, MR, Tong, L, Gómez‐Bombarelli, R, et al. Anthraquinone derivatives in aqueous flow batteries. Adv Energy Mater. 2017;7(8):1601488.
Tabor, DP, Gómez‐Bombarelli, R, Tong, L, Gordon, RG, Aziz, MJ, Aspuru‐Guzik, A. Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries. J Mater Chem A. 2019;7(20):12833–12841.
Truhlar, DG, Pliego, JR. Transition state theory and chemical reaction dynamics in solution. In: Mennucci, B, Cammi, R, editors. Continuum Solvation Models in Chemical Physics: Theory and Application. Hoboken, NJ: John Wiley %26 Sons, 2008.
Fernández‐Ramos, A, Miller, JA, Klippenstein, SJ, Truhlar, DG. Modeling the kinetics of bimolecular reactions. Chem Rev. 2006;106(11):4518–4584.
Song, Z, Zhou, H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energ Environ Sci. 2013;6(8):2280.
Yang, B, Hoober‐Burkhardt, L, Wang, F, Prakash, GKS, Narayanan, SR. An inexpensive aqueous flow battery for large‐scale electrical energy storage based on water‐soluble organic redox couples. J Electrochem Soc. 2014;161(9):A1371–A1380.
Li, Z, Li, S, Liu, S, et al. Electrochemical properties of an all‐organic redox flow battery using 2,2,6,6‐tetramethyl‐1‐piperidinyloxy and N‐methylphthalimide. Electrochem Solid State. 2011;14(12):A171.
Huskinson, B, Marshak, MP, Suh, C, et al. A metal‐free organic–inorganic aqueous flow battery. Nature. 2014 Jan;505(7482):195–198.
Namazian, M, Almodarresieh, HA, Noorbala, MR, Zare, HR. DFT calculation of electrode potentials for substituted quinones in aqueous solution. Chem Phys Lett. 2004;396(4):424–428.
Frontana, C, Vázquez‐Mayagoitia, Á, Garza, J, Vargas, R, González, I. Substituent effect on a family of Quinones in aprotic solvents: An experimental and theoretical approach. J Phys Chem A. 2006;110(30):9411–9419.
Zare, HR, Eslami, M, Namazian, M, Coote, ML. Experimental and theoretical studies of redox reactions of o‐chloranil in aqueous solution. J Phys Chem B. 2009;113(23):8080–8085.
Zhu, X‐Q, Wang, C‐H. Accurate estimation of the one‐electron reduction potentials of various substituted quinones in DMSO and CH3CN. J Org Chem. 2010;75(15):5037–5047.
Wang, Z, Li, A, Gou, L, Ren, J, Zhai, G. Computational electrochemistry study of derivatives of anthraquinone and phenanthraquinone analogues: the substitution effect. RSC Adv. 2016;6(92):89827–89835.
Wei, X, Xu, W, Vijayakumar, M, et al. TEMPO‐based Catholyte for high‐energy density nonaqueous redox flow batteries. Adv Mater. 2014;26(45):7649–7653.
Janoschka, T, Martin, N, Martin, U, et al. An aqueous, polymer‐based redox‐flow battery using non‐corrosive, safe, and low‐cost materials. Nature. 2015;527(7576):78–81.
Janoschka, T, Martin, N, Hager, MD, Schubert, US. An aqueous redox‐flow battery with high capacity and power: the TEMPTMA/MV system. Angew Chem Int Ed. 2016;55(46):14427–14430.
Liu, T, Wei, X, Nie, Z, Sprenkle, V, Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4‐HO‐TEMPO catholyte. Adv Energy Mater. 2016;6(3):1501449.
Janoschka, T, Friebe, C, Hager, MD, Martin, N, Schubert, US. An approach toward replacing vanadium: a single organic molecule for the anode and cathode of an aqueous redox‐flow battery. Chem Open. 2017;6(2):216–220.
Cheng, L, Assary, RS, Qu, X, et al. Accelerating electrolyte discovery for energy storage with high‐throughput screening. J Phys Chem Lett. 2015;6(2):283–291.
DeBruler, C, Hu, B, Moss, J, et al. Designer two‐electron storage Viologen Anolyte materials for neutral aqueous organic redox flow batteries. Chem. 2017;3(6):961–978.
DeBruler, C, Hu, B, Moss, J, Luo, J, Liu, TL. A sulfonate‐functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage. ACS Energy Lett. 2018;3(3):663–668.
Ding, Y, Li, Y, Yu, G. Exploring bio‐inspired quinone‐based organic redox flow batteries: a combined experimental and computational study. Chem. 2016;1(5):790–801.
Lin, K, Chen, Q, Gerhardt, MR, et al. Alkaline quinone flow battery. Science. 2015;349(6255):1529–1532.
Lin, K, Gómez‐Bombarelli, R, Beh, ES, et al. A redox‐flow battery with an alloxazine‐based organic electrolyte. Nat Energy. 2016;1(9):1–8.
Yang, Z, Tong, L, Tabor, DP, et al. Alkaline benzoquinone aqueous flow battery for large‐scale storage of electrical energy. Adv Energy Mater. 2018;8(8):1702056.
Kwon, G, Lee, S, Hwang, J, et al. Multi‐redox molecule for high‐energy redox flow batteries. Joule. 2018;2(9):1771–1782.
Bachman, JE, Curtiss, LA, Assary, RS. Investigation of the redox chemistry of Anthraquinone derivatives using density functional theory. J Phys Chem A. 2014;118(38):8852–8860.
Er, S, Suh, C, Marshak, MP, Aspuru‐Guzik, A. Computational design of molecules for an all‐quinone redox flow battery. Chem Sci. 2015;6(2):885–893.
Pineda Flores, SD, Martin‐Noble, GC, Phillips, RL, Schrier, J. Bio‐inspired Electroactive organic molecules for aqueous redox flow batteries. 1. Thiophenoquinones. J Phys Chem C. 2015;119(38):21800–21809.
Moon, Y, Han, Y‐K. Computational screening of organic molecules as redox active species in redox flow batteries. Curr Appl Phys. 2016;16(9):939–943.
Hou, TJ, Xia, K, Zhang, W, Xu, XJ. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci. 2004;44(1):266–275.
Wang, J, Hou, T. Recent advances on aqueous solubility prediction. Comb Chem High Throughput Screen. 2011;14(5):328–338.
Fornari, RP, Mesta, M, Hjelm, J, Vegge, T, de Silva, P. Molecular engineering strategies for symmetric aqueous organic redox flow batteries. ACS Mater Lett. 2020;2:239–246.
Kim, S, Jinich, A, Aspuru‐Guzik, A. MultiDK: a multiple descriptor multiple kernel approach for molecular discovery and its application to organic flow battery electrolytes. J Chem Inf Model. 2017;57(4):657–668.
Potash, RA, McKone, JR, Conte, S, Abruña, HD. On the benefits of a symmetric redox flow battery. J Electrochem Soc. 2016;163(3):A338–A344.
Heiska, J, Nisula, M, Karppinen, M. Organic electrode materials with solid‐state battery technology. J Mater Chem A. 2019;7(32):18735–18758.
DeBlase, CR, Hernández‐Burgos, K, Silberstein, KE, et al. Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano. 2015;9(3):3178–3183.
Sun, T, Xie, J, Guo, W, Li, D‐S, Zhang, Q. Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv Energy Mater. 2020;10:1904199.
Manzhos, S. Organic electrode materials for lithium and post‐lithium batteries: an ab initio perspective on design. Curr Opin Green Sustain Chem. 2019;17:8–14.
Manzhos, S. Aggregate‐state effects in the atomistic modeling of organic materials for electrochemical energy conversion and storage devices: a perspective. Molecules. 2020;25(9):2233.
Lüder, J, Manzhos, S. First‐principle insights into molecular design for high‐voltage organic electrode materials for mg based batteries. Frontiers in Chemistry. 2020;8:83.
Karlsson, C, Jämstorp, E, Strømme, M, Sjödin, M. Computational electrochemistry study of 16 Isoindole‐4,7‐diones as candidates for organic cathode materials. J Phys Chem C. 2012;116(5):3793–3801.
Chen, Y, Lüder, J, Ng, M‐F, Sullivan, M, Manzhos, S. Polyaniline and CN‐functionalized polyaniline as organic cathodes for lithium and sodium ion batteries: a combined molecular dynamics and density functional tight binding study in solid state. Phys Chem Chem Phys. 2017;20(1):232–237.
Renault, S, Oltean, VA, Araujo, CM, Grigoriev, A, Edström, K, Brandell, D. Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate. Chem Mater. 2016;28(6):1920–1926.
Miao, L, Liu, L, Zhang, K, Chen, J. Molecular design strategy for high‐redox‐potential and poorly soluble n‐type phenazine derivatives as cathode materials for lithium batteries. ChemSusChem. 2020;13:2337–2344.
Dardenne, N, Blase, X, Hautier, G, Charlier, J‐C, Rignanese, G‐M. Ab initio calculations of open‐cell voltage in Li‐ion organic radical batteries. J Phys Chem C. 2015;119(41):23373–23378.
Chen, Y, Cho, C‐R, Manzhos, S. Lithium attachment to C60 and nitrogen‐ and boron‐doped C60: a mechanistic study. Materials. 2019;12(13):2136.
Burkhardt, SE, Bois, J, Tarascon, J‐M, Hennig, RG, Abruña, HD. Li‐carboxylate anode structure‐property relationships from molecular modeling. Chem Mater. 2013;25(2):132–141.
Hernández‐Burgos, K, Burkhardt, SE, Rodríguez‐Calero, GG, Hennig, RG, Abruña, HD. Theoretical studies of carbonyl‐based organic molecules for energy storage applications: the heteroatom and substituent effect. J Phys Chem C. 2014;118(12):6046–6051.
Tomerini, D, Gatti, C, Frayret, C. Engineering of unsubstituted quinoid‐like frameworks enabling 2 V vs. Li+/Li redox voltage tunability and related derivatives. Phys Chem Chem Phys. 2015;17(14):8604–8608.
Tomerini, D, Gatti, C, Frayret, C. Playing with isomerism and N substitution in pentalenedione derivatives for organic electrode batteries: how high are the stakes? Phys Chem Chem Phys. 2016;18(4):2442–2448.
Lüder, J, Cheow, MH, Manzhos, S. Understanding doping strategies in the design of organic electrode materials for Li and Na ion batteries: an electronic structure perspective. Phys Chem Chem Phys. 2017;19(20):13195–13209.
Araujo, RB, Banerjee, A, Panigrahi, P, et al. Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. J Mater Chem A. 2017;5(9):4430–4454.
Allam, O, Woo Cho, B, Chul Kim, K, Soon Jang, S. Application of DFT‐based machine learning for developing molecular electrode materials in Li‐ion batteries. RSC Adv. 2018;8(69):39414–39420.
Yu, Y‐X. A dispersion‐corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h‐BN. J Mater Chem A. 2014;2(23):8910–8917.
Chen, Y, Manzhos, S. Lithium and sodium storage on tetracyanoethylene (TCNE) and TCNE‐(doped)‐graphene complexes: a computational study. Mater Chem Phys. 2015;156:180–187.
Tripathi, A, Chen, Y, Padhy, H, Manzhos, S, Balaya, P. Experimental and theoretical studies of Trisodium‐1,3,5‐benzene tricarboxylate as a low‐voltage anode material for sodium‐ion batteries. Energ Technol. 2019;7(5):1801030.
Chen, Y, Manzhos, S. Voltage and capacity control of polyaniline based organic cathodes: an ab initio study. J Power Sources. 2016;336:126–131.
Araujo, RB, Banerjee, A, Panigrahi, P, et al. Assessing the electrochemical properties of polypyridine and polythiophene for prospective applications in sustainable organic batteries. Phys Chem Chem Phys. 2017;19(4):3307–3314.
Fornari, RP, de Silva, P. Unexpectedly large couplings between orthogonal units in Anthraquinone polymers. Chem A Eur J. 2019;25(64):14651–14658.
Kemper, TW, Larsen, RE, Gennett, T. Relationship between molecular structure and electron transfer in a polymeric nitroxyl‐radical energy storage material. J Phys Chem C. 2014;118(31):17213–17220.
Kemper, TW, Larsen, RE, Gennett, T. Density of states and the role of energetic disorder in charge transport in an organic radical polymer in the solid state. J Phys Chem C. 2015;119(37):21369–21375.
Kemper, TW, Gennett, T, Larsen, RE. Molecular dynamics simulation study of solvent and state of charge effects on solid‐phase structure and counterion binding in a nitroxide radical containing polymer energy storage material. J Phys Chem C. 2016;120(45):25639–25646.
Chen, Y, Wu, Z, Sun, S. First‐principles study of an ethoxycarbonyl‐based organic electrode material of lithium battery. J Phys Chem C. 2014;118(38):21813–21818.
Sun, S, Chen, Y, Yu, J. High throughput screening of organic electrode materials for lithium battery by theoretical method. J Phys Chem C. 2015;119(46):25770–25777.
Chen, Y, Sun, S, Wang, X, Shi, Q. Study of lithium migration pathways in the organic electrode materials of Li‐battery by dispersion‐corrected density functional theory. J Phys Chem C. 2015;119(46):25719–25725.
Chen, Y, Manzhos, S. A comparative computational study of lithium and sodium insertion into van der Waals and covalent tetracyanoethylene (TCNE)‐based crystals as promising materials for organic lithium and sodium ion batteries. Phys Chem Chem Phys. 2016;18(13):8874–8880.
Yamashita, T, Momida, H, Oguchi, T. Crystal structure predictions of NaxC6O6 for sodium‐ion batteries: first‐principles calculations with an evolutionary algorithm. Electrochim Acta. 2016;195:1–8.
Araujo, RB, Banerjee, A, Ahuja, R. Divulging the hidden capacity and sodiation kinetics of NaxC6Cl4O2: a high voltage organic cathode for sodium rechargeable batteries. J Phys Chem C. 2017;121(26):14027–14036.
Banerjee, A, Araujo, RB, Sjödin, M, Ahuja, R. Identifying the tuning key of disproportionation redox reaction in terephthalate: a Li‐based anode for sustainable organic batteries. Nano Energy. 2018;47:301–308.
Padhy, H, Chen, Y, Lüder, J, Gajella, SR, Manzhos, S, Balaya, P. Charge and discharge processes and sodium storage in disodium pyridine‐2,5‐dicarboxylate anode—insights from experiments and theory. Adv Energy Mater. 2018;8(7):1701572.
Marchiori, CFN, Brandell, D, Araujo, CM. Predicting structure and electrochemistry of dilithium thiophene‐2,5‐dicarboxylate electrodes by density functional theory and evolutionary algorithms. J Phys Chem C. 2019;123(8):4691–4700.
Carvalho, RP, Marchiori, CFN, Brandell, D, Araujo, CM. Tuning the electrochemical properties of organic battery cathode materials: insights from evolutionary algorithm DFT calculations. ChemSusChem. 2020;13:2402–2409.
Seo, D‐H, Kim, H, Kim, H, Goddard, WA, Kang, K. The predicted crystal structure of Li4C6O6, an organic cathode material for Li‐ion batteries, from first‐principles multi‐level computational methods. Energ Environ Sci. 2011;4(12):4938.
Chen, Y, Manzhos, S. A computational study of lithium interaction with tetracyanoethylene (TCNE) and tetracyaniquinodimethane (TCNQ) molecules. Phys Chem Chem Phys. 2016;18(3):1470–1477.
Thompson, JD, Cramer, CJ, Truhlar, DG. New universal solvation model and comparison of the accuracy of the SM5.42R, SM5.43R, C‐PCM, D‐PCM, and IEF‐PCM continuum solvation models for aqueous and organic solvation free energies and for vapor pressures. J Phys Chem A. 2004;108(31):6532–6542.
Frediani, L, Andreussi, O, Kulik, HJ. Coding solvation: challenges and opportunities. Int J Quantum Chem. 2019;119(1):e25839.
Stamm, B, Lagardère, L, Scalmani, G, et al. How to make continuum solvation incredibly fast in a few simple steps: a practical guide to the domain decomposition paradigm for the conductor‐like screening model. Int J Quantum Chem. 2019;119(1):e25669.
Liu, F, Sanchez, DM, Kulik, HJ, Martínez, TJ. Exploiting graphical processing units to enable quantum chemistry calculation of large solvated molecules with conductor‐like polarizable continuum models. Int J Quantum Chem. 2019;119(1):e25760.
Tölle, J, Gomes, ASP, Ramos, P, Pavanello, M. Charged‐cell periodic DFT simulations via an impurity model based on density embedding: application to the ionization potential of liquid water. Int J Quantum Chem. 2019;119(1):e25801.
Klamt, A. Conductor‐like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem. 1995;99(7):2224–2235.
Palmer, DS, Llinàs, A, Morao, I, et al. Predicting intrinsic aqueous solubility by a thermodynamic cycle. Mol Pharm. 2008;5(2):266–279.
Zimmerman, PM. Automated discovery of chemically reasonable elementary reaction steps. J Comput Chem. 2013;34(16):1385–1392.
Simm, GN, Vaucher, AC, Reiher, M. Exploration of reaction pathways and chemical transformation networks. J Phys Chem A. 2019;123(2):385–399.
Gao, CW, Allen, JW, Green, WH, West, RH. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Comput Phys Commun. 2016;203:212–225.
Franco, AA, Rucci, A, Brandell, D, et al. Boosting Rechargeable Batteries R%26D by multiscale modeling: myth or reality? Chem Rev. 2019;119(7):4569–4627.
Shukla, G, del Olmo Diaz, D, Thangavel, V, Franco, AA. Self‐Organization of electroactive suspensions in discharging slurry batteries: a mesoscale modeling investigation. ACS Appl Mater Interfaces. 2017;9(21):17882–17889.
Shukla, G, Franco, AA. Handling complexity of semisolid redox flow battery operation principles through mechanistic simulations. J Phys Chem C. 2018;122(42):23867–23877.
Shukla, G, Franco, AA. Interphases in electroactive suspension systems: where chemistry meets mesoscale physics. Batteries Supercaps. 2019;2(7):579–590.
Yu, J, Sushko, ML, Kerisit, S, Rosso, KM, Liu, J. Kinetic Monte Carlo study of ambipolar lithium ion and electron–polaron diffusion into nanostructured TiO2. J Phys Chem Lett. 2012;3(15):2076–2081.