Cui, C, Xue, F, Hu, W‐J, Li, LJ, et al. Two‐dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater Appl. 2018;18:1253–1258. https://doi.org/10.1038/s41699-018-0063-5.
Lu, H, Bark, CW, de los Ojos Esque, D, et al. Mechanical writing of ferroelectric polarization. Science. 2012;336:59–61.
Scott, JF. Applications of modern ferroelectrics. Science. 2007;315:954–959.
Dragan, D, Paul, M, Nava, S. Ferroelectric sensors. IEEE Sens J. 2001;1:191–206.
Ye, H‐Y, Tang, Y‐Y, Li, P‐F, et al. Metal‐free three‐dimensional perovskite ferroelectrics. Science. 2018;361:151–155.
Gerald, B, Dacol, FH. Polarization in the cubic phase of BaTiO3. Solid State Commun. 1982;42:9–12.
Zhong, W, Vanderbilt, D. First‐principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Physl Rev B. 1995;52:6301–6312. https://doi.org/10.1103/physrevb.52.6301.
Bhatti, HS, Hussain, ST, Khan, FA, Hussain, S. Synthesis and induced multiferroicity of perovskite PbTiO3: A review. Appl Surf Sci. 2016;367:291–306. https://doi.org/10.1016/j.apsusc.2016.01.164.
Choi, T, Lee, S, Choi, YJ, Kiryukhin, V, Cheong, S‐W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science. 2009;324:63–66.
Cohen, RE. Origin of ferroelectricity in perovskite oxides. Nature. 1992;358:136–138.
Benedek, NA, Fennie, CJ. Why are there so few perovskite ferroelectrics? J Phys Chem C. 2013;117(26):13339–13349. https://doi.org/10.1021/jp402046t.
Chen, L, Yang, Y, Gui, Z, et al. Large elasto‐optic effect in epitaxial PbTiO3 films. Phys Rev Lett. 2015;115:267602. https://doi.org/10.1103/PhysRevLett.115.267602.
Francombe, MH. Ferroelectric films and their device applications. Thin Solid Films. 1972;13:413–433.
Choi, KJ, Biegalski, M, Li, YL, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science. 2004;306:1005–1009.
Fong, DD, Stephenson, GB, Streiffer, SK, et al. Ferroelectricity in ultrathin perovskite films. Science. 2004;304:1650–1653.
Tybell, T, Ahn, CH, Triscone, JM. Ferroelectricity in thin perovskite films. Appl Phys Lett. 1999;75:856–858. https://doi.org/10.1063/1.124536.
Chu, YH, Zhao, T, Cruz, MP, et al. Ferroelectric size effects in multiferroic BiFeO3 thin films. Appl Phys Lett. 2007;90:252906. https://doi.org/10.1063/1.2750524.
Dawber, M, Rabe, KM, Scott, JF. Physics of thin‐film ferroelectric oxides. Rev Mod Phys. 2005;77:1083–1130.
Junquera, J, Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature. 2003;422:506–509. https://doi.org/10.1038/nature01499.
Spaldin, NA. Fundamental size limits in ferroelectricity. Science. 2004;304:1606–1607.
Onsager, L. Crystal statistics. I. a two‐dimensional model with an order‐disorder transition. Phys Rev. 1944;65:117–149. https://doi.org/10.1103/PhysRev.65.117.
Fei, R, Kang, W, Yang, L. Ferroelectricity and phase transitions in monolayer group‐IV monochalcogenides. Phys Rev Lett. 2016;117:097601. https://doi.org/10.1103/PhysRevLett.117.097601.
Yin, W, Wen, B, Ge, Q, et al. Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first‐principles study. Prog Nat Sci Mater Int. 2019;29:335–340. https://doi.org/10.1016/j.pnsc.2019.05.003.
Fuh, H‐R, Yan, B, Wu, S‐C, Felser, C, Chang, C‐R. Metal‐insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J Phys. 2016;18:113038. https://doi.org/10.1088/1367-2630/18/11/113038.
Ma, Y, Dai, Y, Guo, M, Niu, C, Zhu, Y, Huang, B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se). ACS Nano. 2012;6:1695–1701.
Huang, C, Du, Y, Wu, H, Xiang, H, Deng, K, Kan, E. Prediction of intrinsic ferromagnetic ferroelectricity in a transition‐metal halide monolayer. Phys Rev Lett. 2018b;120:147601. https://doi.org/10.1103/PhysRevLett.120.147601.
Chang, K, Liu, J, Lin, H, et al. Discovery of robust in‐plane ferroelectricity in atomic‐thick SnTe. Science. 2016;353:274–278.
Liu, K, Lu, J, Picozzi, S, Bellaiche, L, Xiang, H. Intrinsic origin of enhancement of ferroelectricity in SnTe ultrathin films. Phys Rev Lett. 2018;121:027601. https://doi.org/10.1103/PhysRevLett.121.027601.
Wan, W, Liu, C, Xiao, W, Yao, Y. Promising ferroelectricity in 2D group IV tellurides: A first‐principles study. Appl Phys Lett. 2017;111:132904. https://doi.org/10.1063/1.4996171.
Yuan, S, Luo, X, Chan, HL, et al. Room‐temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat Commun. 2019;10:1775. https://doi.org/10.1038/s41467-019-09669-x.
Shirodkar, SN, Waghmare, UV. Emergence of ferroelectricity at a metal‐semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett. 2014;112:157601. https://doi.org/10.1103/PhysRevLett.112.157601.
Wu, M, Dong, S, Yao, K, Liu, J, Zeng, XC. Ferroelectricity in covalently functionalized two‐dimensional materials: Integration of high‐mobility semiconductors and nonvolatile memory. Nano Lett. 2016;16:7309–7315. https://doi.org/10.1021/acs.nanolett.6b04309.
Yang, Q, Xiong, W, Zhu, L, Gao, G, Wu, M. Chemically functionalized phosphorene: Two‐dimensional multiferroics with vertical polarization and mobile magnetism. J Am Chem Soc. 2017;139:11506–11512. https://doi.org/10.1021/jacs.7b04422.
Li, L, Wu, M, Zeng, XC. Facile and versatile functionalization of two‐dimensional carbon nitrides by design: Magnetism/multiferroicity, valleytronics, and photovoltaics. Adv Funct Mater. 2019;29:1905752. https://doi.org/10.1002/adfm.201905752.
Debbichi, L, Eriksson, O, Lebègue, S. Two‐dimensional indium selenides compounds: An ab initio study. J Phys Chem Lett. 2015;6:3098–3103. https://doi.org/10.1021/acs.jpclett.5b01356.
Ding, W, Zhu, J, Wang, Z, et al. Prediction of intrinsic two‐dimensional ferroelectrics in In2Se3 and other III2‐VI3 van der Waals materials. Nat Commun. 2017;8:14956. https://doi.org/10.1038/ncomms14956.
Xue, F, Zhang, J, Hu, W, et al. Multidirection piezoelectricity in mono‐ and multilayered hexagonal α‐In2Se3. ACS Nano. 2018a;12:4976–4983. https://doi.org/10.1021/acsnano.8b02152.
Xu, B, Xiang, H, Xia, Y, et al. Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out‐plane polarization. Nanoscale. 2017;9:8427–8434. https://doi.org/10.1039/c7nr02461d.
Babuka, T, Glukhov, K, Vysochanskii, Y, Makowska‐Janusik, M. Layered ferrielectric crystals CuInP2S(Se)6: A study from the first principles. Phase Trans. 2019;92(5):440–450. https://doi.org/10.1080/01411594.2019.1587439.
Balke, N, Neumayer, SM, Brehm, JA, et al. Locally controlled Cu‐ion transport in layered ferroelectric CuInP2S6. ACS Appl Mater Interfaces. 2018;10(32):27188–27194. https://doi.org/10.1021/acsami.8b08079.
Qi, J, Wang, H, Chen, X, Qian, X. Two‐dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl Phys Lett. 2018;113:043102. https://doi.org/10.1063/1.5038037.
Wu, M, Burton, JD, Tsymbal, EY, Zeng, XC, Jena, P. Hydroxyl‐decorated graphene systems as candidates for organic metal‐free ferroelectrics, multiferroics, and high‐performance proton battery cathode materials. Phys Rev B. 2013;87:081406(R). https://doi.org/10.1103/PhysRevB.87.081406.
Dai, J‐Q, Zhu, J‐H, Xu, J‐W. First‐principles investigation of platinum monolayer adsorption on the BiFeO3 (0001) polar surfaces. Appl Surf Sci. 2018;428:964–971. https://doi.org/10.1016/j.apsusc.2017.09.244.
Jiang, S, Arguilla, MQ, Cultrara, ND, Goldberger, JE. Covalently‐controlled properties by design in group IV graphane analogues. Acc Chem Res. 2015;48:144–151. https://doi.org/10.1021/ar500296e.
Tang, X, Kou, L. Two‐dimensional ferroics and multiferroics: Platforms for new physics and applications. J Phys Chem Lett. 2019;10:6634–6649. https://doi.org/10.1021/acs.jpclett.9b01969.
Yang, Q, Zhong, T, Tu, Z, Zhu, L, Wu, M, Zeng, XC. Design of single‐molecule multiferroics for efficient ultrahigh‐density nonvolatile memories. Adv Sci. 2019;6:1801572. https://doi.org/10.1002/advs.201801572.
Gomes, LC, Carvalho, A, Castro Neto, AH. Enhanced piezoelectricity and modified dielectric screening of two‐dimensional group‐IV monochalcogenides. Phys Rev B. 2015;92:214103. https://doi.org/10.1103/PhysRevB.92.214103.
Shen, S, Liu, C, Ma, Y, Huang, B, Dai, Y. Robust two‐dimensional ferroelectricity in single‐layer γ‐SbP and γ‐SbAs. Nanoscale. 2019;11:11864–11871. https://doi.org/10.1039/c9nr02265a.
Yin, H, Liu, C, Zheng, G, Wang, Y, Ren, F, et al. Ab initio simulation studies on the room‐temperature ferroelectricity in two‐dimensional b‐phase GeS. Appl Phys Lett. 2019;114:192903. https://doi.org/10.1063/1.5097425.
Bruyer, E, Di Sante, D, Barone, P, Stroppa, A, Whangbo, M‐H, Picozzi, S. Possibility of combining ferroelectricity and Rashba‐like spin splitting in monolayers of the1T‐type transition‐metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Phys Rev B. 2016;94:195402. https://doi.org/10.1103/PhysRevB.94.195402.
Di Sante, D, Stroppa, A, Barone, P, Whangbo, M‐H, Picozzi, S. Emergence of ferroelectricity and spin‐valley properties in two‐dimensional honeycomb binary compounds. Phys Rev B. 2015;91:161401(R). https://doi.org/10.1103/PhysRevB.91.161401.
Luo, W, Xiang, H. Two‐dimensional phosphorus oxides as energy and information materials. Angew Chem Int Ed. 2016;55:8575–8580. https://doi.org/10.1002/anie.201602295.
Luo, W, Xu, K, Xiang, H. Two‐dimensional hyperferroelectric metals: A different route to ferromagnetic‐ferroelectric multiferroics. Phys Rev B. 2017;96:235415. https://doi.org/10.1103/PhysRevB.96.235415.
Lu, J, Chen, G, Luo, W, Íñiguez, J, Bellaiche, L, Xiang, H. Ferroelectricity with asymmetric hysteresis in metallic LiOsO3 ultrathin films. Phys Rev Lett. 2019;122:227601. https://doi.org/10.1103/PhysRevLett.122.227601.
Belianinov, A, He, Q, Dziaugys, A, et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 2015;15(6):3808–3814. https://doi.org/10.1021/acs.nanolett.5b00491.
Liu, F, You, L, Seyler, KL, et al. Room‐temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun. 2016;7:12357. https://doi.org/10.1038/ncomms12357.
Cui, C, Hu, W‐J, Yan, X, Addiego, C. Intercorrelated In‐Plane and Out‐of‐Plane Ferroelectricity in Ultrathin Two‐Dimensional Layered Semiconductor In2Se3. Nano lett. 2018;18:1253–1258. https://doi.org/10.1021/acs.nanolett.7b04852.
Zhou, Y, Wu, D, Zhu, Y, et al. Out‐of‐plane piezoelectricity and ferroelectricity in layered α‐In2Se3 Nanoflakes. Nano Lett. 2017;17:5508–5513. https://doi.org/10.1021/acs.nanolett.7b02198.
Zhang, JJ, Lin, L, Zhang, Y, Wu, M, Yakobson, BI, Dong, S. Type‐II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature. J Am Chem Soc. 2018;140:9768–9773. https://doi.org/10.1021/jacs.8b06475.
Huang, B, Clark, G, Klein, DR, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol. 2018;13:544–548. https://doi.org/10.1038/s41565-018-0121-3.
Jiang, S, Li, L, Wang, Z, Mak, KF, Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol. 2018;13:549–553. https://doi.org/10.1038/s41565-018-0135-x.
Lottermoser, T, Lonkai, T, Amann, U, Hohlwein, D, Ihringer, J, Fiebig, M. Magnetic phase control by an electric field. Nature. 2004;430:541–544. https://doi.org/10.1038/nature02673.
Matsukura, F, Tokura, Y, Ohno, H. Control of magnetism by electric fields. Nat Nanotechnol. 2015;10:209–220. https://doi.org/10.1038/nnano.2015.22.
Chen, D, Zhang, G, Sun, W, Li, J, Cheng, Z, Wang, Y. Tuning the magnetism of two‐dimensional hematene by ferroelectric polarization. Phys Chem Chem Phys. 2019;21:12301–12309. https://doi.org/10.1039/c9cp01981b.
Dong, S, Dagotto, E. Full control of magnetism in a manganite bilayer by ferroelectric polarization. Phys Rev B. 2013;88:140404(R). https://doi.org/10.1103/PhysRevB.88.140404.
Lukashev, PV, Paudel, RT, López‐Encarnación, JM, Adenwalla, S, Tsymbal, EY, Velev, JP. Ferroelectric control of magnetocrystalline anisotropyat cobalt/poly(vinylidene fluoride) interfaces. ACS Nano. 2012;6:9745–9750.
Singh, K, Singh, SK, Kaur, D. Tunable multiferroic properties of Mn substituted BiFeO3 thin films. Ceram Int. 2016;42:13432–13441. https://doi.org/10.1016/j.ceramint.2016.05.124.
Wang, T, Deng, H, Meng, X, et al. Tunable polarization and magnetization at room‐temperature in narrow bandgap Aurivillius Bi6Fe2−xCox/2Nix/2Ti3O18. Ceram Int. 2017;43:8792–8799. https://doi.org/10.1016/j.ceramint.2017.04.010.
Xue, Y, Zhao, J, Shan, Y, Xu, H. Tunable magnetism in the LaAlO3/SrTiO3 heterostructure: Insights from first‐principles calculations. Physica E. 2018b;98:120–124. https://doi.org/10.1016/j.physe.2018.01.001.
Zhou, PX, Dong, S, Liu, HM, et al. Ferroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices. Sci Rep. 2015;5:13052. https://doi.org/10.1038/srep13052.
Rinaldi, C, Varotto, S, Asa, M, et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 2018;18:2751–2758. https://doi.org/10.1021/acs.nanolett.7b04829.
Sun, W, Wang, W, Chen, D, Cheng, Z, Wang, Y. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale. 2019;11:9931–9936. https://doi.org/10.1039/c9nr01510h.
Lu, Y, Fei, R, Lu, X, Zhu, L, Wang, L, Yang, L. Artificial multiferroics and enhanced magnetoelectric effect in van der Waals heterostructures. ACS Appl Mater Interfaces. 2020;12(5):6243–6249. https://doi.org/10.1021/acsami.9b19320.
Li, Z, Zhou, B. Theoretical investigation of nonvolatile electrical control behavior by ferroelectric polarization switching in two‐dimensional MnCl3/CuInP2S6 van der Waals heterostructures. J Mater Chem C. 2020;8:4534–4541. https://doi.org/10.1039/d0tc00143k.
Gong, C, Kim, EM, Wang, Y, Lee, G, Zhang, X. Multiferroicity in atomic van der Waals heterostructures. Nat Commun. 2019;10:2657. https://doi.org/10.1038/s41467-019-10693-0.
Li, L, Wu, M. Binary compound bilayer and multilayer with vertical polarizations: Two‐dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano. 2017;11:6382–6388. https://doi.org/10.1021/acsnano.7b02756.
Zhong, T, Li, X, Wu, M, Liu, J‐M. Room‐temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. Natl Sci Rev. 2020;7(2):373–380. https://doi.org/10.1093/nsr/nwz169.
Wijethunge, D, Tang, C, Zhang, C, Zhang, L, Mao, X, Du, A. Bandstructure engineering in 2D materials using ferroelectric materials. Appl Surf Sci. 2020;513:145817. https://doi.org/10.1016/j.apsusc.2020.145817.
Zhou, B, Gong, SJ, Jiang, K, et al. Ferroelectric and dipole control of band alignment in the two dimensional InTe/In2Se3 heterostructure. J Phys Condens Matter. 2020;32:055703. https://doi.org/10.1088/1361-648X/ab4d60.
Peng, R, Ma, Y, Zhang, S, Huang, B, Kou, L, Dai, Y. Self‐doped p‐n junctions in two‐dimensional In2X3 van der Waals materials. Mater Horiz. 2020;7:504–510. https://doi.org/10.1039/c9mh01109a.
Ayadi, T, Debbichi, L, Badawi, M, et al. An ab initio study of the ferroelectric In2Se3/graphene heterostructure. Physica E. 2019;114:113582. https://doi.org/10.1016/j.physe.2019.113582.
Zhao, Y, Zhang, JJ, Yuan, S, Chen, Z. Nonvolatile electrical control and heterointerface‐induced half‐metallicity of 2D ferromagnets. Adv Funct Mater. 2019;29:1901420. https://doi.org/10.1002/adfm.201901420.
Si, M, Liao, PY, Qiu, G, Duan, Y, Ye, PD. Ferroelectric field‐effect transistors based on MoS2 and CuInP2S6 two‐dimensional van der Waals Heterostructure. ACS Nano. 2018;12:6700–6705. https://doi.org/10.1021/acsnano.8b01810.
Wu, M, Zeng, XC. Intrinsic ferroelasticity and/or multiferroicity in two‐dimensional phosphorene and phosphorene analogues. Nano Lett. 2016;16:3236–3241. https://doi.org/10.1021/acs.nanolett.6b00726.
Wu, M, Zeng, XC. Bismuth oxychalcogenides: A new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett. 2017;17:6309–6314. https://doi.org/10.1021/acs.nanolett.7b03020.
Guan, Z, Ni, S, Hu, S. Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: A first‐principles study. J Phys Chem C. 2018;122:6209–6216. https://doi.org/10.1021/acs.jpcc.8b00257.
Ju, L, Bie, M, Shang, J, Tang, X, Kou, L. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J Phys Mater. 2020a;3:022004. https://doi.org/10.1088/2515-7639/ab7c57.
Ma, X, Wu, X, Wang, H, Wang, Y. A Janus MoSSe monolayer: A potential wide solar‐spectrum water‐splitting photocatalyst with a low carrier recombination rate. J Mater Chem A. 2018;6:2295–2301. https://doi.org/10.1039/c7ta10015a.
Li, Y, Li, YL, Sa, B, Ahuja, R. Review of two‐dimensional materials for photocatalytic water splitting from a theoretical perspective. Cat Sci Technol. 2017;7:545–559. https://doi.org/10.1039/c6cy02178f.
Grinberg, I, West, DV, Torres, M, et al. Perovskite oxides for visible‐light‐absorbing ferroelectric and photovoltaic materials. Nature. 2013;503:509–512. https://doi.org/10.1038/nature12622.
Yuan, Y, Xiao, Z, Yang, B, Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J Mater Chem A. 2014;2:6027–6041. https://doi.org/10.1039/c3ta14188h.
Khan, MA, Nadeem, MA, Idriss, H. Ferroelectric polarization effect on surface chemistry and photo‐catalytic activity: A review. Surf Sci Rep. 2016;71:1–31. https://doi.org/10.1016/j.surfrep.2016.01.001.
Fu, CF, Sun, J, Luo, Q, Li, X, Hu, W, Yang, J. Intrinsic electric fields in two‐dimensional materials boost the solar‐to‐hydrogen efficiency for photocatalytic water splitting. Nano Lett. 2018;18:6312–6317. https://doi.org/10.1021/acs.nanolett.8b02561.
Zhao, P, Ma, Y, Lv, X, Li, M, Huang, B, Dai, Y. Two‐dimensional III2‐VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy. 2018;51:533–538. https://doi.org/10.1016/j.nanoen.2018.07.010.
Ju, L, Shang, J, Tang, X, Kou, L. Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer. J Am Chem Soc. 2020b;142:1492–1500. https://doi.org/10.1021/jacs.9b11614.
Hu, L, Wei, D. Janus group‐III chalcogenide monolayers and derivative type‐II heterojunctions as water‐splitting photocatalysts with strong visible‐light absorbance. J Phys Chem C. 2018;122:27795–27802. https://doi.org/10.1021/acs.jpcc.8b06575.
Tang, X, Du, A, Kou, L. Gas sensing and capturing based on two‐dimensional layered materials: Overview from theoretical perspective. WIREs Comput Mol Sci. 2018;8:e1361. https://doi.org/10.1002/wcms.1361.
Kou, L, Frauenheim, T, Chen, C. Phosphorene as a superior gas sensor: Selective adsorption and distinct I‐V response. J Phys Chem Lett. 2014;5:2675–2681. https://doi.org/10.1021/jz501188k.
Yue, Q, Shao, Z, Chang, S, Li, J. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett. 2013;8:425.
Zhou, J, Wang, Q, Sun, Q, Jena, P, Chen, XS. Electric field enhanced hydrogen storage on polarizable materials substrates. Proc Natl Acad Sci U S A. 2010;107:2801–2806. https://doi.org/10.1073/pnas.0905571107.
Jin, C, Tang, X, Tan, X, Smith, SC, Dai, Y, Kou, L. A Janus MoSSe monolayer: A superior and strain‐sensitive gas sensing material. J Mater Chem A. 2019;7:1099–1106. https://doi.org/10.1039/c8ta08407f.
Tang, X, Shang, J, Gu, Y, Du, A, Kou, L. Reversible gas capture using a ferroelectric switch and 2D molecule multiferroics on the In2Se3 monolayer. J Mater Chem A. 2020;8:7331–7338. https://doi.org/10.1039/d0ta00854k.
Park, C‐H, Louie, SG. Energy gaps and stark effect in boron nitride nanoribbons. Nano Lett. 2008;8:2200–2203.
Kim, M, Kim, CH, Kim, HS, Ihm, J. Topological quantum phase transitions driven by external electric fields in Sb2Te3 thin films. Proc Natl Acad Sci U S A. 2012;109:671–674. https://doi.org/10.1073/pnas.1119010109.
Sun, Q, Li, Z, Searles, DJ, Chen, Y, Lu, GM, Du, A. Charge‐controlled switchable CO2 capture on boron nitride nanomaterials. J Am Chem Soc. 2013;135:8246–8253. https://doi.org/10.1021/ja400243r.