Lewis, NS, Nocera, DG. Powering the planet: Chemical challenges in solar energy utilization. Proc Natl Acad Sci. 2006;103(43):15729–15735.
Bockris, JO. Hydrogen no longer a high cost solution to global warming: New ideas. Int J Hydrog Energy. 2008;33(9):2129–2131.
Seshadri, G, Lin, C, Bocarsly, AB. A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J Electroanal Chem. 1994;372(1):145–150.
Yan, Y, Zeitler, EL, Gu, J, Hu, Y, Bocarsly, AB. Electrochemistry of aqueous pyridinium: Exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc. 2013;135(38):14020–14023.
Neri, G, Donaldson, PM, Cowan, AJ. The role of electrode–catalyst interactions in enabling efficient CO 2 reduction with Mo(bpy)(CO) 4 as revealed by vibrational sum‐frequency generation spectroscopy. J Am Chem Soc. 2017;139(39):13791–13797.
Franco, AA, Rucci, A, Brandell, D, et al. Boosting rechargeable batteries R%26D by multiscale modeling: Myth or reality? Chem Rev. 2019;119(7):4569–4627.
Lautar, AK, Hagopian, A, Filhol, J‐S. Modeling interfacial electrochemistry: Concepts and tools. Phys Chem Chem Phys. 2020;22:10569–10580.
Norskov, JK, Bligaard, T, Rossmeisl, J, Christensen, CH. Towards the computational design of solid catalysts. Nat Chem. 2009;1(1):37–46.
Seh, ZW, Kibsgaard, J, Dickens, CF, Chorkendorff, I, Nørskov, JK, Jaramillo, TF. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017;355(6321):eaad4998.
Stampfl, C, Veronica Ganduglia‐Pirovano, M, Reuter, K, Scheffler, M. Catalysis and corrosion: The theoretical surface‐science context. Surf Sci. 2002;500(1):368–394.
Taylor, CD. Corrosion informatics: An integrated approach to modelling corrosion. Corros Eng Sci Technol. 2015;50(7):490–508.
Merola, C, Cheng, H‐W, Schwenzfeier, K, et al. In situ nano‐ to microscopic imaging and growth mechanism of electrochemical dissolution (e.g., corrosion) of a confined metal surface. Proc Natl Acad Sci. 2017;114(36):9541–9546.
Nace‐International‐Report.pdf [Internet]. [cited 2019]. Available from: http://impact.nace.org/documents/Nace-International-Report.pdf.
Heiskanen, SK, Kim, J, Lucht, BL. Generation and evolution of the solid electrolyte interphase of lithium‐ion batteries. Joule. 2019;3(10):2322–2333.
Kopač Lautar, A, Bitenc, J, Rejec, T, Dominko, R, Filhol, J‐S, Doublet, M‐L. Electrolyte reactivity in the double layer in mg batteries: An interface potential‐dependent DFT study. J Am Chem Soc. 2020;142(11):5146–5153.
Simon, P, Gogotsi, Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845–854.
Zhan, C, Lian, C, Zhang, Y, et al. Computational insights into materials and interfaces for capacitive energy storage. Adv Sci. 2017;4(7):1700059.
Burdyny, T, Smith, WA. CO 2 reduction on gas‐diffusion electrodes and why catalytic performance must be assessed at commercially‐relevant conditions. Energy Environ Sci. 2019;12(5):1442–1453.
Laguna‐Bercero, MA. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J Power Sources. 2012;203(0):4–16.
Vayenas, CG, Bebelis, S, Yentekakis, IV, Lintz, H‐G. Non‐faradaic electrochemical modification of catalytic activity: A status report. Catal Today. 1992;11(3):303–438.
Pander, JE, Baruch, MF, Bocarsly, AB. Probing the mechanism of aqueous CO2 reduction on post‐transition‐metal electrodes using ATR‐IR spectroelectrochemistry. ACS Catal. 2016;6(11):7824–7833.
Subbaraman, R, Tripkovic, D, Chang, K‐C, et al. Trends in activity for the water electrolyser reactions on 3D M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater. 2012;11(6):550–557.
Benck, JD, Hellstern, TR, Kibsgaard, J, Chakthranont, P, Jaramillo, TF. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014;4(11):3957–3971.
Yu, P, Wang, F, Shifa, TA, et al. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy. 2019;58:244–276.
Dasgupta, A, Rioux, RM. Intermetallics in catalysis: An exciting subset of multimetallic catalysts. Catal Today. 2019;330:2–15.
Handoko, AD, Steinmann, SN, Seh, ZW. Theory‐guided materials design: Two‐dimensional MXenes in electro‐ and photocatalysis. Nanoscale Horiz. 2019;4(4):809–827.
Wu, G, Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res. 2013;46(8):1878–1889.
Masa, J, Xia, W, Muhler, M, Schuhmann, W. On the role of metals in nitrogen‐doped carbon electrocatalysts for oxygen reduction. Angew Chem Int Ed. 2015;54(35):10102–10120.
Leung, K. DFT modelling of explicit solid–solid interfaces in batteries: Methods and challenges. Phys Chem Chem Phys. 2020;22:10412–10425.
Wu, C, Schmidt, DJ, Wolverton, C, Schneider, WF. Accurate coverage‐dependence incorporated into first‐principles kinetic models: Catalytic NO oxidation on Pt (111). J Catal. 2012;286:88–94.
Reuter, K. Ab initio thermodynamics and first‐principles microkinetics for surface catalysis. Catal Lett. 2016;146(3):541–563.
Stamenkovic, VR, Strmcnik, D, Lopes, PP, Markovic, NM. Energy and fuels from electrochemical interfaces. Nat Mater. 2017;16(1):57–69.
Ong, BC, Kamarudin, SK, Basri, S. Direct liquid fuel cells: A review. Int J Hydrog Energy. 2017;42(15):10142–10157.
Zhu, DD, Liu, JL, Qiao, SZ. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater. 2016;28(18):3423–3452.
Cui, X, Tang, C, Zhang, Q. A review of Electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater. 2018;8(22):1800369.
Steinmann, SN, Michel, C, Schwiedernoch, R, Wu, M, Sautet, P. Electro‐carboxylation of butadiene and ethene over Pt and Ni catalysts. J Catal. 2016;343:240–247.
Wang, C‐Y. Fundamental models for fuel cell engineering. Chem Rev. 2004;104(10):4727–4766.
Weber, AZ, Newman, J. Modeling transport in polymer‐electrolyte fuel cells. Chem Rev. 2004;104(10):4679–4726.
Bernardi, DM, Verbrugge, MW. A mathematical model of the solid‐polymer‐electrolyte fuel cell. J Electrochem Soc. 1992;139(9):2477–2491.
Jahnke, T, Futter, G, Latz, A, et al. Performance and degradation of proton exchange membrane fuel cells: State of the art in modeling from atomistic to system scale. J Power Sources. 2016;304:207–233.
Costentin, C, Savéant, J‐M, Tard, C. Catalysis of CO 2 electrochemical reduction by protonated pyridine and similar molecules. Useful lessons from a methodological misadventure. ACS Energy Lett. 2018;3(3):695–703.
Quaino, P, Juarez, F, Santos, E, Schmickler, W. Volcano plots in hydrogen electrocatalysis—Uses and abuses. Beilstein J Nanotechnol. 2014;5(1):846–854.
Sabatier, F. La catalyse en chimie organique. Paris, France: Berauge, 1920.
Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc. 1958;54(0):1053–1063.
Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem. 1972;39(1):163–184.
Nørskov, JK, Bligaard, T, Logadottir, A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152(3):J23.
Greeley, J, Jaramillo, TF, Bonde, J, Chorkendorff, I, Norskov, JK. Computational high‐throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5(11):909–913.
Norskov, JK, Christensen, CH. Toward efficient hydrogen production at surfaces. Science. 2006;312(5778):1322–1323.
Monyoncho, EA, Steinmann, SN, Sautet, P, Baranova, EA, Michel, C. Computational screening for selective catalysts: Cleaving the CC bond during ethanol electro‐oxidation reaction. Electrochim Acta. 2018;274:274–278.
Abild‐Pedersen, F, Greeley, J, Studt, F, et al. Scaling properties of adsorption energies for hydrogen‐containing molecules on transition‐metal surfaces. Phys Rev Lett. 2007;99(1):016105.
Montemore, MM, Medlin, JW. Scaling relations between adsorption energies for computational screening and design of catalysts. Cat Sci Technol. 2014;4(11):3748–3761.
Calle‐Vallejo, F, Loffreda, D, Koper, MTM, Sautet, P. Introducing structural sensitivity into adsorption‐energy scaling relations by means of coordination numbers. Nat Chem. 2015;7(5):403–410.
Vojvodic, A, Nørskov, JK. New design paradigm for heterogeneous catalysts. Natl Sci Rev. 2015;2(2):140–143.
Montoya, JH, Seitz, LC, Chakthranont, P, Vojvodic, A, Jaramillo, TF, Nørskov, JK. Materials for solar fuels and chemicals. Nat Mater. 2017;16(1):70–81.
Pérez‐Ramírez, J, López, N. Strategies to break linear scaling relationships. Nat Catal. 2019;2(11):971–976.
Fletcher, S. Tafel slopes from first principles. J Solid State Electrochem. 2009;13(4):537–549.
Gnanamuthu, DS, Petrocelli, JV. A generalized expression for the Tafel slope and the kinetics of oxygen reduction on noble metals and alloys. J Electrochem Soc. 1967;114(10):1036.
Holewinski, A, Linic, S. Elementary mechanisms in Electrocatalysis: Revisiting the ORR Tafel slope. J Electrochem Soc. 2012;159(11):H864–H870.
Shinagawa, T, Garcia‐Esparza, AT, Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. 2015;5(1):13801.
Norskov, JK, Rossmeisl, J, Logadottir, A, et al. Origin of the overpotential for oxygen reduction at a fuel‐cell cathode. J Phys Chem B. 2004;108(46):17886–17892.
Koper, MTM, Lukkien, JJ, Jansen, APJ, van Santen, RA. Lattice gas model for CO electrooxidation on Pt−Ru bimetallic surfaces. J Phys Chem B. 1999;103(26):5522–5529.
Chun, H‐J, Apaja, V, Clayborne, A, Honkala, K, Greeley, J. Atomistic insights into nitrogen‐cycle electrochemistry: A combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt(100). ACS Catal. 2017;7(6):3869–3882.
Rossmeisl, J, Logadottir, A, Norskov, JK. Electrolysis of water on (oxidized) metal surfaces. Chem Phys. 2005;319(1–3):178–184.
Curutchet, A, Colinet, P, Michel, C, Steinmann, SN, Bahers, TL. Two‐sites are better than one: Revisiting the OER mechanism on CoOOH by DFT with electrode polarization. Phys Chem Chem Phys. 2020;22(13):7031–7038.
Exner, KS, Sohrabnejad‐Eskan, I, Over, H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catal. 2018;8(3):1864–1879.
Exner, KS. Is thermodynamics a good descriptor for the activity? Re‐investigation of Sabatier`s principle by the free energy diagram in electrocatalysis. ACS Catal. 2019;9:5320–5329.
Exner, KS. Design criteria for oxygen evolution electrocatalysts from first principles: Introduction of a unifying material‐screening approach. ACS Appl Energy Mater. 2019;2(11):7991–8001.
Bockris, JO. Overpotential. A lacuna in scientific knowledge. J Chem Educ. 1971;48(6):352.
Anderson, AB. Molecular orbital theory for catalysis. Structures, energy levels, and reactions of acetylene with Ni2(COD)2(RCCR), Ni2(C5H5)2(RCCR), and the nickel(111) surface. J Am Chem Soc. 1978;100(4):1153–1159.
Anderson, AB, Kötz, R, Yeager, E. Theory for C—N− and Ag—C vibrational frequency dependence on potential: Cyanide on a silver electrode. Chem Phys Lett. 1981;82(1):130–134.
Anderson, AB, Ray, NK. Structures and reactions of hydronium, water, and hydroxyl on an iron electrode. Potential dependence. J Phys Chem. 1982;86(4):488–494.
Nakatsuji, H. Dipped adcluster model for chemisorptions and catalytic reactions on a metal surface. J Chem Phys. 1987;87(8):4995–5001.
Santos, E, Schmickler, W. Changes in the surface energy during the reconstruction of Au(100) and Au(111) electrodes. Chem Phys Lett. 2004;400(1):26–29.
Bureau, C, Lécayon, G. On a modeling of voltage‐application to metallic electrodes using density functional theory. J Chem Phys. 1997;106(21):8821–8829.
Anderson, AB, Kang, DB. Quantum chemical approach to redox reactions including potential dependence: Application to a model for hydrogen evolution from diamond. J Phys Chem A. 1998;102(29):5993–5996.
Khan, SUM, Bockris, JO. Electronic states in solution and charge transfer. J Phys Chem. 1983;87(14):2599–2603.
Anderson, AB, Albu, TV. Ab initio determination of reversible potentials and activation energies for outer‐sphere oxygen reduction to water and the reverse oxidation reaction. J Am Chem Soc. 1999;121(50):11855–11863.
Anderson, AB, Albu, TV. Catalytic effect of platinum on oxygen reduction an ab initio model including electrode potential dependence. J Electrochem Soc. 2000;147(11):4229–4238.
Bureau, C, Kranias, S, Crispin, X, Bredas, J‐L. DFT modeling of stark‐tuning effect: CO on polarized Pd(100) as a probe for double‐layer electrostatic effects in electrochemistry. In: Hernández‐Laguna, A, Maruani, J, McWeeny, R, Wilson, S, editors. Quantum systems in chemistry and physics volume 2: Advanced problems and complex systems Granada, Spain, 1998. Dordrecht: Springer Netherlands, 2000; p. 169–192. (Progress in Theoretical Chemistry and Physics).
Crispin, X, Geskin, VM, Bureau, C, Lazzaroni, R, Schmickler, W, Brédas, JL. A density functional model for tuning the charge transfer between a transition metal electrode and a chemisorbed molecule via the electrode potential. J Chem Phys. 2001;115(22):10493–10499.
Koper, MTM, van Santen, RA, Wasileski, SA, Weaver, MJ. Field‐dependent chemisorption of carbon monoxide and nitric oxide on platinum‐group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum‐based interfaces. J Chem Phys. 2000;113(10):4392–4407.
Liu, P, Logadottir, A, Nørskov, JK. Modeling the electro‐oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochim Acta. 2003;48(25–26):3731–3742.
Vuilleumier, R, Sprik, M, Alavi, A. Computation of electronic chemical potentials using free energy density functionals. J Mol Struct. 2000;506:11.
Lozovoi, AY, Alavi, A, Kohanoff, J, Lynden‐Bell, RM. Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys. 2001;115(4):1661–1669.
Lozovoi, AY, Alavi, A. Reconstruction of charged surfaces: General trends and a case study of Pt(110) and Au(110). Phys Rev B. 2003;68(24):245416.
Blumberger, J, Bernasconi, L, Tavernelli, I, Vuilleumier, R, Sprik, M. Electronic structure and solvation of copper and silver ions: A theoretical picture of a model aqueous redox reaction. J Am Chem Soc. 2004;126(12):3928–3938.
Tateyama, Y, Blumberger, J, Sprik, M, Tavernelli, I. Density‐functional molecular‐dynamics study of the redox reactions of two anionic, aqueous transition‐metal complexes. J Chem Phys. 2005;122(23):234505.
Anderson, AB. Theory at the electrochemical interface: Reversible potentials and potential‐dependent activation energies. Electrochim Acta. 2003;48(25):3743–3749.
Roques, AB, Jérôme, A. Theory for the potential shift for OHads formation on the Pt skin on Pt3Cr(111) in acid. J Electrochem Soc. 2004;151(3):E85.
Roques, J, Anderson, AB. Electrode potential‐dependent stages in OHads formation on the Pt3Cr alloy (111) surface. J Electrochem Soc. 2004;151:E340.
Sha, Y, Yu, TH, Liu, Y, Merinov, BV, Goddard, WA. Theoretical study of solvent effects on the platinum‐catalyzed oxygen reduction reaction. J Phys Chem Lett. 2010;1(5):856–861.
Sakong, S, Naderian, M, Mathew, K, Hennig, RG, Groß, A. Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J Chem Phys. 2015;142(23):234107.
Stamenkovic, V, Mun, BS, Mayrhofer, KJJ, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed. 2006;45(18):2897–2901.
Morgan, BJ, Watson, GW. A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf Sci. 2007;601(21):5034–5041.
Kuo, T‐J, Huang, MH. Gold‐catalyzed low‐temperature growth of cadmium oxide nanowires by vapor transport. J Phys Chem B. 2006;110(28):13717–13721.
Nilekar, AU, Mavrikakis, M. Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci. 2008;602(14):L89–L94.
Man, IC, Su, H‐Y, Calle‐Vallejo, F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011;3(7):1159–1165.
Song, G‐L, Unocic, KA. The anodic surface film and hydrogen evolution on Mg. Corros Sci. 2015;98:758–765.
Liu, Y, Liu, S, Che, Z, et al. Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high‐efficiency oxygen reduction and hydrogen evolution reactions. J Mater Chem A. 2016;4(42):16690–16697.
Ekspong, J, Sharifi, T, Shchukarev, A, Klechikov, A, Wågberg, T, Gracia‐Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen‐doped carbon nanotubes for hydrogen evolution reaction. Adv Funct Mater. 2016;26(37):6766–6776.
Karamad, M, Hansen, HA, Rossmeisl, J, Nørskov, JK. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2. ACS Catal. 2015;5(7):4075–4081.
Chen, LD, Urushihara, M, Chan, K, Nørskov, JK. Electric field effects in electrochemical CO2 reduction. ACS Catal. 2016;6(10):7133–7139.
Liu, S, Yang, H, Huang, X, et al. Identifying active sites of nitrogen‐doped carbon materials for the CO2 reduction reaction. Adv Funct Mater. 2018;28(21):1800499.
Montoya, JH, Tsai, C, Vojvodic, A, Nørskov, JK. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem. 2015;8(13):2180–2186.
Choi, C, Back, S, Kim, N‐Y, Lim, J, Kim, Y‐H, Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single‐atom catalysts: A computational guideline. ACS Catal. 2018;8(8):7517–7525.
Kwon, Y, Lai, SCS, Rodriguez, P, Koper, MTM. Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis? J Am Chem Soc. 2011;133(18):6914–6917.
Calle‐Vallejo, F, Koper, MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed. 2013;52(28):7282–7285.
Katsounaros, I, Chen, T, Gewirth, AA, Markovic, NM, Koper, MTM. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of Ammonia on Pt(100). J Phys Chem Lett. 2016;7(3):387–392.
Goodpaster, JD, Bell, AT, Head‐Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model. J Phys Chem Lett. 2016;7(8):1471–1477.
Nie, X, Esopi, MR, Janik, MJ, Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew Chem Int Ed. 2013;52(9):2459–2462.
Fang, Y‐H, Wei, G‐F, Liu, Z‐P. Constant‐charge reaction theory for potential‐dependent reaction kinetics at the solid‐liquid interface. J Phys Chem C. 2014;118(7):3629–3635.
Chan, K, Nørskov, JK. Electrochemical barriers made simple. J Phys Chem Lett. 2015;6(14):2663–2668.
Steinmann, SN, Michel, C, Schwiedernoch, R, Filhol, J‐S, Sautet, P. Modeling the HCOOH/CO2 electrocatalytic reaction: When details are key. ChemPhysChem. 2015;16(11):2307–2311.
Taylor, CD, Wasileski, SA, Filhol, J‐S, Neurock, M. First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys Rev B. 2006;73(16):165402.
Filhol, J‐S, Neurock, M. Elucidation of the electrochemical activation of water over Pd by first principles. Angew Chem Int Ed. 2006;45(3):402–406.
Taylor, C, Kelly, RG, Neurock, M. First‐principles calculations of the electrochemical reactions of water at an immersed Ni(111)/H2O interface. J Electrochem Soc. 2006;153(12):E207–E214.
Lespes, N, Filhol, J‐S. Using implicit solvent in ab initio electrochemical modeling: Investigating Li+/Li electrochemistry at a Li/solvent interface. J Chem Theory Comput. 2015;11(7):3375–3382.
Steinmann, SN, Michel, C, Schwiedernoch, R, Sautet, P. Impacts of electrode potentials and solvents on the electroreduction of CO2: A comparison of theoretical approaches. Phys Chem Chem Phys. 2015;17(21):13949–13963.
Otani, M, Sugino, O. First‐principles calculations of charged surfaces and interfaces: A plane‐wave nonrepeated slab approach. Phys Rev B. 2006;73(11):115407.
Otani, M, Hamada, I, Sugino, O, Morikawa, Y, Okamoto, Y, Ikeshoji, T. Electrode dynamics from first principles. J Phys Soc Jpn. 2008;77(2):024802.
Bonnet, N, Morishita, T, Sugino, O, Otani, M. First‐principles molecular dynamics at a constant electrode potential. Phys Rev Lett. 2012;109(26):266101.
Haruyama, J, Ikeshoji, T, Otani, M. Electrode potential from density functional theory calculations combined with implicit solvation theory. Phys Rev Mater. 2018;2(9):095801.
Rossmeisl, J, Norskov, JK, Taylor, CD, Janik, MJ, Neurock, M. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J Phys Chem B. 2006;110(43):21833–21839.
Rossmeisl, J, Skulason, E, Bjorketun, ME, Tripkovic, V, Norskov, JK. Modeling the electrified solid‐liquid interface. Chem Phys Lett. 2008;466(1–3):68–71.
Skúlason, E, Tripkovic, V, Björketun, ME, et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C. 2010;114(42):18182–18197.
Hansen, MH, Rossmeisl, J. pH in grand canonical statistics of an electrochemical interface. J Phys Chem C. 2016;120(51):29135–29143.
Hansen, MH, Nilsson, A, Rossmeisl, J. Modelling pH and potential in dynamic structures of the water/Pt(111) interface on the atomic scale. Phys Chem Chem Phys. 2017;19(34):23505–23514.
Cohen, AJ, Mori‐Sánchez, P. Dramatic changes in electronic structure revealed by fractionally charged nuclei. J Chem Phys. 2014;140(4):044110.
Chen, Y, Roux, B. Constant‐pH hybrid nonequilibrium molecular dynamics–Monte Carlo simulation method. J Chem Theory Comput. 2015;11(8):3919–3931.
Radak, BK, Chipot, C, Suh, D, et al. Constant‐pH molecular dynamics simulations for large biomolecular systems. J Chem Theory Comput. 2017;13(12):5933–5944.
Bagger, A, Arán‐Ais, RM, Halldin Stenlid, J, et al. Ab initio cyclic voltammetry on Cu(111), Cu(100) and Cu(110) in acidic, neutral and alkaline solutions. ChemPhysChem. 2019;20(22):3096–3105.
Jinnouchi, R, Anderson, AB. Electronic structure calculations of liquid‐solid interfaces: Combination of density functional theory and modified Poisson‐Boltzmann theory. Phys Rev B. 2008;77(24):245417.
Fang, Y‐H, Liu, Z‐P. Mechanism and Tafel lines of electro‐oxidation of water to oxygen on RuO2(110). J Am Chem Soc. 2010;132(51):18214–18222.
Letchworth‐Weaver, K, Arias, TA. Joint density functional theory of the electrode‐electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys Rev B. 2012;86(7):075140.
Ringe, S, Oberhofer, H, Hille, C, Matera, S, Reuter, K. Function‐space‐based solution scheme for the size‐modified Poisson‐Boltzmann equation in full‐potential DFT. J Chem Theory Comput. 2016;12(8):4052–4066.
Fisicaro, G, Genovese, L, Andreussi, O, Marzari, N, Goedecker, S. A generalized Poisson and Poisson‐Boltzmann solver for electrostatic environments. J Chem Phys. 2016;144(1):014103.
Sundararaman, R, Goddard, WA, Arias, TA. Grand canonical electronic density‐functional theory: Algorithms and applications to electrochemistry. J Chem Phys. 2017;146(11):114104.
Mathew, K, Kolluru, VSC, Mula, S, Steinmann, SN, Hennig, RG. Implicit self‐consistent electrolyte model in plane‐wave density‐functional theory. J Chem Phys. 2019;151(23):234101.
Petrosyan, SA, Rigos, AA, Arias, TA. Joint density‐functional theory: Ab initio study of Cr2O3 surface chemistry in solution. J Phys Chem B. 2005;109(32):15436–15444.
Gunceler, D, Letchworth‐Weaver, K, Sundararaman, R, Schwarz, KA, Arias, TA. The importance of nonlinear fluid response in joint density‐functional theory studies of battery systems. Model Simul Mater Sci Eng. 2013;21(7):074005.
Melander, MM, Kuisma, MJ, Christensen, TEK, Honkala, K. Grand‐canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid‐liquid interfaces at constant ion and electrode potentials. J Chem Phys. 2018;150(4):041706.
Kastlunger, G, Lindgren, P, Peterson, AA. Controlled‐potential simulation of elementary electrochemical reactions: Proton discharge on metal surfaces. J Phys Chem C. 2018;122(24):12771–12781.
Steinmann, SN, Sautet, P. Assessing a first‐principles model of an electrochemical interface by comparison with experiment. J Phys Chem C. 2016;120(10):5619–5623.
Shang, R, Steinmann, SN, Xu, B‐Q, Sautet, P. Mononuclear Fe in N‐doped carbon: Computational elucidation of active sites for electrochemical oxygen reduction and oxygen evolution reactions. Cat Sci Technol. 2020;10(4):1006–1014.
Abidi, N, Bonduelle‐Skrzypczak, A, Steinmann, SN. Revisiting the active sites at the MoS2/H2O interface via grand‐canonical DFT: The role of water dissociation. ACS Appl Mater Interfaces. 2020;12:31401–31410.
Hajar, YM, Treps, L, Michel, C, Baranova, EA, Steinmann, SN. Theoretical insight into the origin of the electrochemical promotion of ethylene oxidation on ruthenium oxide. Cat Sci Technol. 2019;9(21):5915–5926.
Panaritis, C, Michel, C, Couillard, M, Baranova, EA, Steinmann, SN. Elucidating the role of electrochemical polarization on the selectivity of the CO2 hydrogenation reaction over Ru. Electrochim Acta. 2020;350:136405.
Wang, P, Steinmann, SN, Fu, G, Michel, C, Sautet, P. Key role of anionic doping for H2 production from formic acid on Pd(111). ACS Catal. 2017;7(3):1955–1959.
Lluch, JM. Perspective on “on the theory of oxidation—Reduction reactions involving electron transfer. I.”. In: Cramer, CJ, Truhlar, DG, editors. Theoretical chemistry accounts: New century issue. Berlin and Heidelberg, Germany: Springer, 2001; p. 231–233.
Hush, NS. Adiabatic rate processes at electrodes. I. Energy‐charge relationships. J Chem Phys. 1958;28(5):962–972.
Kornyshev, AA, Vilfan, I. Phase transitions at the electrochemical interface. Electrochim Acta. 1995;40(1):109–127.
Santos, E, Koper, MTM, Schmickler, W. A model for bond‐breaking electron transfer at metal electrodes. Chem Phys Lett. 2006;419(4):421–425.
Santos, E, Schmickler, W. Fundamental aspects of electrocatalysis. Chem Phys. 2007;332(1):39–47.
Santos, E, Koper, MTM, Schmickler, W. Bond‐breaking electron transfer of diatomic reactants at metal electrodes. Chem Phys. 2008;344(1):195–201.
Anderson, PW. Localized magnetic states in metals. Phys Rev. 1961;124(1):41–53.
Newns, DM. Self‐consistent model of hydrogen chemisorption. Phys Rev. 1969;178(3):1123–1135.
Santos, E, Lundin, A, Pötting, K, Quaino, P, Schmickler, W. Model for the electrocatalysis of hydrogen evolution. Phys Rev B. 2009;79(23):235436.
Staub, R, Iannuzzi, M, Khaliullin, RZ, Steinmann, SN. Energy decomposition analysis for metal surface–Adsorbate interactions by block localized wave functions. J Chem Theory Comput. 2019;15(1):265–275.
Santos, E, Quaino, P, Schmickler, W. Theory of electrocatalysis: Hydrogen evolution and more. Phys Chem Chem Phys. 2012;14(32):11224–11233.
Marcus, RA, Siders, P. Theory of highly exothermic electron transfer reactions. J Phys Chem. 1982;86(5):622–630.
Mills, JN, McCrum, IT, Janik, MJ. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys Chem Chem Phys. 2014;16(27):13699–13707.
Saleheen, M, Heyden, A. Liquid‐phase modeling in heterogeneous catalysis. ACS Catal. 2018;8(3):2188–2194.
Schweitzer, B, Steinmann, SN, Michel, C. Can microsolvation effects be estimated from vacuum computations? A case‐study of alcohol decomposition at the H2O/Pt(111) interface. Phys Chem Chem Phys. 2019;21(10):5368–5377.
Cantu, DC, Padmaperuma, AB, Nguyen, M‐T, et al. A combined experimental and theoretical study on the activity and selectivity of the electrocatalytic hydrogenation of aldehydes. ACS Catal. 2018;8(8):7645–7658.
Sakong, S, Forster‐Tonigold, K, Gross, A. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. J Chem Phys. 2016;144(19):194701.
Bellarosa, L, Garcia‐Muelas, R, Revilla‐Lopez, G, Lopez, N. Diversity at the water‐metal Interface: Metal, water thickness, and confinement effects. ACS Cent Sci. 2016;2(2):109–116.
Le, J, Iannuzzi, M, Cuesta, A, Cheng, J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density‐functional‐theory‐based molecular dynamics. Phys Rev Lett. 2017;119(1):016801.
Cheng, T, Xiao, H, Goddard, WA. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free‐energy calculations at 298 K. Proc Natl Acad Sci. 2017;114(8):1795–1800.
Steinmann, SN, Ferreira De Morais, R, Götz, AW, et al. Force field for water over Pt(111): Development, assessment, and comparison. J Chem Theory Comput. 2018;14(6):3238–3251.
van, D, Adri, CT, Bryantsev, VS, et al. Development and validation of a ReaxFF reactive force field for Cu Cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J Phys Chem A. 2010;114(35):9507–9514.
Cheng, T, Xiao, H, Goddard, WA. Reaction mechanisms for the electrochemical reduction of CO2 to CO and Formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J Am Chem Soc. 2016;138(42):13802–13805.
Cheng, TH, Fortunelli, A, Goddard, WA III. Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proc Natl Acad Sci. 2019;116(16):7718–7722.
Clabaut, P, Fleurat‐Lessard, P, Michel, C, Steinmann, SN. Ten facets, one force field: The GAL19 force field for water–Noble metal interfaces. J Chem Theory Comput. 2020;16:4565–4578.
Cramer, CJ, Truhlar, DG. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem Rev. 1999;99(8):2161–2200.
Fattebert, J‐L, Gygi, F. First‐principles molecular dynamics simulations in a continuum solvent. Int J Quantum Chem. 2003;93(2):139–147.
Ramirez, R, Borgis, D. Density functional theory of solvation and its relation to implicit solvent models. J Phys Chem B. 2005;109(14):6754–6763.
Jeanmairet, G, Levesque, M, Vuilleumier, R, Borgis, D. Molecular density functional theory of water. J Phys Chem Lett. 2013;4(4):619–624.
Réocreux, R, Jiang, T, Iannuzzi, M, Michel, C, Sautet, P. Structuration and dynamics of interfacial liquid water at hydrated γ‐alumina determined by ab initio molecular simulations: Implications for nanoparticle stability. ACS Appl Nano Mater. 2018;1(1):191–199.
Limmer, DT, Willard, AP, Madden, P, Chandler, D. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc Natl Acad Sci U S A. 2013;110(11):4200–4205.
Gauthier, JA, Ringe, S, Dickens, CF, et al. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 2019;9(2):920–931.
Sun, G, Sautet, P. Metastable structures in cluster catalysis from first‐principles: Structural ensemble in reaction conditions and metastability triggered reactivity. J Am Chem Soc. 2018;140(8):2812–2820.
Marcus, RA. On the theory of oxidation‐reduction reactions involving electron transfer. I. J Chem Phys. 1956;24(5):966–978.
Staub, R, Steinmann, SN. Parameter‐free coordination numbers for solutions and interfaces. J Chem Phys. 2020;152(2):024124.
Sundararaman, R, Goddard, WA. The charge‐asymmetric nonlocally determined local‐electric (CANDLE) solvation model. J Chem Phys. 2015;142(6):064107.
Garcia‐Ratés, M, López, N. Multigrid‐based methodology for implicit solvation models in periodic DFT. J Chem Theory Comput. 2016;12(3):1331–1341.
Fisicaro, G, Genovese, L, Andreussi, O, et al. Soft‐sphere continuum solvation in electronic‐structure calculations. J Chem Theory Comput. 2017;13(8):3829–3845.
Li, Q, García‐Muelas, R, López, N. Microkinetics of alcohol reforming for H2 production from a FAIR density functional theory database. Nat Commun. 2018;9(1):526.
Desai, SK, Pallassana, V, Neurock, M. A periodic density functional theory analysis of the effect of water molecules on deprotonation of acetic acid over Pd(111). J Phys Chem B. 2001;105(38):9171–9182.
Vatti, AK, Todorova, M, Neugebauer, J. Ab initio determined phase diagram of clean and solvated muscovite mica surfaces. Langmuir. 2016;32(4):1027–1033.
Andreussi, O, Hörmann, NG, Nattino, F, Fisicaro, G, Goedecker, S, Marzari, N. Solvent‐aware interfaces in continuum solvation. J Chem Theory Comput. 2019;15(3):1996–2009.
Moine, E, Privat, R, Sirjean, B, Jaubert, J‐N. Estimation of solvation quantities from experimental thermodynamic data: Development of the comprehensive compSol databank for pure and mixed solutes. J Phys Chem Ref Data Monogr. 2017;46(3):033102.
Andreussi, O, Dabo, I, Marzari, N. Revised self‐consistent continuum solvation in electronic‐structure calculations. J Chem Phys. 2012;136(6):064102.
Sundararaman, R, Schwarz, KA, Letchworth‐Weaver, K, Arias, TA. Spicing up continuum solvation models with SaLSA: The spherically averaged liquid susceptibility ansatz. J Chem Phys. 2015;142(5):054102.
Ringe, S, Oberhofer, H, Reuter, K. Transferable ionic parameters for first‐principles Poisson‐Boltzmann solvation calculations: Neutral solutes in aqueous monovalent salt solutions. J Chem Phys. 2017;146(13):134103.
Truscott, M, Andreussi, O. Field‐aware interfaces in continuum solvation. J Phys Chem B. 2019;123(16):3513–3524.
Steinmann, SN, Sautet, P, Michel, C. Solvation free energies for periodic surfaces: Comparison of implicit and explicit solvation models. Phys Chem Chem Phys. 2016;18(46):31850–31861.
Akinola, J, Barth, I, Goldsmith, BR, Singh, N. Adsorption energies of oxygenated aromatics and organics on rhodium and platinum in aqueous phase. ACS Catal. 2020;10:4929–4941.
Møller, C, Plesset, MS. Note on an approximation treatment for many‐electron systems. Phys Rev. 1934;46(7):618–622.
VandeVondele, J, Hutter, J. An efficient orbital transformation method for electronic structure calculations. J Chem Phys. 2003;118(10):4365–4369.
Mohr, S, Ratcliff, LE, Boulanger, P, et al. Daubechies wavelets for linear scaling density functional theory. J Chem Phys. 2014;140(20):204110.
Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133–A1138.
Kühne, TD. Second generation car–Parrinello molecular dynamics. WIREs Comput Mol Sci. 2014;4(4):391–406.
Lin, L, Chen, M, Yang, C, He, L. Accelerating atomic orbital‐based electronic structure calculation via pole expansion and selected inversion. J Phys Condens Matter. 2013;25(29):295501.
Mohr, S, Eixarch, M, Amsler, M, Mantsinen, MJ, Genovese, L. Linear scaling DFT calculations for large tungsten systems using an optimized local basis. Nucl Mater Energy. 2018;15:64–70.
Hu, Q‐M, Reuter, K, Scheffler, M. Towards an exact treatment of exchange and correlation in materials: Application to the “CO adsorption puzzle” and other systems. Phys Rev Lett. 2007;98(17):176103.
Gautier, S, Steinmann, SN, Michel, C, Fleurat‐Lessard, P, Sautet, P. Molecular adsorption at Pt(111). How accurate are DFT functionals? Phys Chem Chem Phys. 2015;17(43):28921–28930.
Goerigk, L, Grimme, S. A general database for main group thermochemistry, kinetics, and noncovalent interactions—Assessment of common and reparameterized (meta‐)GGA density functionals. J Chem Theory Comput. 2010;6(1):107–126.
Steinmann, SN, Corminboeuf, C. Comprehensive benchmarking of a density‐dependent dispersion correction. J Chem Theory Comput. 2011;7(11):3567–3577.
Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.
Zhang, Y, Yang, W. Comment on “generalized gradient approximation made simple.”. Phys Rev Lett. 1998;80(4):890.
Hammer, B, Hansen, LB, Norskov, JK. Improved adsorption energetics within density‐functional theory using revised Perdew‐Burke‐Ernzerhof functionals. Phys Rev B. 1999;59(11):7413–7421.
Perdew, JP, Ruzsinszky, A, Csonka, GI, et al. Restoring the density‐gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008;100(13):136406.
Gillan, MJ, Alfè, D, Michaelides, A. Perspective: How good is DFT for water? J Chem Phys. 2016;144(13):130901.
Chen, Y, Huang, Y, Cheng, T, Goddard, WA. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations. J Am Chem Soc. 2019;141(29):11651–11657.
Schmidt, PS, Thygesen, KS. Benchmark database of transition metal surface and adsorption energies from many‐body perturbation theory. J Phys Chem C. 2018;122(8):4381–4390.
Goerigk, L, Hansen, A, Bauer, C, Ehrlich, S, Najibi, A, Grimme, S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys. 2017;19(48):32184–32215.
Cohen, AJ, Mori‐Sanchez, P, Yang, W. Insights into current limitations of density functional theory. Science. 2008;321(5890):792–794.
Ruzsinszky, A, Perdew, JP, Csonka, GI, Vydrov, OA, Scuseria, GE. Spurious fractional charge on dissociated atoms: Pervasive and resilient self‐interaction error of common density functionals. J Chem Phys. 2006;125(19):194112.
Patra, A, Bates, JE, Sun, J, Perdew, JP. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality. Proc Natl Acad Sci. 2017;114(44):E9188–E9196.
Le Bahers, T, Rérat, M, Sautet, P. Semiconductors used in photovoltaic and photocatalytic devices: Assessing fundamental properties from DFT. J Phys Chem C. 2014;118(12):5997–6008.
Bjorketun, ME, Zeng, Z, Ahmed, R, Tripkovic, V, Thygesen, KS, Rossmeisl, J. Avoiding pitfalls in the modeling of electrochemical interfaces. Chem Phys Lett. 2013;555(0):145–148.
Chu, S, Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294–303.
Khan, K, Tareen, AK, Aslam, M, et al. Recent advances in two‐dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale. 2019;11(45):21622–21678.
Lindgren, P, Kastlunger, G, Peterson, AA. A challenge to the G ∼ 0 interpretation of hydrogen evolution. ACS Catal. 2020;10(1):121–128.
Hinnemann, B, Moses, PG, Bonde, J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308–5309.
Jaramillo, TF, Jørgensen, KP, Bonde, J, Nielsen, JH, Horch, S, Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100–102.
Benck, JD, Chen, Z, Kuritzky, LY, Forman, AJ, Jaramillo, TF. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012;2(9):1916–1923.
Kibsgaard, J, Chen, Z, Reinecke, BN, Jaramillo, TF. Engineering the surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis. Nat Mater. 2012;11(11):963–969.
Li, H, Tsai, C, Koh, AL, et al. Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater. 2016;15(1):48–53.
Voiry, D, Yang, J, Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv Mater. 2016;28(29):6197–6206.
Voiry, D, Shin, HS, Loh, KP, Chhowalla, M. Low‐dimensional catalysts for hydrogen evolution and CO 2 reduction. Nat Rev Chem. 2018;2(1):1–17.
Voiry, D, Salehi, M, Silva, R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013;13(12):6222–6227.
Lukowski, MA, Daniel, AS, Meng, F, Forticaux, A, Li, L, Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274–10277.
Voiry, D, Yamaguchi, H, Li, J, et al. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat Mater. 2013;12(9):850–855.
Chhowalla, M, Shin, HS, Eda, G, Li, L‐J, Loh, KP, Zhang, H. The chemistry of two‐dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263–275.
Di, J, Yan, C, Handoko, AD, Seh, ZW, Li, H, Liu, Z. Ultrathin two‐dimensional materials for photo‐ and electrocatalytic hydrogen evolution. Mater Today. 2018;21(7):749–770.
Hantanasirisakul, K, Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater. 2018;30(52):1804779.
Anasori, B, Lukatskaya, MR, Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):1–17.
Naguib, M, Mochalin, VN, Barsoum, MW, Gogotsi, Y. 25th anniversary article: MXenes: A new family of two‐dimensional materials. Adv Mater. 2014;26(7):992–1005.
Gogotsi, Y, Anasori, B. The rise of MXenes. ACS Nano. 2019;13(8):8491–8494.
Deysher, G, Shuck, CE, Hantanasirisakul, K, et al. Synthesis of Mo4VAlC4 MAX phase and two‐dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano. 2020;14(1):204–217.
Halim, J, Kota, S, Lukatskaya, MR, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater. 2016;26(18):3118–3127.
Naguib, M, Mashtalir, O, Carle, J, et al. Two‐dimensional transition metal carbides. ACS Nano. 2012;6(2):1322–1331.
Fredrickson, KD, Anasori, B, Seh, ZW, Gogotsi, Y, Vojvodic, A. Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. J Phys Chem C. 2016;120(50):28432–28440.
Pandey, M, Thygesen, KS. Two‐dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. J Phys Chem C. 2017;121(25):13593–13598.
Seh, ZW, Fredrickson, KD, Anasori, B, et al. Two‐dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016;1(3):589–594.
Handoko, AD, Fredrickson, KD, Anasori, B, et al. Tuning the basal plane functionalization of two‐dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl Energy Mater. 2018;1(1):173–180.
Li, P, Zhu, J, Handoko, AD, et al. High‐throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. J Mater Chem A. 2018;6(10):4271–4278.
Kuznetsov, DA, Chen, Z, Kumar, PV, et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J Am Chem Soc. 2019;141(44):17809–17816.
Zhang, J, Zhao, Y, Guo, X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal. 2018;1(12):985–992.
Ramalingam, V, Varadhan, P, Fu, H‐C, et al. Heteroatom‐mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv Mater. 2019;31(48):1903841.
Le, TA, Bui, QV, Tran, NQ, et al. Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain Chem Eng. 2019;7(19):16879–16888.
Qu, G, Zhou, Y, Wu, T, et al. Phosphorized MXene‐phase molybdenum carbide as an Earth‐abundant hydrogen evolution electrocatalyst. ACS Appl Energy Mater. 2018;1(12):7206–7212.
Li, S, Tuo, P, Xie, J, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy. 2018;47:512–518.
Jiang, Y, Sun, T, Xie, X, et al. Oxygen‐functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem. 2019;12(7):1368–1373.
Zhan, C, Sun, W, Xie, Y, Jiang, D, Kent, PRC. Computational discovery and design of MXenes for energy applications: Status, successes, and opportunities. ACS Appl Mater Interfaces. 2019;11(28):24885–24905.
Ling, C, Shi, L, Ouyang, Y, Wang, J. Searching for highly active catalysts for hydrogen evolution reaction based on O‐terminated MXenes through a simple descriptor. Chem Mater. 2016;28(24):9026–9032.
Ling, C, Shi, L, Ouyang, Y, Chen, Q, Wang, J. Transition metal‐promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Adv Sci. 2016;3(11):1600180.
Yang, X, Gao, N, Zhou, S, Zhao, J. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Phys Chem Chem Phys. 2018;20(29):19390–19397.
Rossmeisl, J, Chan, K, Skúlason, E, Björketun, ME, Tripkovic, V. On the pH dependence of electrochemical proton transfer barriers. Catal Today. 2016;262:36–40.
McCrum, IT, Janik, MJ. pH and alkali cation effects on the Pt cyclic voltammogram explained using density functional theory. J Phys Chem C. 2016;120(1):457–471.
Ledezma‐Yanez, I, Wallace, WDZ, Sebastián‐Pascual, P, Climent, V, Feliu, JM, Koper, MTM. Interfacial water reorganization as a pH‐dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat Energy. 2017;2(4):17031.
Cheng, T, Wang, L, Merinov, BV, Goddard, WA. Explanation of dramatic pH‐dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH. J Am Chem Soc. 2018;140(25):7787–7790.
Lamoureux, PS, Singh, AR, Chan, K. pH effects on hydrogen evolution and oxidation over Pt(111): Insights from first‐principles. ACS Catal. 2019;9(7):6194–6201.
Liu, L, Liu, Y, Liu, C. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J Am Chem Soc. 2020;142(11):4985–4989.
Handoko, AD, Wei, F, Jenndy, YBS, Seh, ZW. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal. 2018;1(12):922–934.
Handoko, AD, Khoo, KH, Tan, TL, Jin, H, Seh, ZW. Establishing new scaling relations on two‐dimensional MXenes for CO2 electroreduction. J Mater Chem A. 2018;6(44):21885–21890.
Chen, H, Handoko, AD, Xiao, J, et al. Catalytic effect on CO2 electroreduction by hydroxyl‐terminated two‐dimensional MXenes. ACS Appl Mater Interfaces. 2019;11(40):36571–36579.
Lai, Y, Jones, RJR, Wang, Y, Zhou, L, Gregoire, JM. Scanning electrochemical flow cell with online mass spectroscopy for accelerated screening of carbon dioxide reduction Electrocatalysts. ACS Comb Sci. 2019;21(10):692–704.
Magnussen, OM, Hotlos, J, Nichols, RJ, Kolb, DM, Behm, RJ. Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunneling microscopy. Phys Rev Lett. 1990;64(24):2929–2932.
Cai, W‐B, Wan, L‐J, Noda, H, Hibino, Y, Ataka, K, Osawa, M. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy. Langmuir. 1998;14(111):6992–6998.
Khairunnisa, A, Liao, W, Yau, S. Adsorption and electrochemical polymerization of pyrrole on Au(100) electrodes as examined by in situ scanning tunneling microscopy. J Phys Chem C. 2016;120(46):26425–26434.
Vu, T‐H, Wandlowski, T. CV and in situ STM study the adsorption behavior of benzoic acid at the electrified Au(100)| HClO4 interface: Structure and dynamics. J Electroanal Chem. 2016;776:40–48.
Vu, T‐H, Wandlowski, T. Self‐assembled structures of benzoic acid on au(111) surface. J Electron Mater. 2017;46(6):3463–3471.
Lelaidier, T, Leoni, T, Ranguis, A, D`Aléo, A, Fages, F, Becker, C. Adsorption and growth of bis‐pyrene molecular layers on Au(111) studied by STM. J Phys Chem C. 2017;121(13):7214–7220.
Monyoncho, EA, Steinmann, SN, Michel, C, Baranova, EA, Woo, TK, Sautet, P. Ethanol electro‐oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM‐IRRAS) and density functional theory (DFT): Why is it difficult to break the C‐C bond? ACS Catal. 2016;6(8):4894–4906.
Steinmann, SN, Wei, Z‐Y, Sautet, P. Theory and experiments join forces to characterize the electrocatalytic interface. Proc Natl Acad Sci. 2019;116(16):7611–7613.
Fang, Y, Ding, S, Zhang, M, et al. Revisiting the atomistic structures at the interface of Au(111) electrode‐sulfuric acid solution. J Am Chem Soc. 2020;142:9439–9446.
Valette, G. Double layer on silver single crystal electrodes in contact with electrolytes having anions which are slightly specifically adsorbed: Part III. The (111) face. J Electroanal Chem Interfacial Electrochem. 1989;269(1):191–203.
Sundararaman, R, Schwarz, K. Evaluating continuum solvation models for the electrode‐electrolyte interface: Challenges and strategies for improvement. J Chem Phys. 2017;146(8):084111.
Sottomayor, MJ, Coelho, V, Ferreira, AP, et al. Parameters of n‐hexanol adsorption on Au (111). Comparison between differential capacity and chronocoulometry results. Electrochim Acta. 1999;45(4):775–787.
Foresti, ML, Innocenti, M, Guidelli, R, Hamelin, A. Electrochemical investigation of 1,5‐pentanediol adsorption on the Ag(111) and Ag(110) faces. J Electroanal Chem. 1999;467(1):217–229.
Chen, A, Shi, Z, Bizzotto, D, Lipkowski, J, Pettinger, B, Bilger, C. Iodide adsorption at the Au(111) electrode surface. J Electroanal Chem. 1999;467(1):342–353.
Garcia‐Araez, N, Climent, V, Herrero, E, Feliu, J, Lipkowski, J. Thermodynamic studies of bromide adsorption at the Pt(111) electrode surface perchloric acid solutions: Comparison with other anions. J Electroanal Chem. 2006;591(2):149–158.
Shi, Z, Lipkowski, J, Mirwald, S, Pettinger, B. Electrochemical and second harmonic generation study of SO2−4 adsorption at the Au(111) electrode. J Electroanal Chem. 1995;396(1):115–124.
Herrero, E, Mostany, J, Feliu, JM, Lipkowski, J. Thermodynamic studies of anion adsorption at the Pt(111) electrode surface in sulfuric acid solutions. J Electroanal Chem. 2002;534(1):79–89.
Mostany, J, Martínez, P, Climent, V, Herrero, E, Feliu, JM. Thermodynamic studies of phosphate adsorption on Pt(111) electrode surfaces in perchloric acid solutions. Electrochim Acta. 2009;54(24):5836–5843.
Wandlowski, T, Hölzle, MH. Structural and thermodynamic aspects of phase transitions in uracil adlayers. A chronocoulometric study. Langmuir. 1996;12(26):6604–6615.
Li, H‐Q, Roscoe, SG, Lipkowski, J. Electrochemical studies of the benzoate adsorption on Au (111) electrode. J Solut Chem. 2000;29(10):987–1005.
Schmickler, W, Guidelli, R. The partial charge transfer. Electrochim Acta. 2014;127:489–505.