Cioslowski, J, editor. Quantum‐mechanical prediction of thermochemical data. New York: Kluwer Academic, 2001.
Martin, JML. Computational thermochemistry: A brief overview of quantum mechanical approaches. Annu Rep Comput Chem. 2005;1:31–43.
Curtiss, LA, Redfern, PC, Raghavachari, K. Gn theory. WIREs Comput Mol Sci. 2011;1:810–825.
Chan, B, Deng, J, Radom, L. G4(MP2)‐6X: A cost‐effective improvement to G4(MP2). J Chem Theory Comput. 2011;7:112–120.
Chan, B, Karton, A, Raghavachari, K. G4(MP2)‐XK: A variant of the G4(MP2)‐6X composite method with expanded applicability for main‐group elements up to radon. J Chem Theory Comput. 2019;15:4478–4484.
Petersson, GA. Complete basis set models for chemical reactivity: From the helium atom to enzyme kinetics. In: Cioslowski, J, editor. Quantum‐mechanical prediction of thermochemical data. New York: Kluwer Academic, 2001; p. 99–130.
Deyonker, NJ, Cundari, TR, Wilson, AK. The correlation consistent composite approach (ccCA): An alternative to the Gaussian‐n methods. J Chem Phys. 2006;124:114104‐1‐17.
Karton, A. A computational chemist`s guide to accurate thermochemistry for organic molecules. WIREs Comput Mol Sci. 2016;6:292–310.
Chan, B. How to computationally calculate thermochemical properties objectively, accurately, and as economically as possible. Pure Appl Chem. 2017;89:699–713.
Chan, B. Unification of the W1X and G4(MP2)‐6X composite protocols. J Chem Theory Comput. 2017;13:2642–2649.
Tajti, A, Szalay, PG, Császár, AG, et al. HEAT: High accuracy extrapolated ab initio thermochemistry. J Chem Phys. 2004;121:11599–11613.
Bartlett, RJ. Coupled‐cluster theory and its equation‐of‐motion extensions. WIREs Comput Mol Sci. 2011;2:126–138.
Katouda, M, Nakajima, T. MPI/OpenMP hybrid parallel algorithm of resolution of identity second‐order Møller–Plesset perturbation calculation for massively parallel multicore supercomputers. J Chem Theory Comput. 2013;9:5373–5380.
Muller, P. Glossary of terms used in physical organic chemistry. Pure Appl Chem. 1994;66:1077–1184.
Pople, JA. Nobel lecture: quantum chemical models. Rev Mod Phys. 1999;71:1267–1274.
Hehre, WJ, Ditchfield, R, Radom, L, Pople, JA. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J Am Chem Soc. 1970;92:4796–4801.
Hehre, WJ, Radom, L, Schleyer, PR, Pople, JA. Ab initio molecular orbital theory. New York: Wiley‐Interscience, 1986.
George, P, Trachtman, M, Bock, CW, Brett, AM. An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons. Theor Chem Acc. 1975;38:121–129.
Wheeler, SE, Houk, KN, Schleyer, PR, Allen, WD. A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc. 2009;131:2547–2560.
Ma, BY, Sulzbach, HM, Xie, YM, Schaefer, HF. π‐Electron delocalization and compression in acyclic acetylenic precursors to multidimensional carbon networks: Comparison with experiment for the recently synthesized tris(trimethylsilyl)‐substituted tetraethynylmethane. Structures, thermochemistry, infrared spectra, polarizabilities, and hyperpolarizabilities. J Am Chem Soc. 1994;116:3529–3538.
Minkin, VI, Minyaev, RM. Cyclic aromatic systems with hypervalent centers. Chem Rev. 2001;101:1247–1265.
Caramori, GF, de Oliveira, KT, Galembeck, SE, Bultinck, P, Constantino, MG. Aromaticity and homoaromaticity in methano[10]annulenes. J Org Chem. 2007;72:2698.
Hess, BA Jr, Schaad, LJ. Ab initio calculation of resonance energies. Benzene and cyclobutadiene. J Am Chem Soc. 1983;105:7500–7505.
Nyulaszi, L, Varnai, P, Veszpremi, T. About the aromaticity of five‐membered heterocycles. J Mol Struct (THEOCHEM). 1995;358:55–61.
El‐Nahas, AM, Bozzelli, JW, Simmie, JM, Navarro, MV, Black, G, Curran, HJ. Thermochemistry of acetonyl and related radicals. J Phys Chem A. 2006;110:13618–13623.
George, P, Bock, CW, Trachtman, M. The matching of structural elements in reactions for evaluating stabilization energies for benzene and monosilabenzene. Theor Chim Acta. 1987;71:289–298.
Wodrich, MD, Corminboeuf, C, Wheeler, SE. Accurate thermochemistry of hydrocarbon radicals via an extended generalized bond separation reaction scheme. J Phys Chem A. 2012;116:3436–3447.
Wheeler, SE. Homodesmotic reactions for thermochemistry. WIREs Comput Mol Sci. 2012;2:204–220.
Chan, B, Radom, L. BDE261: A comprehensive set of high‐level theoretical bond dissociation enthalpies. J Phys Chem A. 2012;116:4975–4986.
Menon, AS, Radom, L. Consequences of spin contamination in unrestricted calculations on open‐shell species: Effect of Hartree‐Fock and Møller‐Plesset contributions in hybrid and double‐hybrid density functional theory approaches. J Phys Chem A. 2008;112:13225–13230.
Stephens, PJ, Devlin, FJ, Chabalowski, CF, Frisch, MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98:11623–11627.
Martin, JML, de Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J Chem Phys. 1999;111:1843–1856.
Chan, B, Radom, L. Obtaining good performance with triple‐ζ‐type basis sets in double‐hybrid density functional theory procedures. J Chem Theory Comput. 2011;7:2852–2863.
Henry, DJ, Parkinson, CJ, Mayer, PM, Radom, L. Bond dissociation energies and radical stabilization energies associated with substituted methyl radicals. J Phys Chem A. 2001;105:6750–6756.
Menon, AS, Henry, DJ, Bally, T, Radom, L. Effect of substituents on the stabilities of multiply‐substituted carbon‐centered radicals. Org Biomol Chem. 2011;9:3636–3657.
Chan, B, Radom, L. Hierarchy of relative bond dissociation enthalpies and their use to efficiently compute accurate absolute bond dissociation enthalpies for C−H, C−C, and C−F bonds. J Phys Chem A. 2013;117:3666–3675.
Chan, B, Radom, L. W1X‐1 and W1X‐2: W1‐quality accuracy with an order of magnitude reduction in computational cost. J Chem Theory Comput. 2012;8:4259–4269.
Zhao, Y, Truhlar, DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06‐class functionals and 12 other functionals. Theor Chem Acc. 2006;120:215–241.
Johnson, BG, Gill, PMW, Pople, JA. Preliminary results on the performance of a family of density functional methods. J Chem Phys. 1992;97:7846–7848.
Zhao, Y, Truhlar, DG. A new local density functional for main‐group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys. 2006;125:194101–1–18.
Ramabhadran, RO, Raghavachari, K. Theoretical thermochemistry for organic molecules: Development of the generalized connectivity‐based hierarchy. J Chem Theory Comput. 2011;7:2094–2103.
Ramabhadran, RO, Raghavachari, K. The successful merger of theoretical thermochemistry with fragment‐based methods in quantum chemistry. Acc Chem Res. 2014;47:3596–3604.
The CBH hierarchy depends only on the connectivity and the valence‐bond structure of a given molecule. If multiple resonance structures can be written for a molecule with different bond orders between the connected atoms, each one will define a set of unique CBH reaction schemes. See references 45 and 48 for further discussions in the case of aromatic systems and delocalized carbocations.
Raghavachari, K, Saha, A. Accurate composite and fragment‐based quantum chemical models for large molecules. Chem Rev. 2015;115:5643–5677. and references therein.
Ramabhadran, RO, Raghavachari, K. Connectivity‐based hierarchy for theoretical thermochemistry: Assessment using wave function‐based methods. J Phys Chem A. 2012;116:7531–7537.
Ramabhadran, RO, Sengupta, A, Raghavachari, K. Application of the generalized connectivity‐based hierarchy to biomonomers: Enthalpies of formation of cysteine and methionine. J Phys Chem A. 2013;117:4973–4980.
Sengupta, A, Raghavachari, K. Prediction of accurate thermochemistry of medium and large sized radicals using connectivity‐based hierarchy (CBH). J Chem Theory Comput. 2014;10:4342–4350.
Collins, EM, Sengupta, A, AbuSalim, DI, Raghavachari, K. Accurate thermochemistry for organic cations via error cancellation using connectivity‐based hierarchy. J Phys Chem A. 2018;122:1807–1812.
Sengupta, A, Ramabhadran, RO, Raghavachari, K. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity‐based hierarchy. J Phys Chem B. 2014;118:9631–9643.
Sengupta, A, Raghavachari, K. Solving the density functional conundrum: Elimination of systematic errors to derive accurate reaction enthalpies of complex organic reactions. Org Lett. 2017;19:2576–2579.
Kromann, JC, Welford, A, Christensen, AS, Jensen, JH. Random versus systematic errors in reaction enthalpies computed using semiempirical and minimal basis set methods. ACS Omega. 2018;3:4372–4377.
Karton, A, Chan, B, Raghavachari, K, Radom, L. Evaluation of the heats of formation of corannulene and C60 by means of high‐level theoretical procedures. J Phys Chem A. 2013;117:1834–1842.
Chan, B, Kawashima, Y, Katouda, M, Nakajima, T, Hirao, K. From C60 to infinity: Large‐scale quantum chemistry calculations of the heats of formation of higher fullerenes. J Chem Theory Comput. 2016;138:1420–1429.
Linstrom, PJ, Mallard, WG, editors. NIST chemistry WebBook, NIST standard reference database number 69. Gaithersburg, MD: National Institute of Standards and Technology, 2020. https://doi.org/10.18434/T4D303.
Kroto, HW. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature. 1987;329:529–531.
Martin, JML, Parthiban, S. Understanding chemical reactivity. In: Cioslowski, J, editor. Quantum‐mechanical prediction of thermochemical data. New York: Kluwer Academic, 2001; p. 31–65.
Kozuch, S, Martin, JML. Spin‐component‐scaled double hybrids: An extensive search for the best fifth‐rung functionals blending DFT and perturbation theory. J Comput Chem. 2013;34:2327–2344.
Ruscic, B, Pinzon, RE, Morton, ML, et al. Introduction to active thermochemical tables: Several “key” enthalpies of formation revisited. J Phys Chem A. 2004;108:9979–9997.
Roux, MV, Temprado, M, Chickos, JS, Nagano, YJ. Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. Phys Chem Ref Data. 2008;37:1855–1996.
Wan, W, Karton, A. Heat of formation for C60 by means of the G4(MP2) thermochemicalprotocol through reactions in which C60 is broken down intocorannulene and sumanene. Chem Phys Lett. 2016;643:34–38.
Bumpus, JA. Gas‐phase heat of formation values for buckminsterfullerene (C60), C70 fullerene (C70), corannulene, coronene, sumanene, and other polycyclic aromatic hydrocarbons calculated using density functional theory (M06‐2X) coupled with a versatile inexpensive group‐equivalent approach. J Phys Chem A. 2018;122:6615–6632.
Waite, SL, Chan, B, Karton, A, Page, AJ. Accurate thermochemical and kinetic stabilities of C84 isomers. J Phys Chem A. 2018;112:4768–4777.
Chan, B, Kawashima, Y, Dawson, W, Katouda, M, Nakajima, T, Hirao, K. A simple model for relative energies of all fullerenes reveals the interplay between intrinsic resonance and structural deformation effects in medium‐sized fullerenes. J Chem Theory Comput. 2019;15:1255–1264.
Daoust, KJ, Hernandez, SM, Konrad, KM, Mackie, ID, Winstanley, J Jr, Johnson, RP. Strain estimates for small‐ring cyclic allenes and butatrienes. J Org Chem. 2006;71:5708–5714.
Suresh, CH, Koga, N. An isodesmic reaction based approach to aromaticity of a large spectrum of molecules. Chem Phys Lett. 2006;419:550–556.
Hohlneicher, G, Packschies, L, Weber, J. On the σ,π‐energy separation of the aromatic stabilization energy of cyclobutadiene. Phys Chem Chem Phys. 2007;9:2517–2530.
Suresh, CH, Lincy, TL, Mohan, N, Rakhi, R. Aromatization energy and strain energy of buckminsterfullerene from homodesmotic reactions. J Phys Chem A. 2015;119:6683–6688.
Deshmukh, MM, Suresh, CH, Gadre, SR. Intramolecular hydrogen bond energy in polyhydroxy systems: A critical comparison of molecular tailoring and isodesmic approaches. J Phys Chem A. 2007;111:6472–6480.
Sajith, PK, Suresh, CH. Quantification of mutual trans influence of ligands in Pd(II) complexes: A combined approach using isodesmic reactions and AIM analysis. Dalton Trans. 2010;39:815–822.
Cohen, N, Benson, SW. Estimation of heats of formation of organic compounds by additivity methods. Chem Rev. 1993;93:2419–2438.
Bakowies, D. Estimating systematic error and uncertainty in ab initio thermochemistry: II. ATOMIC(hc) enthalpies of formation for a large set of hydrocarbons. J Chem Theory Comput. 2020;16:399–426.
Sivaramakrishnan, R, Tranter, RS, Brezinsky, K. Ring conserved isodesmic reactions: A new method for estimating the heats of formation of aromatics and PAHs. J Phys Chem A. 2005;109:1621–1628.
Huang, L, Bohorquez, HJ, Matta, CF, Massa, L. The kernel energy method: Application to graphene and extended aromatics. Int J Quant Chem. 2011;111:4150–4157.