Roduner, E. Size matters: Why nanomaterials are different. Chem Soc Rev. 2006;35(7):583–592.
Ferrando, R, Jellinek, J, Johnston, RL. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem Rev. 2008;108(3):845–910.
Jeevanandam, J, Barhoum, A, Chan, YS, Dufresne, A, Danquah, MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050–1074.
Jena, P, Sun, Q. Super atomic clusters: Design rules and potential for building blocks of materials. Chem Rev. 2018;118(11):5755–5870.
Khanna, SN, Jena, P. Atomic clusters: Building blocks for a class of solids. Phys Rev B. 1995;51(19):13705–13716.
Jana, J, Ganguly, M, Pal, T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 2016;6(89):86174–86211.
Wilcoxon, JP, Abrams, BL. Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev. 2006;35(11):1162–1194.
Sanchez, A, Abbet, S, Heiz, U, et al. When gold is not noble: Nanoscale gold catalysts. J Phys Chem A. 1999;103(48):9573–9578.
Somorjai, GA, Contreras, AM, Montano, M, Rioux, RM. Clusters, surfaces, and catalysis. Proc Natl Acad Sci U S A. 2006;103(28):10577–10583.
Kwak, K, Choi, W, Tang, Q, Jiang, DE, Lee, D. Rationally designed metal nanocluster for electrocatalytic hydrogen production from water. J Mater Chem A. 2018;6:19495–19501.
Cui, X, Wang, J, Liu, B, Ling, S, Long, R, Xiong, Y. Turning au Nanoclusters catalytically active for visible‐light‐driven CO2 reduction through bridging ligands. J Am Chem Soc. 2018;140(48):16514–16520.
Zhao, S, Jin, R, Abroshan, H, et al. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface. J Am Chem Soc. 2017;139(3):1077–1080.
Cuenya, BR. Metal nanoparticle catalysts beginning to shape‐up. Acc Chem Res. 2013;46(8):1682–1691.
Li, Y, Somorjai, GA. Nanoscale advances in catalysis and energy applications. Nano Lett. 2010;10(7):2289–2295.
Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev. 1964;136(3B):864.
Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):1133.
Ignatov, SK, Razuvaev, AG, Loginova, AS, Masunov, AE. Global structure optimization of Pt clusters based on the modified empirical potentials, calibrated using density functional theory. J Phys Chem C. 2019;123(47):29024–29036.
Curotto, E, Matro, A, Freeman, DL, Doll, JD. A semi‐empirical potential for simulations of transition metal clusters: Minima and isomers of Nin (n = 2–13) and their hydrides. J Chem Phys. 1998;108(2):729–742.
Alder, BJ, Wainwright, TE. Studies in molecular dynamics. I. General method. J Chem Phys. 1959;31(2):459–466.
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519.
Brunk, E, Rothlisberger, U. Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem Rev. 2015;115(12):6217–6263.
Lloyd, LD, Johnston, RL. Theoretical analysis of 17–19‐atom metal clusters using many‐body potentials. J Chem Soc Dalton Trans. 2000;3:307–316.
Gupta, RP. Lattice relaxation at a metal surface. Phys Rev B. 1981;23(12):6265–6270.
Doye, JPK, Wales, DJ. Global minima for transition metal clusters described by Sutton–Chen potentials. New J Chem. 1998;22(7):733–744.
Mahata, A, Nair, AS, Pathak, B. Recent advancements in Pt‐nanostructure‐based electrocatalysts for the oxygen reduction reaction. Cat Sci Tech. 2019;9:4835–4863.
Grajciar, L, Heard, CJ, Bondarenko, AA, et al. Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev. 2018;47(22):8307–8348.
Carchini, G, Almora‐Barrios, N, Revilla‐López, G, et al. How theoretical simulations can address the structure and activity of nanoparticles. Top Catal. 2013;56(13):1262–1272.
Greeley, J, Mavrikakis, M. Alloy catalysts designed from first principles. Nat Mater. 2004;3(11):810–815.
Duan, Z, Wang, G. A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys Chem Chem Phys. 2011;13(45):20178–20187.
Cao, S, Tao, FF, Tang, Y, Li, Y, Yu, J. Size‐ and shape‐dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem Soc Rev. 2016;45(17):4747–4765.
Imaoka, T, Kitazawa, H, Chun, WJ, Yamamoto, K. Finding the Most catalytically active platinum clusters with low atomicity. Angew Chem Int Ed. 2015;54(34):9810–9815.
Mahata, A, Rawat, KS, Choudhuri, I, Pathak, B. Octahedral Ni‐nanocluster (Ni85) for efficient and selective reduction of nitric oxide (NO) to nitrogen (N2). Sci Rep. 2016;6:1–13.
Deshlahra, P, Wolf, EE, Schneider, WF. A periodic density functional theory analysis of CO chemisorption on Pt(111) in the presence of uniform electric fields. J Phys Chem A. 2009;113(16):4125–4133.
Tritsaris, GA, Greeley, J, Rossmeisl, J, Nørskov, JK. Atomic‐scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catal Lett. 2011;141(7):909–913.
Calle‐Vallejo, F, Pohl, MD, Reinisch, D, Loffreda, D, Sautet, P, Bandarenka, AS. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem Sci. 2017;8(3):2283–2289.
Banerjee, J, Behnle, S, Galbraith, MCE, et al. Comparison of the periodic slab approach with the finite cluster description of metal–organic interfaces at the example of PTCDA on Ag(110). J Comput Chem. 2018;39(14):844–852.
Jin, R. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale. 2015;7(5):1549–1565.
Roduner, E. Geometric structure, magic numbers and coordination numbers of small clusters. Nanosc Mater. 2006;5–20. https://doi.org/10.1039/9781847557636-00005.
Mpourmpakis, G, Andriotis, AN, Vlachos, DG. Identification of descriptors for the CO interaction with metal nanoparticles. Nano Lett. 2010;10(3):1041–1045.
Calle‐Vallejo, F, Martínez, JI, García‐Lastra, JM, Sautet, P, Loffreda, D. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew Chem Int Ed. 2014;53(32):8316–8319.
Calle‐Vallejo, F, Loffreda, D, Koper, MTM, Sautet, P. Introducing structural sensitivity into adsorption‐energy scaling relations by means of coordination numbers. Nat Chem. 2015;7(5):403–410.
Zhao, Z, Chen, Z, Zhang, X, Lu, G. Generalized surface coordination number as an activity descriptor forCo2 reduction on cu surfaces. J Phys Chem C. 2016;120(49):28125–28130.
Ma, X, Xin, H. Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts. Phys Rev Lett. 2017;118(3):1–5.
Pohl, MD, Watzele, S, Calle‐Vallejo, F, Bandarenka, AS. Nature of highly active electrocatalytic sites for the hydrogen evolution reaction at Pt electrodes in acidic media. ACS Omega. 2017;2(11):8141–8147.
Wang, S, Omidvar, N, Marx, E, Xin, H. Coordination numbers for unraveling intrinsic size effects in gold‐catalyzed CO oxidation. Phys Chem Chem Phys. 2018;20(9):6055–6059.
Shao, M, Peles, A, Shoemaker, K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011;11(9):3714–3719.
Tran, AL, Guidez, EB. Quantum mechanical modeling of the interactions between noble metal (Ag and au) nanoclusters and water with the effective fragment potential method. ACS Omega. 2020;5(13):7446–7455.
Imaoka, T, Akanuma, Y, Haruta, N, et al. Platinum clusters with precise numbers of atoms for preparative‐scale catalysis. Nat Commun. 2017;8(1):1–8.
Dobrin, S. CO oxidation on Pt nanoclusters, size and coverage effects: A density functional theory study. Phys Chem Chem Phys. 2012;14(35):12122–12129.
Jørgensen, M, Grönbeck, H. Perspectives on computational catalysis for metal nanoparticles. ACS Catal. 2019;9(10):8872–8881.
Li, L, Larsen, AH, Romero, NA, et al. Investigation of catalytic finite‐size‐effects of platinum metal clusters. J Phys Chem Lett. 2013;4(1):222–226.
Trindell, JA, Duan, Z, Henkelman, G, Crooks, RM. Well‐defined nanoparticle electrocatalysts for the refinement of theory. Chem Rev. 2020;120(2):814–850.
Mahata, A, Rawat, KS, Choudhuri, I, Pathak, B. Cuboctahedral: Vs. octahedral platinum nanoclusters: Insights into the shape‐dependent catalytic activity for fuel cell applications. Cat Sci Technol. 2016;6(21):7913–7923.
Nair, AS, Pathak, B. Computational screening for orr activity of 3d transition metal based m@pt core–shell clusters. J Phys Chem C. 2019;123(6):3634–3644.
Mahata, A, Pathak, B. Bimetallic core‐based cuboctahedral core–shell nanoclusters for the formation of hydrogen peroxide (2e− reduction) over water (4e− reduction): Role of core metals. Nanoscale. 2017;9(27):9537–9547.
Posada‐Borbón, A, Heard, CJ, Grönbeck, H. Cluster size effects in ethylene hydrogenation over palladium. J Phys Chem C. 2017;121(20):10870–10875.
Yu, H, Cao, D, Fisher, A, Johnston, RL, Cheng, D. Size effect on the adsorption and dissociation of CO2 on Co nanoclusters. Appl Surf Sci. 2017;396:539–546.
Li, H, Li, L, Pedersen, A, et al. Magic‐number gold nanoclusters with diameters from 1 to 3.5 nm: Relative stability and catalytic activity for CO oxidation. Nano Lett. 2015;15(1):682–688.
Van denBossche, M. DFTB‐assisted global structure optimization of 13‐ and 55‐atom late transition metal clusters. J Phys Chem A. 2019;123(13):3038–3045.
Barmparis, GD, Lodziana, Z, Lopez, N, Remediakis, IN. Nanoparticle shapes by using Wulff constructions and first‐principles calculations. Beilstein J Nanotechnol. 2015;6:361–368.
Kühl, S, Gocyla, M, Heyen, H, et al. Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts. J Mater Chem A. 2019;7(3):1149–1159.
Piotrowski, MJ, Ungureanu, CG, Tereshchuk, P, et al. Theoretical study of the structural, energetic, and electronic properties of 55‐atom metal nanoclusters: A DFT investigation within van der waals corrections, spin−orbit coupling, and PBE+U of 42 metal systems. J Phys Chem C. 2016;120(50):28844–28856.
Xiao, L, Wang, L. Structures of platinum clusters: Planar or spherical? J Phys Chem A. 2004;108(41):8605–8614.
Li, SF, Zhao, XJ, Xu, XS, Gao, YF, Zhang, Z. Stacking principle and magic sizes of transition metal nanoclusters based on generalized wulff construction. Phys Rev Lett. 2013;111(11):1–5.
Moseley, P, Curtin, WA. Computational design of strain in core–shell nanoparticles for optimizing catalytic activity. Nano Lett. 2015;15(6):4089–4095.
Size and shape effects of pd@pt core–shell nanoparticles: Unique role of surface contraction and local structural flexibility. J Phys Chem C. 2013;117(31):16144–16149.
Zhang, X, Lu, G. Computational design of core/shell nanoparticles for oxygen reduction reactions. J Phys Chem Lett. 2014;5(2):292–297.
Corona, B, Howard, M, Zhang, L, Henkelman, G. Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions. J Chem Phys. 2016;145(24):244708.
Tang, W, Henkelman, G. Charge redistribution in core–shell nanoparticles to promote oxygen reduction. J Chem Phys. 2009;130:194504.
An, W, Liu, P. Rationalization of Au concentration and distribution in auni@pt core–shell nanoparticles for oxygen reduction reaction. ACS Catal. 2015;5(11):6328–6336.
Jinnouchi, R, Suzuki, KKT, Morimoto, Y. DFT calculations on electro‐oxidations and dissolutions of Pt and Pt–Au nanoparticles. Catal Today. 2016;262:100–109.
Huang, X, Cao, L, Chen, Y, et al. High‐performance transition metal‐doped Pt3 Ni octahedra for oxygen reduction reactionHuang. Science. 2015;348(6240):1230–1234.
Chee, SW, Arce‐Ramos, JM, Li, W, Genest, A, Mirsaidov, U. Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity. Nat Commun. 2020;11(1):2133.
Zhou, Y, Jin, C, Li, Y, Shen, W. Dynamic behavior of metal nanoparticles for catalysis. Nano Today. 2018;20:101–120.
Zhang, Z, Zandkarimi, B, Alexandrova, AN. Ensembles of metastable states govern heterogeneous catalysis on dynamic interfaces. Acc Chem Res. 2020;53(2):447–458.
Zandkarimi, B, Alexandrova, AN. Dynamics of subnanometer pt clusters can break the scaling relationships in catalysis. J Phys Chem Lett. 2019;10(3):460–467.
Austin, N, Johnson, JK, Mpourmpakis, G. Au13: CO adsorbs, nanoparticle responds. J Phys Chem C. 2015;119(32):18196–18202.
Baxter, ET, Ha, M‐A, Cass, AC, Alexandrova, AN, Anderson, SL. Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: Strong cluster size dependence linked to preferred catalyst morphologies. ACS Catal. 2017;7(5):3322–3335. https://doi.org/10.1021/acscatal.7b00409.
Choksi, T, Majumdar, P, Greeley, JP. Electrostatic origins of linear scaling relationships at bifunctional metal/oxide interfaces: A case study of au nanoparticles on doped mgo substrates. Angew Chem Int Ed. 2018;57(47):15410–15414.
Zhai, H, Alexandrova, AN. Fluxionality of catalytic clusters: When it matters and how to address it. ACS Catal. 2017;7(3):1905–1911.
Guo, H, Sautet, P, Alexandrova, AN. Reagent‐triggered isomerization of fluxional cluster catalyst via dynamic coupling. J Phys Chem Lett. 2020;11(8):3089–3094.
Kim, HY, Lee, HM, Henkelman, G. CO oxidation mechanism on CeO2‐supported Au nanoparticles. J Am Chem Soc. 2012;134(3):1560–1570.
He, Y, Liu, JC, Luo, L, et al. Size‐dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc Natl Acad Sci U S A. 2018;115(30):7700–7705.
Negreiros, FR, Halder, A, Yin, C, et al. Supported catalysts bimetallic ag‐pt subnanometer supported clusters as highly efficient and robust oxidation catalysts. Angew Chem Int Ed. 2018;085:1209–1213.
Liu, Y, Li, H, Cen, W. A computational study of supported Cu‐based bimetallic nanoclusters for CO oxidation. Phys Chem Chem Phys. 2018;20:7508–7513.
Fan, J, Gao, Y. Nanoparticle‐supported catalysts and catalytic reactions—A mini‐review. J Exp Nanosci. 2006;1(4):457–475.
Liu, L, Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981–5079.
Phys, JC, Honkala, K. Escaping scaling relationships for water dissociation at interfacial sites of zirconia‐ supported Rh and Pt clusters escaping scaling relationships for water dissociation at interfacial sites of zirconia‐supported Rh and Pt clusters. J Chem Phys. 2019;151:164302.
Schweinberger, FF, Berr, MJ, Döblinger, M, et al. Cluster size effects in the photocatalytic hydrogen evolution reaction. J Am Chem Soc. 2013;135(36):13262–13265.
Ren, Z, Liu, N, Chen, B, Li, J, Mei, D. Theoretical investigation of the structural stabilities of ceria surfaces and supported metal nanocluster in vapor and aqueous phases. J Phys Chem C. 2018;122(9):4828–4840.
Li, G, Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res. 2013;46(8):1749–1758.
Wu, Z, Hu, G, Jiang, D, et al. Diphosphine‐protected Au22 nanoclusters on oxide supports are active for gas‐phase catalysis without ligand removal. Nano Lett. 2016;16(10):6560–6567.
Nie, X, Zeng, C, Ma, X, et al. CeO2‐supported Au38(SR)24 nanocluster catalysts for CO oxidation: A comparison of ligand‐on and ‐off catalysts. Nanoscale. 2013;5(13):5912–5918.
Fresch, B, Remacle, F. Tuning the properties of Pd nanoclusters by ligand coatings: Electronic structure computations on phosphine, thiol, and mixed phosphine‐thiol ligand shells. J Phys Chem C. 2014;118(18):9790–9800.
Zhao, S, Jin, R, Jin, R. Opportunities and challenges in Co2 reduction by gold‐ and silver‐based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett. 2018;3(2):452–462.
Tang, Q, Lee, Y, Li, DY, et al. Lattice‐hydride mechanism in electrocatalytic Co2 reduction by structurally precise copper‐hydride nanoclusters. J Am Chem Soc. 2017;139(28):9728–9736.
Cirri, A, Morales Hernández, H, Kmiotek, C, Johnson, CJ. Systematically tuning the electronic structure of gold nanoclusters through ligand derivatization. Angew Chem Int Ed. 2019;58(39):13818–13822.
Li, G, Abroshan, H, Liu, C, et al. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano. 2016;10(8):7998–8005.
Fang, J, Li, J, Zhang, B, et al. The support effect on the size and catalytic activity of thiolated Au25 nanoclusters as precatalysts. Nanoscale. 2015;7(14):6325–6333.
Alfonso, DR, Kauffman, D, Matranga, C. Active sites of ligand‐protected Au25 nanoparticle catalysts for CO2 electroreduction to CO. J Chem Phys. 2016;144(18):184705.
Deng, C, Li, F, Tang, Q. Electrocatalytic oxygen reduction reaction over the Au22(L8)6 nanocluster with promising activity: A DFT study. J Phys Chem C. 2019;123(44):27116–27123.
Chang, K, Jian, X, Jeong, HM, Kwon, Y, Lu, Q, Cheng, MJ. Improving CO2 electrochemical reduction to CO using space confinement between gold or silver nanoparticles. J Phys Chem Lett. 2020;11(5):1896–1902.
Guedes‐Sobrinho, D, Chaves, AS, Piotrowski, MJ, Da Silva, JLF. Density functional investigation of the adsorption effects of PH3 and SH2 on the structure stability of the Au55 and Pt55 nanoclusters. J Chem Phys. 2017;146(16):164304.
Sengupta, T, Samanta, B, Pal, S. Effect of ligand attachment on the C–I bond dissociation process on aluminum nanoclusters: A DFT investigation. J Phys Chem C. 2017;121(32):17354–17364.
Liu, M. Ligand effects in catalysis by atomically precise gold nanoclusters. Acta Phys Chim Sin. 2018;34(6):553–564.
Nesselberger, M, Roefzaad, M, Fayçal Hamou, R, et al. The effect of particle proximity on the oxygen reduction rate of size‐selected platinum clusters. Nat Mater. 2013;12(10):919–924.
Carrasco, J, Hodgson, A, Michaelides, A. A molecular perspective of water at metal interfaces. Nat Mater. 2012;11(8):667–674.
Iyemperumal, SK, Deskins, NA. Evaluating solvent effects at the aqueous/Pt ( 111 ) interface. ChemPhysChem. 2017;111:2171–2190.
Sementa, L, Andreussi, O, Goddard, WA, Fortunelli, A. Catalytic activity of Pt38 in the oxygen reduction reaction from first‐principles simulations. Cat Sci Technol. 2016;6(18):6901–6909.
Calle‐Vallejo, F, De Morais, RF, Illas, F, Loffreda, D, Sautet, P. Affordable estimation of solvation contributions to the adsorption energies of oxygenates on metal nanoparticles. J Phys Chem C. 2019;123(9):5578–5582.
Steinmann, SN, Sautet, P, Michel, C. Solvation free energies for periodic surfaces: Comparison of implicit and explicit solvation models. Phys Chem Chem Phys. 2016;18(46):31850–31861.
Mato, J, Guidez, EB. Accuracy of the PM6 and PM7 methods on bare and thiolate‐protected gold nanoclusters. J Phys Chem A. 2020;124(13):2601–2615.
Walch, SP. Effect of solvation on the oxygen reduction reaction on Pt catalyst. J Phys Chem C. 2011;115(15):7377–7391.
Da He, Z, Hanselman, S, Chen, YX, Koper, MTM, Calle‐Vallejo, F. Importance of solvation for the accurate prediction of oxygen reduction activities of Pt‐based electrocatalysts. J Phys Chem Lett. 2017;8(10):2243–2246.
de Morais, RF, Kerber, T, Calle‐Vallejo, F, Sautet, P, Loffreda, D. Capturing solvation effects at a liquid/nanoparticle Interface by ab initio molecular dynamics: Pt201 immersed in water. Small. 2016;12:5312–5319.
Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.
Hammer, B, Hansen, LB, Nørskov, JK. Improved adsorption energetics within density‐functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B. 1999;59(11):7413–7421.
Perdew, JP, Wang, Y. Erratum: Accurate and simple analytic representation of the electron‐gas correlation energy. Phys Rev B. 2018;98(7):244–249.
Becke, AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652.
Adamo, C, Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys. 1999;110(13):6158–6170.
Sebetci, A. Does spin–orbit coupling effect favor planar structures for small platinum clusters? Phys Chem Chem Phys. 2009;11(6):921–925.
Piotrowski, MJ, Piquini, P, Da Silva, JLF. Density functional theory investigation of 3d, 4d, and 5d 13‐atom metal clusters. Phys Rev B. 2010;81(15):1–14.
Błoński, P, Dennler, S, Hafner, J. Strong spin‐orbit effects in small Pt clusters: Geometric structure, magnetic isomers and anisotropy. J Chem Phys. 2011;134(3):034107.
Błoński, P, Hafner, J. Geometric and magnetic properties of Pt clusters supported on graphene: Relativistic density‐functional calculations. J Chem Phys. 2011;134(15):154705.
Van Lenthe, E, Van Leeuwen, R, Baerends, EJ, Snijders, JG. Relativistic regular two‐component hamiltonians. Int J Quantum Chem. 1996;57(3):281–293.
Douglas, M, Kroll, NM. Quantum electrodynamical corrections to the fine structure of helium. Ann Phys (N Y). 1974;82(1):89–155.
Hess, BA. Applicability of the no‐pair equation with free‐particle projection operators to atomic and molecular structure calculations. Phys Rev A. 1985;32(2):756–763.
Ju, W, Yang, Z. Influence of spin‐orbit coupling on electronic structures of TM@Au12 (TM = 3 d, 4d, and 5d atoms). Phys Lett A. 2012;376(15):1300–1305.
Grimme, S, Antony, J, Ehrlich, S, Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. J Chem Phys. 2010;132(15):154104.
Berland, K, Cooper, VR, Lee, K, et al. Van der Waals forces in density functional theory: A review of the vdW‐DF method. Rep Prog Phys. 2015;78(6):066501.
Klime, J, Bowler, DR, Michaelides, A. Van der Waals density functionals applied to solids. Phys Rev B. 2011;83(19):1–13.
Dion, M, Rydberg, H, Schröder, E, Langreth, DC, Lundqvist, BI. Van der Waals density functional for general geometries. Phys Rev Lett. 2004;92(24):22–25.
Sheppard, D, Terrell, R, Henkelman, G. Optimization methods for finding minimum energy paths. J Chem Phys. 2008;128(13):1–10.
Henkelman, G, Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys. 1999;111(15):7010–7022.