Sun, ZH, McLaughlin, LW. Effects of the minor groove pyrimidine nucleobase functional groups on the stability of duplex DNA: The impact of uncompensated minor groove amino groups. Biopolymers. 2007;87:183–195.
Watson, JD, Crick, FHC. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1953;171:737–738.
Geyer, CR, Battersby, TR, Benner, SA. Nucleobase pairing in expanded Watson–Crick‐like genetic information systems. Structure. 2003;11:1485–1498.
Lippert, B, Gupta, D. Promotion of rare nucleobase tautomers by metal binding. Dalton Trans. 2009;4619–4634.
Raczyńska, ED, Kosińska, W, Ośmialowski, B, Gawinecki, R. Tautomeric equilibria in relation to Pi‐electron delocalization. Chem Rev. 2005;105:3561–3612.
Cyrański, MK. Energetic aspects of cyclic pi‐electron delocalization: Evaluation of the methods of estimating aromatic stabilization energies. Chem Rev. 2005;105:3773–3811.
Krygowski, TM, Szatylowicz, H, Stasyuk, OA, Dominikowska, J, Palusiak, M. Aromaticity from the viewpoint of molecular geometry: Application to planar systems. Chem Rev. 2014;114:6383–6422.
Gershoni‐Poranne, R, Stanger, A. Magnetic criteria of aromaticity. Chem Soc Rev. 2015;44:6597–6615.
Feixas, F, Matito, E, Poater, J, Solà, M. Quantifying aromaticity with electron delocalisation measures. Chem Soc Rev. 2015;44:6434–6451.
Katritzky, AR, Barczyński, P, Musumarra, G, Pisano, D, Szafran, M. Aromaticity as a quantitative concept. 1. A statistical demonstration of the orthogonality of “classical” and “magnetic” aromaticity in five‐ and six‐membered heterocycles. J Am Chem Soc. 1989;111:7–15.
Schleyer, PR, Freeman, PK, Jiao, H, Goldfuss, B. Aromaticity and antiaromaticity in five‐membered C4H4X ring systems: “Classical” and “magnetic” concepts may not be “orthogonal”. Angew Chem Int Ed. 1995;34:337–340.
Krygowski, TM, Ciesielski, A, Bird, CW, Kotschy, A. Aromatic character of the benzene ring present in various topological environments in benzenoid hydrocarbons. Nonequivalence of indices of aromaticity. J Chem Inf Comput Sci. 1995;35:203–210.
Bean, GP. Application of natural bond orbital analysis and natural resonance theory to delocalization and aromaticity in five‐membered heteroaromatic compounds. J Org Chem. 1998;63:2497–2506.
Katritzky, AR, Karelson, M, Sild, S, Krygowki, TM, Jug, K. Aromaticity as a quantitative concept. 7. Aromaticity reaffirmed as a multidimensional characteristic. J Org Chem. 1998;63:5228–5231.
Cyrański, MK, Krygowski, TM, Katritzky, AR, Schleyer, PR. To what extent can aromaticity be defined uniquely? J Org Chem. 2002;67:1333–1338.
Chen, Z, Wannere, CS, Carminboef, C, Puchta, R, Schleyer, PR. Nucleus‐independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev. 2005;105:3842–3888.
Poater, J, García‐Cruz, I, Illas, F, Solà, M. Discrepancy between common local aromaticity measures in a series of carbazole derivatives. Phys Chem Chem Phys. 2004;6:314–318.
Pratviel, G, Oxidative, DNA. Damage mediated by transition metal ions and their complexes. In: Sigel, A, Sigel, H, Sigel, RKO, editors. Interplay between metal ions and nucleic acids in metal ions in life science. Netherlands: Springer, 2012; p. 201–216.
Hückel, E. Quantentheoretische Beiträge zum Benzolproblem I.Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z Physik. 1931;70:104–186.
Hückel, E. Quanstentheoretische Beiträge zum Benzolproblem II. Quantentheorie der induzierten Polaritäten. Z Physik. 1931;72:310–337.
Hückel, E. The theory of unsaturated and aromatic compounds. Z Elektrochemie. 1937;43:752–788. 827–849.
Pauling, L, Sherman, J. The nature of the chemical bond. VI. The calculation from thermochemical data of the energy of resonance of molecules among several electronic structures. J Chem Phys. 1933;1:606–617.
Pauling, L. The nature of the chemical bond. Ithaca, NY: Cornell University Press, 1960;p. 188.
Hehre, WJ, Ditchfield, R, Radom, L, Pople, JA. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J Am Chem Soc. 1970;92:4796–4801.
Hehre, WJ, McIver, RT, Pople, JA, Schleyer, PR. Alkyl substituent effects on the stability of protonated benzene. J Am Chem Soc. 1974;96:7162–7163.
George, P, Trachtman, M, Bock, CW, Brett, AM. Homodesmotic reactions for the assessment of stabilization energies in benzenoid and other conjugated cyclic hydrocarbons. J Chem Soc, Perkin Trans 2. 1976;11:1222–1227.
Pross, A, Radom, L, Taft, RW. Theoretical approach to substituent effects. Phenols and phenoxide ions. J Org Chem. 1980;45:818–826.
Hückel, W. Theoretische Grundlagen der Organischen Chemie, 1 Band. Leipzig: Akademische Verlagsgesellschaft, 1956.
Julg, A, François, P. Recherches sur la geometrie de quelques hydrocarbures non‐alternants—Son influence sur les energies de transition une nouvelle definition de l`aromaticite. Theor Chim Acta. 1967;7:249–259.
Kruszewski, J, Krygowski, TM. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972;13:3839–3842.
Dominikowska, J, Palusiak, M. EL: The new aromaticity measure based on one‐electron density function. Struct Chem. 2012;23:1173–1183.
Krygowski, TM. Crystallographic studies of inter‐ and intra‐molecular interactions reflected in aromatic character of π‐electron systems. J Chem Inf Comp Sci. 1993;33:70–78.
Raczyńska, ED, Hallman, M, Kolczyńska, K, Stępniewski, T. On the harmonic oscillator model of electron delocalization (HOMED) index and its application to heteroatomic π‐electron systems. Symmetry. 2010;2:1485–1509.
Frizzo, CP, Martins, MAP. Aromaticity in heterocycles: New HOMA index parametrization. Struct Chem. 2012;23:375–380.
Schleyer, PR, Maerker, C, Dransfeld, A, Jiao, H, van Eikema Hommes, NJR. Nucleus‐independent chemical shifts: A simple and efficient aromaticity probe. J Am Chem Soc. 1996;118:6317–6318.
Cyrański, MK, Krygowski, TM, Wisiorowski, M, van Eikema Hommes, NJR, Schleyer, PR. Global and local aromaticity in porphyrins: An analysis based on molecular geometries and nucleus‐independent chemical shifts. Angew Chem Int Ed. 1998;37:177–180.
Lazzeretti, P. Ring currents. Prog Nucl Magn Res Spectr. 2000;36:1–88.
Lazzeretti, P. Assessment of aromaticity via molecular response properties. Phys Chem Chem Phys. 2004;6:217–223.
Corminboeuf, C, Heine, T, Seifert, G, Schleyer, PR, Weber, J. Induced magnetic fields in aromatic [n]‐annulenes—Interpretation of NICS tensor components. Phys Chem Chem Phys. 2004;6:273–276.
Gajda, Ł, Kupka, T, Broda, MA, Leszczyńska, M, Ejsmont, K. Method and basis set dependence of the NICS indexes of aromaticity for benzene. Magn Reson Chem. 2018;56:265–275.
Dauben, HJJ, Wilson, DJ, Laity, JL. Diamagnetic susceptibility exaltation as a criterion of aromaticity. J Am Chem Soc. 1968;90:811–813.
Gayoso, J, Ouamerali, O. A new aromaticity index based on the exaltation of diamagnetic susceptibility. Rev Roum Chim. 1981;26:1035–1040.
Schleyer, PR, Manoharan, M, Jiao, H, Stahl, F. The acenes: Is there a relationship between aromatic stabilization and reactivity? Org Lett. 2001;3:3643–3646.
Mills, NS, Llagostera, KB. Summation of nucleus independent chemical shifts as a measure of aromaticity. J Org Chem. 2007;72:9163–9169.
Gershoni‐Poranne, R. Piecing it together: An additivity scheme for aromaticity using NICS‐XY scans. Chem A Eur J. 2018;24:4165–4172.
Finkelstein, P, Gershoni‐Poranne, R. An additivity scheme for aromaticity: The heteroatom case. ChemPhysChem. 2019;20:1508.
Stanger, A. NICS—Past and present. Eur J Org Chem. 2020;2020:3120–3127.
Poater, J, Fradera, X, Duran, M, Solà, M. The delocalization index as an electronic aromaticity criterion: Application to a series of planar polycyclic aromatic hydrocarbons. Chem A Eur J. 2003;9:400–406.
Fradera, X, Austen, MA, Bader, RFW. The Lewis model and beyond. J Phys Chem A. 1999;103:304–314.
Bader, RFW. A quantum theory of molecular structure and its applications. Chem Rev. 1991;91:893–928.
Mayer, I. Bond orders and valences from ab initio wave functions. Int J Quantum Chem. 1986;29:477–483.
Bultinck, P, Ponec, R, Van Damme, S. Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem. 2005;18:706–718.
Matito, E, Duran, M, Solà, M. The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J Chem Phys. 2005;122:014109 and erratum: ibidem 2006, 125:059901.
Feixas, F, Matito, E, Poater, J, Solà, M. On the performance of some aromaticity indices: A critical assessment using a test set. J Comput Chem. 2008;29:1543–1554.
Feixas, F, Jiménez‐Halla, JOC, Matito, E, Poater, J, Solà, M. A test to evaluate the performance of aromaticity descriptors in all‐metal and semimetal clusters. An appraisal of electronic and magnetic indicators of aromaticity. J Chem Theory Comput. 2010;6:1118–1130.
Solà, M, Feixas, F, Jiménez‐Halla, JOC, Matito, E, Poater, J. A critical assessment of the performance of magnetic and electronic indices of aromaticity. Symmetry. 2010;2:1156–1179.
Cyrański, MK, Gilski, M, Jaskólski, M, Krygowski, TM. On the aromatic character of the heterocyclic bases of DNA and RNA. J Org Chem. 2003;68:8607–8613.
Cysewski, P. An ab initio study on nucleic acid bases aromaticities. J Mol Struct‐THEOCHEM. 2005;714:29–36.
Huertas, O, Poater, J, Fuentes‐Cabrera, M, Orozco, M, Solà, M, Luque, FJ. Local aromaticity in natural nucleobases and their size‐expanded benzo‐fused derivatives. J Phys Chem A. 2006;110:12249–12258.
Raczyńska, ED, Makowski, M. Geometric consequences of electron delocalization for adenine tautomers in aqueous solution. J Mol Model. 2014;20:2234.
Raczyńska, ED, Sapuła, M, Zientara‐Rytter, K, Kolczyńska, K, Stępniewski, TM, Hallmann, M. DFT studies on the favored and rare tautomers of neutral and redox cytosine. Struct Chem. 2016;27:133–143.
Raczyńska, ED, Zientara, K, Kolczyńska, K, Stępniewski, T. Change of tautomeric equilibria, intramolecular interactions and π‐electron delocalization when going from phenol to uracil. J Mol Struct‐THEOCHEM. 2009;894:103–111.
Mohajeri, A, Davari, N. Electron delocalization and aromaticity variations in the stacked nucleic acid base pairs. Struct Chem. 2010;21:1069–1078.
Sun, G, Nicklaus, MC. Natural resonance structures and aromaticity of nucleobases. Theor Chem Acc. 2007;117:323–332.
Szatylowicz, H, Stasyuk, OA, Krygowski, TM. Calculating the aromaticity of heterocycles. Adv Heterocycl Chem. 2016;120:301–327.
Stasyuk, OA, Szatylowicz, H, Krygowski, TM. Aromaticity of H‐bonded and metal complexes of guanine tautomers. Struct Chem. 2016;27:111–118.
Jena, S, Tulsiyan, KD, Rana, A, Choudhury, SS, Biswal, HS. Non‐conventional hydrogen bonding and aromaticity: A systematic study on model nucleobases and their solvated clusters. ChemPhysChem. 2020;21:1826–1835.
Raczyńska, ED, Kołczyńska, K, Stepniewski, TM, Kamińska, B. On relation between prototropy and electron delocalization for neutral and redox adenine—DFT studies. Comput Theor Chem. 2013;1022:35–44.
Raczyńska, ED, Makowski, M, Hellmann, M, Kamińska, B. Geometric and energetic consequences of prototropy for adenine and its structural models—A review. RSC Adv. 2015;5:36587–36604.
Stasyuk, OA, Szatylowicz, H, Krygowski, TM. Effect of H‐bonding and complexation with metal ions on the π‐electron structure of adenine tautomers. Org Biomol Chem. 2014;12:456–466.
Stasyuk, OA, Szatylowicz, H, Krygowski, TM. Effect of the H‐bonding on aromaticity of purine tautomers. J Org Chem. 2012;77:4035–4045.
Jezuita, A, Szatylowicz, H, Marek, PH, Krygowski, TM. Aromaticity of the most stable adenine and purine tautomers in terms of Hückel`s 4N+2 principle. Tetrahedron. 2019;75:130474.
Szatylowicz, H, Jezuita, A, Marek, PH, Krygowski, TM. Substituent effects on the stability of the four most stable tautomers of adenine and purine. RSC Adv. 2019;9:31343–31356.
Stasyuk, OA, Szatylowicz, H, Krygowski, TM. Aromaticity of H‐bonded and metal complexes of guanine tautomers. Struct Chem. 2016;27:111–118.
Gorb, L, Kaczmarek, A, Gorb, A, Sadlej, AJ, Leszczynski, J. Thermodynamics and kinetics of intramolecular proton transfer in guanine. Post Hartree‐Fock study. J Phys Chem B. 2005;109:13770–13776.
Choi, MY, Miller, RE. Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc. 2006;128:7320–7328.
Alonso, JL, Peña, I, López, JC, Vaquero, V. Rotational spectral signatures of four tautomers of guanine. Angew Chem Int Ed. 2009;48:6141–6143.
Jalbout, AF, Trzaskowski, B, Xia, Y, et al. Structures, stabilities and tautomerizations of uracil and diphosphouracil tautomers. Chem Phys. 2007;332:152–161.
Raczyńska, ED. Quantum‐chemical studies on the favored and rare isomers of isocytosine. Comput Theor Chem. 2017;1121:58–67.
Stasyuk, OA, Szatylowicz, H, Krygowski, TM. Tautomerization of thymine acts against the Huckel 4N+2 rule. The effect of metal ions and H‐bond complexations on the electronic structure of thymine. Org Biomol Chem. 2014;12:6476–6483.
Stasyuk, OA, Szatylowicz, H, Krygowski, TM. Metal complexation and H‐bonding effects on electronic structure of cytosine studied in the gas phase. Croat Chem Acta. 2014;87:335–342.
Ilyina, MG, Khamitov, EM, Ivanov, SP, Mustafin, AG, Khursan, SL. Anions of uracils: N1 or N3? That is the question. Comput Theor Chem. 2016;1078:81–87.
Ilyina, MG, Khamitova, EM, Mustafina, AG, Khursan, SL. Controlled stabilization of anionic forms of the uracil derivatives: A DFT study. J Mol Graph Model. 2018;79:65–71.
Piacenza, M, Grimme, S. Systematic quantum chemical study of DNA‐base tautomers. J Comput Chem. 2004;25:83–98.
Rejnek, J, Hanus, M, Kabelac, F, Ryjacek, F, Hobza, P. Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Part 4. Uracil and thymine. Phys Chem Chem Phys. 2005;7:2006–2017.
Raczyńska, ED, Juras, W. Effects of ionization and proton‐transfer on bond length alternation in favored and rare isomers of isocytosine. Comput Theor Chem. 2019;1148:16–26.
Cysewski, P, Szefler, B. Environmental influences on the aromatic character of nucleobases and amino acids. J Mol Model. 2010;16:1709–1720.
Stasyuk, OA, Solà, M, Swart, M, Fonseca, GC, Krygowski, TM, Szatylowicz, H. Effect of alkali metal cations on length and strength of hydrogen bonds in DNA base pairs. ChemPhysChem. 2020;21:2112–2126.
Alemán, C, Teixeira‐Dias, B, Zanuy, D, Estrany, F, Armelin, E, del Valle, LJ. A comprehensive study of the interactions between DNA and poly(3,4‐ethylenedioxythiophene). Polymer. 2009;50:1965–1974.
Teixeira‐Dias, B, Zanuy, D, Poater, J, et al. Binding of 6‐mer single‐stranded homo‐nucleotides to poly(3,4‐ethylenedioxythiophene): Specific hydrogen bonds with guanine. Soft Matter. 2011;7:9922–9932.
Kakeshpour, T, Wu, JI, Jackson, JE. AMHB: (Anti)aromaticity‐modulated hydrogen bonding. J Am Chem Soc. 2016;138:3427–3432.
Zhang, Y, Wu, C‐H, Wu, JI‐C. Why do A·T and G·C self‐sort? Hückel aromaticity as a driving force for electronic complementarity in base pairing. Org Biomol Chem. 2019;17:1881–1885.
Wu, C‐H, Zhang, Y, van Rickley, K, Wu, JI‐C. Aromaticity gain increases the inherent association strengths of multipoint hydrogen‐bonded arrays. ChemComm. 2018;54:3512–3515.
Guillaumes, L, Simon, S, Fonseca, GC. The role of aromaticity, hybridization, electrostatics, and covalency in resonance‐assisted hydrogen bonds of adenine‐thymine (AT) base pairs and their mimics. ChemistryOpen. 2015;4:318–327.
Poater, J, Sodupe, M, Bertran, J, Solà, M. Hydrogen bonding and aromaticity in the guanine‐cytosine base pair interacting with metal cations (M = Cu+, Ca2+ and Cu2+). Mol Phys. 2005;103:163–173.
Noguera, M, Bertran, J, Sodupe, M. A quantum chemical study of Cu2+ interacting with guanine‐cytosine base pair. Electrostatic and oxidative effects on intermolecular proton‐transfer processes. J Phys Chem A. 2004;108:333–341.
Trujillo, C, Sánchez‐Sanz, G. A study of π–π stacking interactions and aromaticity in polycyclic aromatic hydrocarbon/nucleobase complexes. ChemPhysChem. 2016;17:395–405.
Poater, J, Solà, M, Viglione, RG, Zanasi, R. Local aromaticity of the six‐membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity. J Org Chem. 2004;69:7537–7542.
Osuna, S, Poater, J, Bofill, JM, Alemany, P, Solà, M. Are nucleus‐independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in π‐stacked polyfluorenes? Chem Phys Lett. 2006;428:191–195.
Cortés‐Arriagada, D, Ortega, DE. Effects on the aromatic character of DNA/RNA nucleobases due to its adsorption onto graphene. Int J Quantum Chem. 2018;118:e25699.
Cortés‐Arriagada, D. Phosphorene as a template material for physisorption of DNA/RNA nucleobases and resembling of base pairs: A cluster DFT study and comparisons with graphene. J Phys Chem C. 2018;122:4870–4880.
Umadevi, D, Sastry, GN. Quantum mechanical study of physisorption of nucleobases on carbon materials: Graphene versus carbon nanotubes. J Phys Chem Lett. 2011;2:1572–1576.
Szatylowicz, H, Marek, PH, Stasyuk, OA, Krygowski, TM, Solà, M. Substituted adenine quartets: Interplay between substituent effect, hydrogen bonding, and aromaticity. RSC Adv. 2020;10:23350–23358.
Mostafavi, N, Ebrahimi, A. The estimation of H‐bond and metal ion‐ligand interaction energies in the G‐Quadruplex⋯Mn+ complexes. J Mol Struct. 2018;1161:246–253.