Singh, J. Semiconductor devices: Basic principles. New York: John Wiley %26 Sons, 2007.
Akinwande, D, Huyghebaert, C, Wang, C‐H, et al. Graphene and two‐dimensional materials for silicon technology. Nature. 2019;573:507–518.
Theis, TN, Wong, H‐SP. The end of Moore`s law: A new beginning for information technology. Comput Sci Eng. 2017;19:41–50.
Green, M, Gusev, E, Degraeve, R, Garfunkel, E. Ultrathin (%3C4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits. J Appl Phys. 2001;90:2057–2121.
Depas, M, Vermeire, B, Mertens, P, Van Meirhaeghe, R, Heyns, M. Determination of tunnelling parameters in ultra‐thin oxide layer poly‐Si/SiO2/Si structures. Solid‐State Electron. 1995;38:1465–1471.
Collins, JL, Tadich, A, Wu, W, et al. Electric‐field‐tuned topological phase transition in ultrathin Na3Bi. Nature. 2018;564:390–394.
Desai, SB, Madhvapathy, SR, Sachid, AB, et al. MoS2 transistors with 1‐nanometer gate lengths. Science. 2016;354:99–102.
Xin, N, Guan, J, Zhou, C, et al. Concepts in the design and engineering of single‐molecule electronic devices. Nat Rev Phys. 2019;1:211–230.
Zhang, JL, Zhong, JQ, Lin, JD, et al. Towards single molecule switches. Chem Soc Rev. 2015;44:2998–3022.
Xiang, D, Wang, X, Jia, C, Lee, T, Guo, X. Molecular‐scale electronics: From concept to function. Chem Rev. 2016;116:4318–4440.
Ratner, M, Aviram, A. Molecular rectifiers. Chem Phys Lett. 1974;29:277–283.
Lamport, ZA, Broadnax, AD, Harrison, D, et al. Fluorinated benzalkylsilane molecular rectifiers. Sci Rep. 2016;6:38092.
Leszczynski, J. Computational chemistry: Reviews of current trends. Singapore: World Scientific, 2005.
van der Molen, SJ, Naaman, R, Scheer, E, et al. Visions for a molecular future. Nat Nanotechnol. 2013;8:385–389.
Kumar, R, Sharma, A, Singh, H, et al. Revisiting fluorescent calixarenes: From molecular sensors to smart materials. Chem Rev. 2019;119:9657–9721.
Xu, Z, Liu, C, Zhao, S, Chen, S, Zhao, Y. Molecular sensors for NMR‐based detection. Chem Rev. 2018;119:195–230.
Chen, X, Roemer, M, Yuan, L, et al. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat Nanotechnol. 2017;12:797–803.
Jaroš, A, Bonab, EF, Straka, M, Foroutan‐Nejad, C. Fullerene‐based switching molecular diodes controlled by oriented external electric fields. J Am Chem Soc. 2019;141:19644–19654.
Kuang, G, Shi, ZC, Yan, L, et al. Negative differential conductance in polyporphyrin oligomers with nonlinear backbones. J Am Chem Soc. 2018;140:570–573.
Chen, J, Reed, M, Rawlett, A, Tour, J. Large on‐off ratios and negative differential resistance in a molecular electronic device. Science. 1999;286:1550–1552.
Fan, Z‐Q, Zhang, Z‐H, Deng, X‐Q, Tang, G‐P, Chen, K‐Q. Controllable low‐bias negative differential resistance and rectifying behaviors induced by symmetry breaking. Appl Phys Lett. 2013;102:023508.
Fan, Z‐Q, Xie, F, Jiang, X‐W, Wei, Z, Li, S‐S. Giant decreasing of spin current in a single molecular junction with twisted zigzag graphene nanoribbon electrodes. Carbon. 2016;110:200–206.
Fan, Z‐Q, Sun, W‐Y, Zhang, Z‐H, Deng, X‐Q, Tang, G‐P, Xie, H‐Q. Symmetry‐dependent spin transport properties of a single phenalenyl or pyrene molecular device. Carbon. 2017;122:687–693.
Zhang, C, Du, M‐H, Cheng, H‐P, Zhang, X‐G, Roitberg, A, Krause, J. Coherent electron transport through an azobenzene molecule: A light‐driven molecular switch. Phys Rev Lett. 2004;92:158301.
Henzl, J, Mehlhorn, M, Gawronski, H, Rieder, KH, Morgenstern, K. Reversible cis–trans isomerization of a single azobenzene molecule. Angew Chem Int Ed. 2006;45:603–606.
Yang, K, Liu, L, Zhang, L, et al. Reversible achiral‐to‐chiral switching of single Mn–phthalocyanine molecules by thermal hydrogenation and inelastic electron tunneling dehydrogenation. ACS Nano. 2014;8:2246–2251.
Fu, Y‐S, Schwöbel, J, Hla, S‐W, et al. Reversible chiral switching of bis (phthalocyaninato) terbium (III) on a metal surface. Nano Lett. 2012;12:3931–3935.
Swart, I, Sonnleitner, T, Repp, J. Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett. 2011;11:1580–1584.
Uhlmann, C, Swart, I, Repp, J. Controlling the orbital sequence in individual Cu‐phthalocyanine molecules. Nano Lett. 2013;13:777–780.
Liljeroth, P, Repp, J, Meyer, G. Current‐induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science. 2007;317:1203–1206.
Kumagai, T, Hanke, F, Gawinkowski, S, et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat Chem. 2014;6:41–46.
Comstock, MJ, Levy, N, Kirakosian, A, et al. Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys Rev Lett. 2007;99:038301.
Irie, M, Fukaminato, T, Matsuda, K, Kobatake, S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem Rev. 2014;114:12174–12277.
Böckmann, H, Liu, S, Mielke, J, et al. Direct observation of photoinduced tautomerization in single molecules at a metal surface. Nano Lett. 2016;16:1034–1041.
Qiu, X, Nazin, G, Ho, W. Mechanisms of reversible conformational transitions in a single molecule. Phys Rev Lett. 2004;93:196806.
Alemani, M, Peters, MV, Hecht, S, Rieder, K‐H, Moresco, F, Grill, L. Electric field‐induced isomerization of azobenzene by STM. J Am Chem Soc. 2006;128:14446–14447.
Ladenthin, JN, Grill, L, Gawinkowski, S, Liu, S, Waluk, J, Kumagai, T. Hot carrier‐induced tautomerization within a single porphycene molecule on Cu (111). ACS Nano. 2015;9:7287–7295.
Tagami, K, Wang, L, Tsukada, M. Interface sensitivity in quantum transport through single molecules. Nano Lett. 2004;4:209–212.
Fan, Z‐Q, Chen, K‐Q. Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries. Appl Phys Lett. 2010;96:053509.
Wu, D, Cao, X‐H, Jia, P‐Z, et al. Excellent thermoelectric performance in weak‐coupling molecular junctions with electrode doping and electrochemical gating. Sci China Phys Mech. 2020;63:1–11.
Su, G, Yang, S, Jiang, Y, et al. Modeling chemical reactions on surfaces: The roles of chemical bonding and van der Waals interactions. Prog Surf Sci. 2019;94:100561.
Liu, W, Tkatchenko, A, Scheffler, M. Modeling adsorption and reactions of organic molecules at metal surfaces. Acc Chem Res. 2014;47:3369–3377.
Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871.
Kohn, W, Sham, LJ. Self‐consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138.
Fermi, E, Amaldi, E. Le orbite [infinito] s degli elementi. Accad Ital Rome. 1934;6:119.
Adamo, C, Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys. 1999;110:6158–6170.
Becke, AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
Lee, C, Yang, W, Parr, RG. Development of the Colle–Salvetti correlation‐energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37:785–789.
Heyd, J, Scuseria, GE, Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118:8207–8215.
Paier, J, Marsman, M, Hummer, K, Kresse, G, Gerber, IC, Ángyán, JG. Screened hybrid density functionals applied to solids. J Chem Phys. 2006;124:154709.
Kronik, L, Tkatchenko, A. Understanding molecular crystals with dispersion‐inclusive density functional theory: Pairwise corrections and beyond. Acc Chem Res. 2014;47:3208–3216.
Riley, KE, Pitonák, M, Jurecka, P, Hobza, P. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev. 2010;110:5023–5063.
Schleder, GR, Padilha, ACM, Acosta, CM, Costa, M, Fazzio, A. From DFT to machine learning: Recent approaches to materials science – A review. J Phys Mater. 2019;2:032001.
Tavares, SR, Vaiss, VS, Antunes, FPN, et al. DFT calculations for structural prediction and applications of intercalated lamellar compounds. Dalton Trans. 2018;47:2852–2866.
Lee, SJR, Welborn, M, Manby, FR, Miller, TF. Projection‐based wavefunction‐in‐DFT embedding. Acc Chem Res. 2019;52:1359–1368.
Weinberger, CR, Thompson, GB. Review of phase stability in the group IVB and VB transition‐metal carbides. J Am Ceram Soc. 2018;101:4401–4424.
Ghosh, S, Verma, P, Cramer, CJ, Gagliardi, L, Truhlar, DG. Combining wave function methods with density functional theory for excited states. Chem Rev. 2018;118:7249–7292.
Dion, M, Rydberg, H, Schröder, E, Langreth, DC, Lundqvist, BI. Van der Waals density functional for general geometries. Phys Rev Lett. 2004;92:246401.
Carrasco, J, Santra, B, Klimeš, J, Michaelides, A. To wet or not to wet? Dispersion forces tip the balance for water ice on metals. Phys Rev Lett. 2011;106:026101.
Chakarova‐Käck, SD, Schröder, E, Lundqvist, BI, Langreth, DC. Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite. Phys Rev Lett. 2006;96:146107.
Öström, H, Ogasawara, H, Näslund, LÅ, Pettersson, LGM, Nilsson, A. Physisorption‐induced C–H bond elongation in methane. Phys Rev Lett. 2006;96:146104.
Zhao, Y, Truhlar, DG. Density functionals with broad applicability in chemistry. Acc Chem Res. 2008;41:157–167.
Perdew, JP, Yue, W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys Rev B. 1986;33:8800–8802.
Klimeš, J, Bowler, DR, Michaelides, A. Van der Waals density functionals applied to solids. Phys Rev B. 2011;83:195131.
Mittendorfer, F, Garhofer, A, Redinger, J, Klimeš, J, Harl, J, Kresse, G. Graphene on Ni (111): Strong interaction and weak adsorption. Phys Rev B. 2011;84:201401.
Wellendorff, J, Lundgaard, KT, Møgelhøj, A, et al. Density functionals for surface science: Exchange‐correlation model development with Bayesian error estimation. Phys Rev B. 2012;85:235149.
Lu, Z, Lv, P, Ma, D, Yang, X, Li, S, Yang, Z. Detection of gas molecules on single Mn adatom adsorbed graphyne: A DFT‐D study. J Phys D Appl Phys. 2018;51:065109.
Garrain, P, Costa, D, Marcus, P. Biomaterial–biomolecule interaction: DFT‐D study of glycine adsorption on Cr2O3. J Phys Chem C. 2011;115:719–727.
Costa, D, Garrain, P‐A, Diawara, B, Marcus, P. Biomolecule–biomaterial interaction: A DFT‐D study of glycine adsorption and self‐assembly on hydroxylated Cr2O3 surfaces. Langmuir. 2011;27:2747–2760.
Ehrlich, S, Moellmann, J, Reckien, W, Bredow, T, Grimme, S. System‐dependent dispersion coefficients for the DFT‐D3 treatment of adsorption processes on ionic surfaces. ChemPhysChem. 2011;12:3414–3420.
Tada, K, Maeda, Y, Ozaki, H, Tanaka, S, Yamazaki, S‐I. Theoretical investigation on the interaction between Rh III octaethylporphyrin and a graphite basal surface: A comparison study of DFT, DFT‐D, and AFM. Phys Chem Chem Phys. 2018;20:20235–20246.
Saqlain, MA, Hussain, A, Siddiq, M, Leitão, AA. Water dissociation and CO oxidation over Au/anatase catalyst. A DFT‐D2 study. Appl Surf Sci. 2018;435:1168–1173.
Goerigk, L. A comprehensive overview of the DFT‐D3 London‐dispersion correction. Non‐covalent interactions in quantum chemistry and physics. New York: Elsevier, 2017.
Tkatchenko, A, Scheffler, M. Accurate molecular van der Waals interactions from ground‐state electron density and free‐atom reference data. Phys Rev Lett. 2009;102:073005.
Ruiz, VG, Liu, W, Zojer, E, Scheffler, M, Tkatchenko, A. Density‐functional theory with screened van der Waals interactions for the modeling of hybrid inorganic–organic systems. Phys Rev Lett. 2012;108:146103.
Zaremba, E, Kohn, W. Van der Waals interaction between an atom and a solid surface. Phy Rev B. 1976;13:2270–2285.
Tkatchenko, A, Romaner, L, Hofmann, OT, Zojer, E, Ambrosch‐Draxl, C, Scheffler, M. Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bull. 2011;35:435–442.
Liu, W, Filimonov, SN, Carrasco, J, Tkatchenko, A. Molecular switches from benzene derivatives adsorbed on metal surfaces. Nat Commun. 2013;4:2569.
Rodriguez‐Reyes, JCF, Siler, CG, Liu, W, Tkatchenko, A, Friend, CM, Madix, RJ. van der Waals interactions determine selectivity in catalysis by metallic gold. J Am Chem Soc. 2014;136:13333–13340.
Li, G, Tamblyn, I, Cooper, VR, Gao, H‐J, Neaton, JB. Molecular adsorption on metal surfaces with van der Waals density functionals. Phys Rev B. 2012;85:121409.
Wirth, J, Hatter, N, Drost, R, et al. Diarylethene molecules on a Ag (111) surface: Stability and electron‐induced switching. J Phys Chem C. 2015;119:4874–4883.
Román‐Pérez, G, Soler, JM. Efficient implementation of a van der Waals density functional: Application to double‐wall carbon nanotubes. Phys Rev Lett. 2009;103:096102.
Klimeš, J, Bowler, DR, Michaelides, A. Chemical accuracy for the van der Waals density functional. J Phys Condens Matter. 2009;22:022201.
Bohm, D, Pines, D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys Rev. 1953;92:609.
Gell‐Mann, M, Brueckner, KA. Correlation energy of an electron gas at high density. Phys Rev. 1957;106:364–368.
Tkatchenko, A, DiStasio, RA Jr, Car, R, Scheffler, M. Accurate and efficient method for many‐body van der Waals interactions. Phys Rev Lett. 2012;108:236402.
Jónsson, H, Mills, G, Jacobsen, KW. Nudged elastic band method for finding minimum energy paths of transitions. Classical and quantum dynamics in condensed phase simulations. Singapore: World Scientific, 1998; p. 385.
Mills, G, Jónsson, H, Schenter, GK. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf Sci. 1995;324:305–337.
Henkelman, G, Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys. 1999;111:7010–7022.
Henkelman, G, Uberuaga, BP, Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–9904.
Li, H, Fahrenbach, AC, Coskun, A, et al. A light‐stimulated molecular switch driven by radical–radical interactions in water. Angew Chem. 2011;123:6914–6920.
Shuai, Z, Peng, Q. Excited states structure and processes: Understanding organic light‐emitting diodes at the molecular level. Phys Rep. 2014;537:123–156.
ATOMISTIX Toolkit, version 2018.06; QuantumWise A/S.
Brandbyge, M, Mozos, J‐L, Ordejón, P, Taylor, J, Stokbro, K. Density‐functional method for nonequilibrium electron transport. Phys Rev B. 2002;65:165401.
Taylor, J, Guo, H, Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B. 2001;63:245407.
Waldron, D, Haney, P, Larade, B, MacDonald, A, Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys Rev Lett. 2006;96:166804.
Huheey, JE, Keiter, EA, Keiter, RL, Medhi, OK. Inorganic chemistry: Principles of structure and reactivity. India: Pearson Education India, 2006.
Haug, H, Jauho, A‐P. Quantum kinetics and optics of semiconductors. Berlin: Springer‐Verlag, 1996.
Bleger, D, Hecht, S. Visible‐light‐activated molecular switches. Angew Chem Int Ed. 2015;54:11338–11349.
Wang, L, Li, Q. Photochromism into nanosystems: Towards lighting up the future nanoworld. Chem Soc Rev. 2018;47:1044–1097.
Strauss, MA, Wegner, HA. Exploring London dispersion and solvent interactions at alkyl–alkyl interfaces using azobenzene switches. Angew Chem Int Ed. 2019;58:18552–18556.
Beharry, AA, Woolley, GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011;40:4422–4437.
Hartley, GS. The cis‐form of azobenzene. Nature. 1937;140:281–281.
Bandara, HD, Burdette, SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012;41:1809–1825.
Cattaneo, P, Persico, M. An ab initio study of the photochemistry of azobenzene. Phys Chem Chem Phys. 1999;1:4739–4743.
Mukhopadhyay, RD, Praveen, VK, Ajayaghosh, A. Photoresponsive metal–organic materials: Exploiting the azobenzene switch. Mater Horizons. 2014;1:572–576.
Chen, S, Zhang, Y, Chen, K, Yin, Y, Wang, C. Insight into a fast‐phototuning azobenzene switch for sustainably tailoring the foam stability. ACS Appl Mater Interfaces. 2017;9:13778–13784.
Tallarida, N, Rios, L, Apkarian, VA, Lee, J. Isomerization of one molecule observed through tip‐enhanced Raman spectroscopy. Nano Lett. 2015;15:6386–6394.
Cabré, G, Garrido‐Charles, A, Moreno, M, et al. Rationally designed azobenzene photoswitches for efficient two‐photon neuronal excitation. Nat Commun. 2019;10:1–12.
Jaekel, S, Richter, A, Lindner, R, et al. Reversible and efficient light‐induced molecular switching on an insulator surface. ACS Nano. 2018;12:1821–1828.
Choi, B‐Y, Kahng, S‐J, Kim, S, et al. Conformational molecular switch of the azobenzene molecule: A scanning tunneling microscopy study. Phys Rev Lett. 2006;96:156106.
McNellis, ER, Meyer, J, Reuter, K. Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Phys Rev B. 2009;80:205414.
Maurer, RJ, Liu, W, Poltavsky, I, et al. Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag (111). Phys Rev Lett. 2016;116:146101.
Maurer, RJ, Reuter, K. Bistability loss as a key feature in Azobenzene (non‐)switching on metal surfaces. Angew Chem Int Ed. 2012;51:12009–12011.
Xie, Z, Duan, S, Wang, C‐K, Luo, Y. Finding the true pathway for reversible isomerization of a single azobenzene molecule tumbling on Au (111) surface. Nanoscale. 2020;12:10474–10479.
Hagen, S, Leyssner, F, Nandi, D, Wolf, M, Tegeder, P. Reversible switching of tetra‐tert‐butyl‐azobenzene on a Au (1 1 1) surface induced by light and thermal activation. Chem Phys Lett. 2007;444:85–90.
Nacci, C, Baroncini, M, Credi, A, Grill, L. Reversible photoswitching and isomer‐dependent diffusion of single azobenzene tetramers on a metal surface. Angew Chem Int Ed. 2018;57:15034–15039.
Meng, L, Xin, N, Hu, C, et al. Side‐group chemical gating via reversible optical and electric control in a single molecule transistor. Nat Commun. 2019;10:1–8.
Sendler, T, Luka‐Guth, K, Wieser, M, et al. Light‐induced switching of tunable single‐molecule junctions. Adv Sci. 2015;2:1500017.
Tian, H, Yang, S. Recent progresses on diarylethene based photochromic switches. Chem Soc Rev. 2004;33:85–97.
Zhang, J, Tian, H. The endeavor of diarylethenes: New structures, high performance, and bright future. Adv Opt Mater. 2018;6:1701278.
Zheng, K, Han, S, Zeng, X, et al. Rewritable optical memory through high‐registry orthogonal upconversion. Adv Mater. 2018;30:1801726.
Uno, K, Bossi, ML, Irie, M, Belov, VN, Hell, SW. Reversibly photoswitchable fluorescent diarylethenes resistant against photobleaching in aqueous solutions. J Am Chem Soc. 2019;141:16471–16478.
Thomas, L, Guerin, D, Quinard, B, et al. Conductance switching at the nanoscale of diarylethene derivative self‐assembled monolayers on La0.7Sr0.3MnO3. Nanoscale. 2020;12:8268–8276.
Zhang, N, Lo, WY, Jose, A, Cai, Z, Li, L, Yu, L. A single‐molecular AND gate operated with two orthogonal switching mechanisms. Adv Mater. 2017;29:1701248.
Goulet‐Hanssens, A, Eisenreich, F, Hecht, S. Enlightening materials with photoswitches. Adv Mater. 2020;32:1905966.
El Gemayel, M, Börjesson, K, Herder, M, et al. Optically switchable transistors by simple incorporation of photochromic systems into small‐molecule semiconducting matrices. Nat Commun. 2015;6:1–8.
Dulić, D, van der Molen, SJ, Kudernac, T, et al. One‐way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett. 2003;91:207402.
Dewar, MJ, Zoebisch, EG, Healy, EF, Stewart, JJ. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J Am Chem Soc. 1985;107:3902–3909.
Koo, J, Jang, Y, Ln, M, et al. Unidirectional real‐time photoswitching of diarylethene molecular monolayer junctions with multilayer graphene electrodes. ACS Appl Mater Interfaces. 2019;11:11645–11653.
Jia, C, Wang, J, Yao, C, et al. Conductance switching and mechanisms in single‐molecule junctions. Angew Chem Int Ed. 2013;52:8666–8670.
Jia, C, Migliore, A, Xin, N, et al. Covalently bonded single‐molecule junctions with stable and reversible photoswitched conductivity. Science. 2016;352:1443–1445.
Ashraf, M, Bruque, NA, Tan, JL, Beran, GJ, Lake, RK. Conductance switching in diarylethenes bridging carbon nanotubes. J Chem Phys. 2011;134:024524.
Heath, JR, Ratner, MA. Molecular electronics. Phys. Today. 2003;56:43–49.
Auwärter, W, Seufert, K, Bischoff, F, et al. A surface‐anchored molecular four‐level conductance switch based on single proton transfer. Nat Nanotechnol. 2012;7:41–46.
Nacci, C, Erwin, SC, Kanisawa, K, Fölsch, S. Controlled switching within an organic molecule deliberately pinned to a semiconductor surface. ACS Nano. 2012;6:4190–4195.
Garrido Torres, JA, Simpson, GJ, Adams, CJ, Früchtl, HA, Schaub, R. On‐demand final state control of a surface‐bound bistable single molecule switch. Nano Lett. 2018;18:2950–2956.
Li, J, Yang, S, Ren, J‐C, et al. Deep molecular orbital driven high‐temperature hydrogen tautomerization switching. J Phys Chem Lett. 2019;10:6755–6761.
Simpson, GJ, Hogan, SW, Caffio, M, et al. New class of metal bound molecular switches involving H‐tautomerism. Nano Lett. 2014;14:634–639.
Repp, J, Meyer, G, Stojković, SM, Gourdon, A, Joachim, C. Molecules on insulating films: Scanning‐tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett. 2005;94:026803.
Tersoff, J, Hamann, DR. Theory of the scanning tunneling microscope. Phys Rev B. 1985;31:805–813.
Vogel, E, Köcher, M, Schmickler, H, Lex, J. Porphycene—A novel porphin isomer. Angew Chem Int Ed Engl. 1986;25:257–259.
Waluk, J. Spectroscopy and tautomerization studies of porphycenes. Chem Rev. 2017;117:2447–2480.
Fita, P, Grill, L, Listkowski, A, et al. Spectroscopic and microscopic investigations of tautomerization in porphycenes: Condensed phases, supersonic jets, and single molecule studies. Phys Chem Chem Phys. 2017;19:4921–4937.
Kumagai, T, Hanke, F, Gawinkowski, S, et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu (110) surface. Phys Rev Lett. 2013;111:246101.
Ladenthin, JN, Frederiksen, T, Persson, M, et al. Force‐induced tautomerization in a single molecule. Nat Chem. 2016;8:935–940.
Kumagai, T, Ladenthin, JN, Litman, Y, et al. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au. J Chem Phys. 2018;148:102330.
Koch, M, Pagan, M, Persson, M, Gawinkowski, S, Waluk, J, Kumagai, T. Direct observation of double hydrogen transfer via quantum tunneling in a single porphycene molecule on a Ag (110) surface. J Am Chem Soc. 2017;139:12681–12687.
Liu, J, Li, C, Liu, X, et al. Positioning and switching phthalocyanine molecules on a Cu (100) surface at room temperature. ACS Nano. 2014;8:12734–12740.
Buntkowsky, G, Limbach, HH. H‐solid state NMR studies of tunneling phenomena and isotope effects in transition metal dihydrides. J Low Temp Phys. 2006;143:55–114.
Limbach, H‐H, Miguel Lopez, J, Kohen, A. Arrhenius curves of hydrogen transfers: Tunnel effects, isotope effects and effects of pre‐equilibria. Philos Trans R Soc. 2006;361:1399–1415.
Laidler, KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61:494.
Liu, W, Carrasco, J, Santra, B, Michaelides, A, Scheffler, M, Tkatchenko, A. Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding. Phys Rev B. 2012;86:245405.
Brown, DE, Moffatt, DJ, Wolkow, RA. Isolation of an intrinsic precursor to molecular chemisorption. Science. 1998;279:542–544.
Su, G, Yang, S, Li, S, et al. Switchable Schottky contacts: Simultaneously enhanced output current and reduced leakage current. J Am Chem Soc. 2019;141:1628–1635.
Lew, W, Crowe, MC, Karp, E, et al. The energy of adsorbed hydroxyl on Pt(111) by microcalorimetry. J Phys Chem C. 2011;115:11586–11594.
Wander, A, Held, G, Hwang, R, et al. A diffuse LEED study of the adsorption structure of disordered benzene on Pt(111). Surf Sci. 1991;249:21–34.
Borca, B, Schendel, V, Pétuya, R, et al. Bipolar conductance switching of single anthradithiophene molecules. ACS Nano. 2015;9:12506–12512.
Schendel, V, Borca, B, Pentegov, I, et al. Remotely controlled isomer selective molecular switching. Nano Lett. 2015;16:93–97.
Yang, S, Li, S, Filimonov, SN, Fuentes‐Cabrera, M, Liu, W. Principles of design for substrate‐supported molecular switches based on physisorbed and chemisorbed states. ACS Appl Mater Interfaces. 2018;10:26772–26780.
Yang, S, Li, S, Zhang, G‐X, et al. Surface strain‐induced collective switching of ensembles of molecules on metal surfaces. J Phys Chem Lett. 2020;11:2277–2283.
Zeng, YJ, Wu, D, Cao, XH, Zhou, WX, Tang, LM, Chen, KQ. Nanoscale organic thermoelectric materials: Measurement, theoretical models, and optimization strategies. Adv Funct Mater. 2020;30:1903873.
Meijer, G. Who wins the nonvolatile memory race? Science. 2008;319:1625–1626.
Li, Y, Chen, L, Ai, Y, Hong, EY‐H, Chan, AK‐W, Yam, VW‐W. Supramolecular self‐assembly and dual‐switch vapochromic, vapoluminescent, and resistive memory behaviors of amphiphilic platinum (II) complexes. J Am Chem Soc. 2017;139:13858–13866.
Warren, PB, Ten Wolde, PR. Enhancement of the stability of genetic switches by overlapping upstream regulatory domains. Phys Rev Lett. 2004;92:128101.
Jia, C, Guo, X. Molecule–electrode interfaces in molecular electronic devices. Chem Soc Rev. 2013;42:5642–5660.
Suellen, C, Freitas, RG, Loos, P‐F, Jacquemin, D. Cross‐comparisons between experiment, TD‐DFT, CC, and ADC for transition energies. J Chem Theory Comput. 2019;15:4581–4590.
Amirjalayer, S, Martinez‐Cuezva, A, Berna, J, Woutersen, S, Buma, WJ. Photoinduced Pedalo‐type motion in an azodicarboxamide‐based molecular switch. Angew Chem Int Ed. 2018;57:1792–1796.
Laurent, AD, Jacquemin, D. TD‐DFT benchmarks: A review. Int J Quantum Chem. 2013;113:2019–2039.
Vilan, A, Aswal, D, Cahen, D. Large‐area, ensemble molecular electronics: Motivation and challenges. Chem Rev. 2017;117:4248–4286.
Fujii, S, Koike, M, Nishino, T, et al. Electric‐field‐controllable conductance switching of an overcrowded ethylene self‐assembled monolayer. J Am Chem Soc. 2019;141:18544–18550.
Meng, Y‐S, Liu, T. Manipulating spin transition to achieve switchable multifunctions. Acc Chem Res. 2019;52:1369–1379.
Zhang, l, Tong, Y, Kelai, M, et al. Anomalous light‐induced spin‐state switching for iron(II) spin‐crossover molecules in direct contact with metal surfaces. Angew Chem Int Ed. 2020;59:2–8.
Casu, MB. Nanoscale studies of organic radicals: Surface, interface, and spinterface. Acc Chem Res. 2018;51:753–760.
Cinchetti, M, Dediu, VA, Hueso, LE. Activating the molecular spinterface. Nat Mater. 2017;16:507–515.
Shiga, T, Saiki, R, Akiyama, L, et al. A Brønsted‐ligand‐based iron complex as a molecular switch with five accessible states. Angew Chem. 2019;131:5714–5718.
Ossinger, S, Naggert, H, Kipgen, L, et al. Vacuum‐evaporable spin‐crossover complexes in direct contact with a solid surface: Bismuth versus gold. J Phys Chem C. 2017;121:1210–1219.
Gopakumar, TG, Matino, F, Naggert, H, Bannwarth, A, Tuczek, F, Berndt, R. Electron‐induced spin crossover of single molecules in a bilayer on gold. Angew Chem Int Ed. 2012;51:6262–6266.
Köbke, A, Gutzeit, F, Röhricht, F, et al. Reversible coordination‐induced spin‐state switching in complexes on metal surfaces. Nat Nanotechnol. 2020;15:18–21.
Chattopadhyaya, M, Alam, MM, Sen, S, Chakrabarti, S. Electrostatic spin crossover and concomitant electrically operated spin switch action in a Ti‐based endohedral metallofullerene polymer. Phys Rev Lett. 2012;109:257204.
Baadji, N, Sanvito, S. Giant resistance change across the phase transition in spin‐crossover molecules. Phys Rev Lett. 2012;108:217201.
Butler, KT, Davies, DW, Cartwright, H, Isayev, O, Walsh, A. Machine learning for molecular and materials science. Nature. 2018;559:547–555.